Advances in Back-side Via Etching of SiC for GaN Device Applications

Similar documents
Etching Capabilities at Harvard CNS. March 2008

E SC 412 Nanotechnology: Materials, Infrastructure, and Safety Wook Jun Nam

Traps in MOCVD n-gan Studied by Deep Level Transient Spectroscopy and Minority Carrier Transient Spectroscopy

Normally-Off GaN Field Effect Power Transistors: Device Design and Process Technology Development

ETCHING Chapter 10. Mask. Photoresist

The Stanford Nanofabrication Facility. Etch Area Overview. May 21, 2013

1

Supplementary Information Our InGaN/GaN multiple quantum wells (MQWs) based one-dimensional (1D) grating structures

Analyses of LiNbO 3 wafer surface etched by ECR plasma of CHF 3 & CF 4

Sensors and Metrology. Outline

Thin Wafer Handling Debonding Mechanisms

Reactive Ion Etching (RIE)

Wet and Dry Etching. Theory

Etching Issues - Anisotropy. Dry Etching. Dry Etching Overview. Etching Issues - Selectivity

Table of Content. Mechanical Removing Techniques. Ultrasonic Machining (USM) Sputtering and Focused Ion Beam Milling (FIB)

4FNJDPOEVDUPS 'BCSJDBUJPO &UDI

EV Group. Engineered Substrates for future compound semiconductor devices

Passionately Innovating With Customers To Create A Connected World

Thin Wafer Handling Challenges and Emerging Solutions

Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped

Etching: Basic Terminology

Plasma etching. Bibliography

LECTURE 5 SUMMARY OF KEY IDEAS

Cl 2 -Based Dry Etching of GaN and InGaN Using Inductively Coupled Plasma

Plasma Chemistry Study in an Inductively Coupled Dielectric Etcher

Section 3: Etching. Jaeger Chapter 2 Reader

Plasma-Surface Interactions in Patterning High-k k Dielectric Materials

CHAPTER 6: Etching. Chapter 6 1

Hydrodynamics of Diamond-Shaped Gradient Nanopillar Arrays for Effective. DNA Translocation into Nanochannels. (Supplementary information)

Characteristics of Neutral Beam Generated by a Low Angle Reflection and Its Etch Characteristics by Halogen-Based Gases

Hybrid Wafer Level Bonding for 3D IC

GRAPHENE ON THE Si-FACE OF SILICON CARBIDE USER MANUAL

UHF-ECR Plasma Etching System for Dielectric Films of Next-generation Semiconductor Devices

Inductively Coupled Plasma Etching of Ta, Co, Fe, NiFe, NiFeCo, and MnNi with Cl 2 /Ar Discharges

Direct Measurement of Metallic Impurities in 20% Ammonium Hydroxide by 7700s/7900 ICP-MS

NNCI ETCH WORKSHOP - STANFORD NNCI PLASMA ETCH OVERVIEW. Usha Raghuram Stanford Nanofabrication Facility Stanford, CA May 24, 2016

EE C245 ME C218 Introduction to MEMS Design Fall 2007

Plasma Deposition (Overview) Lecture 1

Simulation of Ion Beam Etching of Patterned Nanometer-scale Magnetic Structures for High-Density Storage Applications

Lecture 6 Plasmas. Chapters 10 &16 Wolf and Tauber. ECE611 / CHE611 Electronic Materials Processing Fall John Labram 1/68

Dynamization evolution of Dry Etch Tools in Semiconductor Device Fabrication Gordon Cameron Intel Corp (November 2005)

Supporting Online Material for

SUPPLEMENTARY NOTES Supplementary Note 1: Fabrication of Scanning Thermal Microscopy Probes

Currently, worldwide major semiconductor alloy epitaxial growth is divided into two material groups.

MODELING OF SEASONING OF REACTORS: EFFECTS OF ION ENERGY DISTRIBUTIONS TO CHAMBER WALLS*

EE 527 MICROFABRICATION. Lecture 25 Tai-Chang Chen University of Washington

Regents of the University of California

CHARACTERIZATION OF DEEP REACTIVE ION ETCHING (DRIE) PROCESS FOR ELECTRICAL THROUGH-WAFER INTERCONNECTS FOR PIEZORESISTIVE INERTIAL SENSORS

Case Study of Electronic Materials Packaging with Poor Metal Adhesion and the Process for Performing Root Cause Failure Analysis

Lecture 0: Introduction

experiment (DOE) is performed to characterize the effect of ICP power, RIE power,

A. Optimizing the growth conditions of large-scale graphene films

UNIT 3. By: Ajay Kumar Gautam Asst. Prof. Dev Bhoomi Institute of Technology & Engineering, Dehradun

Plasma etch control by means of physical plasma parameter measurement with HERCULES Sematech AEC/APC Symposium X

Semiconductor Nanowires: Motivation

Supplementary Methods A. Sample fabrication

Direct Analysis of Trace Metal Impurities in High Purity Nitric Acid Using ICP-QQQ

M R S Internet Journal of Nitride Semiconductor Research

TRANSVERSE SPIN TRANSPORT IN GRAPHENE

Dynamic On-resistance and Tunneling Based De-trapping in GaN HEMT

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. Fall Exam 1

Atmospheric pressure Plasma Enhanced CVD for large area deposition of TiO 2-x electron transport layers for PV. Heather M. Yates

Inductively Coupled Plasma Reactive Ion Etching of GeSbTe Thin Films in a HBr/Ar Gas

Investigating extremely low resistance ohmic contacts to silicon carbide using a novel test structure

In situ electrical characterization of dielectric thin films directly exposed to plasma vacuum-ultraviolet radiation

Plasma Processing in the Microelectronics Industry. Bert Ellingboe Plasma Research Laboratory

Segmented Power Generator Modules of Bi 2 Te 3 and ErAs:InGaAlAs Embedded with ErAs Nanoparticles


Graphene: Plane and Simple Electrical Metrology?

EE130: Integrated Circuit Devices

Time-of-Flight Flow Microsensor using Free-Standing Microfilaments

Sensors and Metrology

Graphene films on silicon carbide (SiC) wafers supplied by Nitride Crystals, Inc.

EE 527 MICROFABRICATION. Lecture 24 Tai-Chang Chen University of Washington

Transparent Ohmic Contacts to N-polar n-type GaN

Lecture 11. Etching Techniques Reading: Chapter 11. ECE Dr. Alan Doolittle

INTRODUCTION TO THE HYBRID PLASMA EQUIPMENT MODEL

Competitive Advantages of Ontos7 Atmospheric Plasma

CVD: General considerations.

Superconducting Through-Silicon Vias for Quantum Integrated Circuits

MSE 310/ECE 340: Electrical Properties of Materials Fall 2014 Department of Materials Science and Engineering Boise State University

A novel sputtering technique: Inductively Coupled Impulse Sputtering (ICIS)

Resonator Fabrication for Cavity Enhanced, Tunable Si/Ge Quantum Cascade Detectors

Lecture 15 Etching. Chapters 15 & 16 Wolf and Tauber. ECE611 / CHE611 Electronic Materials Processing Fall John Labram 1/76

Enhanced Chamber Management and Fault Detection in Plasma Etch Processes via SEERS(Self Excited Electron Resonance Spectroscopy)

Three Approaches for Nanopatterning

Advanced Texturing of Si Nanostructures on Low Lifetime Si Wafer

Self-study problems and questions Processing and Device Technology, FFF110/FYSD13

Asymmetrical heating behavior of doped Si channels in bulk silicon and in silicon-on-insulator under high current stress

Schottky Rectifiers Zheng Yang (ERF 3017,

Boron-based semiconductor solids as thermal neutron detectors

3.155J/6.152J Microelectronic Processing Technology Fall Term, 2004

Figure 1: Graphene release, transfer and stacking processes. The graphene stacking began with CVD

Porous Layers Preparation for Solar Cells by Using Effect Etching Process

SUPPLEMENTARY INFORMATION

Creation and annealing of point defects in germanium crystal lattices by subthreshold energy events

Multicolor Graphene Nanoribbon/Semiconductor Nanowire. Heterojunction Light-Emitting Diodes

Nano fabrication by e-beam lithographie

Nanopantography: A method for parallel writing of etched and deposited nanopatterns

Keywords. 1=magnetron sputtering, 2= rotatable cathodes, 3=substrate temperature, 4=anode. Abstract

Transcription:

Advances in Back-side Via Etching of SiC for GaN Device Applications Anthony Barker, Kevin Riddell, Huma Ashraf & Dave Thomas SPTS Technologies, Ringland Way, Newport NP18 2TA, UK, dave.thomas@spts.com, Tel +44 1633 414027 Chia-Hao Chen, Yi-Feng Wei, I-Te Cho & Walter Wohlmuth WIN Semiconductors Corp, No. 35, Technology 7 th Road, Hwaya Technology Park, Kuei Shan Hsiang, Tao Yuan Shien, Taiwan 333 forrest@winfoundry.com, Tel +886 3 3975999 ext 1631 Keywords: SiC, Via, Back-side, GaN, APS Abstract This paper will focus on the development of an 85µm diameter, 100µm deep SiC back-side via etch process for production. 100mm SiC/GaN wafers bonded to carriers were provided by WIN Semiconductors Corporation and etched at SPTS using an APS process module. Etch rates >1.3µm/min with cross-wafer uniformities of <±5% have been achieved along with selectivities to a patterned Ni hard mask in the range 30-40:1. A unique descum process has been introduced that reduces the defect level from up to 100% to <1%. Selectivities of >30:1 between the SiC and the GaN material have been obtained. Etch by-products are shown to be readily removed for compatibility with metallisation. Data is included on the etching of the GaN layer within the same process module. GaN etching is shown to be selective to the underlying Au metal and is compatible with end-point detection. Via resistances <6E-3Ω have been achieved. INTRODUCTION maintain smooth enough SiC walls for subsequent seed metal deposition/electro-plating and to preserve selectivity to the GaN. The build up of relatively low volatility etch byproducts within the via and upon the surfaces of the plasma reactor requires effective wet cleans to be developed for both the wafer and the reactor. EXPERIMENTAL Substrates for etching were prepared by WIN Semiconductors. The 100mm diameter GaN/SiC wafers were temporarily bonded face down to a 100mm carrier. After SiC grinding to ~100µm thickness an electro-plated Ni mask was patterned ready for the SiC via etch. Following via etching the wafers were wet cleaned to strip the mask and clean the via of polymer. The GaN layer was then etched, using the SiC via as the mask, stopping on the front-side Au metal. All etching was carried out in an SPTS APS process module. A schematic of the module is shown in Figure 1. The high breakdown voltage and high electron mobility of GaN make it an attractive material for high power device applications [1]. GaN is typically grown on SiC substrate wafers. Therefore the implementation of back-side vias involves the deep etching of SiC to form conducting pathways to the front-side circuitry [2,3]. Compared to GaAs the material properties of SiC and GaN make them much more challenging to plasma etch. Energetic plasma processes are required to deliver productive SiC etch rates whilst maintaining high enough selectivity to the masking layer and low enough wafer temperature to preserve the bonding and prevent delamination. This requires metal masks and careful attention to the method of wafer clamping and temperature control. Due to the ground finish of the pre-etched SiC surface descum break-through steps are essential in minimising defects within the vias to maximise device yields. In such an energetic plasma environment it is challenging to Figure 1 Schematic diagram of the APS plasma etch module.

The reactor is designed with a doughnut-shaped source RF coupling ceramic (13.56MHz at up to 2.2kW), and a heated chamber (set to 50-60 C) with multi-polar magnetic confinement. This arrangement delivers plasma densities in the range 10 12-10 13 cm -3, typically 10x higher than conventional ICPs. The etch processes used SF 6 /O 2 /He and Cl 2 /BCl 3 chemistries for the SiC and GaN, respectively. A propietary descum process was developed as part of the SiC via etch in order to reduce/eliminate the formation of pillar defects. Mechanical clamping was used to ensure reliable temperature control during the SiC and GaN etch steps. The platen temperature was set to 10 C. Optical emission spectroscopy (OES) was used to end-point the GaN etch. Wet chemical via cleaning was also investigated. Processed wafers were analysed using optical microscopy, crosssectional SEM, profilometry and temperature label measurement. RESULTS Standard descums are ineffective, resulting in defectivity levels of 50-100%. A proprietary approach has been developed that substantially reduces pillar defectivity to <1%. TABLE I WAFER TEMPERATURES FOR SILICON CARBIDE VIA ETCHING Wafer type Wafer temperature ( C) Sapphire carrier 100 Bulk SiC 80 SiC bonded to carrier 116 Figure 3 shows the SiC etch rate and the Ni mask selectivity for the main etch conditions as a function of bias power. The wafers were run with the optimized descum but the impact of the descum on the etch rate and selectivity has been subtracted. Wafer temperature was assessed using 4 level microstrips (RS Components). These temperature stickers record the peak temperature. Table I summarises the peak temperatures for various wafer types for a 5 minute etch time when the platen is set to 10 C. These temperatures are safely below the the maximum allowable (dictated by the temporary bonding layer) which is 130 C in this case. Figure 3 SiC via etch rate and mask selectivity vs bias power. SF 6 /O 2 /He flow rate ratio 10:1:7. The data clearly shows that there is a balance required between maximizing the etch rate and conserving sufficient Ni mask by optimizing the selectivity. Figure 4 shows selectivity to the GaN underlayer across a similar bias power range. The improvement in selectivity with reducing bias power makes a 2 step (soft landing) approach appropriate for this application. Figure 2 Optical images showing the effect of descum conditions on pillar defect density. Due to the wet chemical etches of the metal seed layers and the SiC grinding that take place prior to the SiC via etch it is necessary to introduce a descum step as part of the via etch process. Optical images of SiC vias are shown in Figure 2 after partial etching with a range of descum conditions. Having investigated the etch rate and selectivity trends it was necessary to focus on improvements to the sidewall roughness of the via. Figure 5 shows the impact of chemical dilution on the SiC etch rate and mask selectivity. Here the He flow was increased so as to be the primary process gas. There is a corresponding reduction in the slopes of the graphs. Lower etch rates result under these conditions but the selectivity becomes a softer function of bias power which can help in tuning the process. Dilution was found to improve sidewall quality and improve within wafer etch rate uniformity.

Figure 4 SiC:GaN selectivity ratio vs bias power. SF 6 /O 2 /He flow rate ratio 10:1:7. Figure 6 SiC via etch rate and mask selectivity vs pressure. SF 6 /O 2 /He flow rate ratio 10:1:25. Process conditions TABLE II PROCESS TRENDS FOR SILICON CARBIDE VIA ETCHING Uniformity Etch rate Selectivity to Ni Selectivity to GaN Sidewall quality Bias power improves Dilution with He improves Improves Pressure Degrades Ar addition Improves Degrades Figure 5 SiC via etch rate and mask selectivity vs bias power. SF 6 /O 2 /He flow rate ratio 10:1:25. The next stages of the development saw a move to higher pressure to drive the SiC etch rate and selectivity up whilst maintaining sidewall quality. Figure 6 shows the SiC etch rate and selectivity trends with process pressure. Table II summarises the process trends for the SiC Via etch tuning. SEM cross sections for a 100µm deep SiC via etched using a 2 step optimized process stopping on the GaN underlayer are shown in Figure 7. The GaN loss has been measured to be <0.35µm for this process. Figure 8 shows the via base following GaN etching using a Cl 2 /BCl 3 chemistry in the same APS module. This process takes place after the Ni mask has been stripped and the via wet cleaned of polymer. Selective etching of the GaN to the Au metallisation is achieved. Figure 7 100µm deep SiC via etched to the GaN layer. GaN loss measured at <0.35µm. End-point traces for the GaN etch are shown in Figure 9. The intensities of the Ga* emissions at 417nm for 2 consecutive wafers show that the total etch times agree within 3 seconds.

Figure 8 Base of SiC via after GaN etching. Figure 10 Partial via etches before and after polymer removal in 20% HNO 3 15 minutes. CONCLUSIONS A manufacturable SiC back-side via process has been developed for high power device applications. Etch rates >1.3µm/min with cross-wafer uniformities of <±5% have been achieved along with Ni mask selectivity in the range 30-40:1. The use of a unique descum process has resulted in pillar defect levels <1% and the vias are easily cleaned of polymer using HNO 3 solutions. The same module hardware has been used to etch the GaN stopping on Au metal with automated end-point detection control. Via resistances <6E-3Ω have been achieved. ACKNOWLEDGEMENTS Figure 9 OES end-point traces for 2 consecutive GaN etches stopping on Au. The ability to clean the via of etch polymer using a 20% HNO 3 solution at room temperature for 15 minutes is shown in Figure 10. The trenching observed at the base of these partially etched vias is typical for an energetic process of this type. The trenching disappears when etching is continued to the GaN layer. The substrate vias were then coated with a sputtered metal seed layer and electro-plated with Au metal resulting in a nominal via resistanace slightly below 6E-3Ohm. The authors would like to thank Tony Barrass and Brian Kiernan at SPTS for their help in designing and implementing the weighted clamp hardware for the APS module and all of the staff at WIN Semiconductors who supported the GaN technology development. REFERENCES [1] V. Bougrov, et al., Properties of advanced semiconductor materials GaN, AlN, InN, BN, SiC, SiGe. Eds. M.E. Levinshtein et al., Wiley & Sons, New York pp. 1-30, 2011. [2] H. Stieglauer, et al., Evaluation of through wafer via holes in SiC for GaN HEMT technology, 2012 CS MANTECH Technical Digest, pp. 211-214, April 2012. [3] J-A. Ruan, et al., Backside via process of GaN device fabrication, 2012 CS MANTECH Technical Digest, pp. 215-217, April 2012.