A kinematic mechanism for positive feedback between synoptic eddies and NAO

Similar documents
The dynamics of the North Atlantic Oscillation during the summer season

High initial time sensitivity of medium range forecasting observed for a stratospheric sudden warming

Influence of eddy driven jet latitude on North Atlantic jet persistence and blocking frequency in CMIP3 integrations

The feature of atmospheric circulation in the extremely warm winter 2006/2007

Baroclinic anomalies associated with the Southern Hemisphere Annular Mode: Roles of synoptic and low-frequency eddies

Impact of transient eddies on extratropical seasonal-mean predictability in DEMETER models

3. Midlatitude Storm Tracks and the North Atlantic Oscillation

SUPPLEMENTARY INFORMATION

Life cycles of North Atlantic teleconnections under strong and weak polar vortex conditions

Is the Atmospheric Zonal Index Driven by an Eddy Feedback?

Extremely cold and persistent stratospheric Arctic vortex in the winter of

Northern hemisphere storm tracks in strong AO anomaly winters

Characteristics of Storm Tracks in JMA s Seasonal Forecast Model

Dynamics of the Extratropical Response to Tropical Heating

The Lifecycle of the North Atlantic Storm Track. Maarten HP Ambaum, and Rémi Tailleux

Impact of East Asian winter monsoon on the Pacific storm track

Conference on Teleconnections in the Atmosphere and Oceans November 2008

What kind of stratospheric sudden warming propagates to the troposphere?

How Rossby wave breaking over the Pacific forces the North Atlantic Oscillation

Dynamical feedbacks and the persistence of the NAO

Impact of the North Atlantic Sea Surface Temperature Tripole on the East Asian Summer Monsoon

Dynamical evolution of North Atlantic ridges and poleward Jet Stream displacements

The Morphology of Northern Hemisphere Blocking

The ENSO s Effect on Eastern China Rainfall in the Following Early Summer

The role of eddy feedback in the excitation of the NAO

East-west SST contrast over the tropical oceans and the post El Niño western North Pacific summer monsoon

Opposing Effects of Reflective and Non-Reflective. Planetary Wave Breaking on the NAO. John T. Abatzoglou and. Gudrun Magnusdottir

The North Atlantic Oscillation: Climatic Significance and Environmental Impact

The dynamical link between surface cyclones, upper-tropospheric Rossby wave breaking and the life cycle of the Scandinavian blocking

High and low latitude types of the downstream influences of the North Atlantic Oscillation

JournalofGeophysicalResearch: Atmospheres

The increase of snowfall in Northeast China after the mid 1980s

Why do dust storms decrease in northern China concurrently with the recent global warming?

On the remarkable Arctic winter in 2008/2009

Nonlinear atmospheric teleconnections

Traveling planetary-scale Rossby waves in the winter stratosphere: The role of tropospheric baroclinic instability

Oceanic origin of the interannual and interdecadal variability of the summertime western Pacific subtropical high

Observed Patterns of Month-to-Month Storm-Track Variability and Their Relationship to the Background Flow*

Role of atmospheric waves in the formation and maintenance of the Northern Annular Mode

Anticorrelated intensity change of the quasi-biweekly and day oscillations over the South China Sea

Long-Term Trend and Decadal Variability of Persistence of Daily 500-mb Geopotential Height Anomalies during Boreal Winter

An observational study of the impact of the North Pacific SST on the atmosphere

A Sub-Seasonal Teleconnection Analysis: PNA Development and Its. Relationship to the NAO

The Lifecycle of the North Atlantic Storm Track. Maarten HP Ambaum, and Rémi Tailleux

The Interdecadal Variation of the Western Pacific Subtropical High as Measured by 500 hpa Eddy Geopotential Height

Observational Zonal Mean Flow Anomalies: Vacillation or Poleward

Cooling of the wintertime Arctic stratosphere induced by

Respective impacts of the East Asian winter monsoon and ENSO on winter rainfall in China

Relationships between Extratropical Sea Level Pressure Variations and the Central- Pacific and Eastern-Pacific Types of ENSO

The role of synoptic eddies in the tropospheric response to stratospheric variability

Annular mode time scales in the Intergovernmental Panel on Climate Change Fourth Assessment Report models

The summer northern annular mode and abnormal summer weather in 2003

A potential vorticity perspective on the motion of a mid-latitude winter storm

Maintenance of Circulation Anomalies during the 1988 Drought and 1993 Floods over the United States

Circumglobal teleconnections and wave packets associated with Israeli winter precipitation

Possible influence of Arctic Oscillation on dust storm frequency in North China

Intra-seasonal relationship between the Northern Hemisphere sea ice variability and the North Atlantic Oscillation

Weakening relationship between East Asian winter monsoon and ENSO after mid-1970s

Baroclinic and Barotropic Annular Variability in the Northern Hemisphere

Do Stationary Waves Drive the Zonal-Mean Jet Anomalies of the Northern Winter?

Decadal Variation of the Northern Hemisphere Annular Mode and Its Influence on the East Asian Trough

Possible Roles of Atlantic Circulations on the Weakening Indian Monsoon Rainfall ENSO Relationship

The Formation of Precipitation Anomaly Patterns during the Developing and Decaying Phases of ENSO

WATER VAPOR FLUXES OVER EQUATORIAL CENTRAL AFRICA

LETTERS. North Atlantic Atmosphere Ocean Interaction on Intraseasonal Time Scales

Effect of Synoptic Systems on the Variability of the North Atlantic Oscillation

P3.6 THE INFLUENCE OF PNA AND NAO PATTERNS ON TEMPERATURE ANOMALIES IN THE MIDWEST DURING FOUR RECENT El NINO EVENTS: A STATISTICAL STUDY

Twenty-five years of Atlantic basin seasonal hurricane forecasts ( )

Time Scale and Feedback of Zonal-Mean-Flow Variability

Definition of Antarctic Oscillation Index

Update of the JMA s One-month Ensemble Prediction System

Characteristic blocking events over Ural-Siberia in Boreal Winter under Present and Future Climate Conditions

The Indian summer monsoon during peaks in the 11 year sunspot cycle

The Role of Warm North Atlantic SST in the Formation of Positive Height Anomalies over the Ural Mountains during January 2008

Diagnosis of systematic forecast errors dependent on flow pattern

Accelerated Iterative Method for Solving Steady. Solutions of Linearized Atmospheric Models. Masahiro Watanabe. Fei-fei Jin.

Increased Tibetan Plateau Snow Depth An Indicator of the Connection between Enhanced Winter NAO and Late- Spring Tropospheric Cooling over East Asia

Barotropic and baroclinic annular variability in the Southern Hemisphere. Department of Atmospheric Science, Colorado State University

The Influence of Intraseasonal Variations on Medium- to Extended-Range Weather Forecasts over South America

Nonlinear Impact of the Arctic Oscillation on extratropical. surface air temperature

ASIA-PACIFIC JOURNAL OF ATMOSPHERIC SCIENCES, 45, 4, 2009, p

The Planetary Circulation System

MJO Influence in Continental United States Temperatures

Dynamical connection between tropospheric blockings and stratospheric polar vortex

Four ways of inferring the MMC. 1. direct measurement of [v] 2. vorticity balance. 3. total energy balance

Eurasian Snow Cover Variability and Links with Stratosphere-Troposphere Coupling and Their Potential Use in Seasonal to Decadal Climate Predictions

The Impact of the Extratropical Transition of Typhoon Dale (1996) on the Early Wintertime Stratospheric Circulation

particular regional weather extremes

Forcing of Tropical SST Anomalies by Wintertime AO-like Variability

Reversal of Arctic Oscillation pattern and its relation to extreme hot summer in Japan in 2010

Analysis Links Pacific Decadal Variability to Drought and Streamflow in United States

Charles Jones ICESS University of California, Santa Barbara CA Outline

A Subseasonal Teleconnection Analysis: PNA Development and Its Relationship to the NAO

The Gulf Stream influence on wintertime North Atlantic jet variability

On the Linkages between the Tropospheric Isentropic Slope and Eddy Fluxes of Heat during Northern Hemisphere Winter

Local versus non-local atmospheric weather noise and the North Pacific SST variability

Mid-latitude Ocean Influence on North Pacific Sector Climate Variability

Nonlinear impact of the Arctic Oscillation on extratropical surface air temperature

Tropospheric Rossby wave breaking and the NAO/NAM. Courtenay Strong 1. and. Gudrun Magnusdottir 2. Department of Earth System Science,

Changes in Southern Hemisphere rainfall, circulation and weather systems

Transcription:

Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 36, L11709, doi:10.1029/2009gl037294, 2009 A kinematic mechanism for positive feedback between synoptic eddies and NAO Hong-Li Ren, 1,2 Fei-Fei Jin, 2,3 Jong-Seong Kug, 4 Jing-Xia Zhao, 3 and Juhyun Park 5 Received 16 January 2009; revised 31 March 2009; accepted 24 April 2009; published 13 June 2009. [1] A kinematic mechanism for the positive feedback between the North Atlantic Oscillation (NAO) and synoptic eddies are depicted based on observational data analyses. Using three-point rescaled covariance statistics of bandpass-filtered (2 8 days) synoptic eddy fields, we examined observed eddy structure changes associated with wintermean NAO anomalous flow. It is demonstrated that the NAO flow anomalies systematically deform the structures of recurring synoptic eddies to generate seasonal-mean eddyvorticity flux anomalies predominately directed to the lefthand side of the NAO flow anomalies. These anomalous eddy-vorticity fluxes converge into the cyclonic center and diverge from the anticyclonic center of the anomalous NAO flow, and thus enhance the NAO flow. Citation: Ren, H.-L., F.-F. Jin, J.-S. Kug, J.-X. Zhao, and J. Park (2009), A kinematic mechanism for positive feedback between synoptic eddies and NAO, Geophys. Res. Lett., 36, L11709, doi:10.1029/ 2009GL037294. 1. Introduction [2] Beyond monthly-mean timescale, the North Atlantic Oscillation (NAO) is known to be the dominant mode of atmospheric circulation over the northern hemisphere. Many research works have shown that the interaction between low-frequency flow and synoptic eddy is indispensable for dominant climate modes [e.g., Cai and Mak, 1990; Robinson, 1991; Lau and Nath, 1991; Branstator, 1995; Lorenz and Hartmann, 2003; Jin et al., 2006a, 2006b]. The NAO variability has been shown to be maintained or enhanced by transient eddy forcing [e.g., Lau, 1988; Branstator, 1992; Nakamura et al., 1997]. Increasing observed and numerical studies provide evidence that synoptic eddy positively feeds back onto the NAO and other low-frequency climatic modes through the two-way interaction between the synoptic eddy and low-frequency flow (SELF). [3] Recently, Jin et al. [2006a, 2006b] proposed a theoretical framework with a dynamical closure for the SELF feedback. Based on this study, eddy-vorticity flux always 1 Visiting professor at Department of Meteorology, School of Ocean and Earth Sciences and Technology, University of Hawai i, Honolulu, Hawaii, USA. 2 Laboratory for Climate Studies, National Climate Center, China Meteorological Administration, Beijing, China. 3 Department of Meteorology, School of Ocean and Earth Sciences and Technology, University of Hawai i, Honolulu, Hawaii, USA. 4 Korea Ocean Research and Development Institute, Ansan, South Korea. 5 School of Earth and Environment Sciences, Seoul National University, Seoul, South Korea. Copyright 2009 by the American Geophysical Union. 0094-8276/09/2009GL037294$05.00 tends to point to the left side of low-frequency flow and this simple relation is referred to as left-hand rule [Kug and Jin, 2009]. We here focus on the dynamical processes giving rise to the positive SELF feedback for the NAO reflected by the left-hand rule. We then shall show observational evidence for a simple physical picture of a kinematic mechanism on how the NAO organizes recurring synoptic eddies and harvests their eddy vorticity, which in return enhances the NAO. 2. Data and Methodology [4] National Centers for Environmental Prediction/ National Center for Atmospheric Research (NCEP/NCAR) reanalysis data are used for forming the monthly and daily mean 30-year (Jan 1978 to Feb 2008) datasets with 2.5 2.5 horizontal resolution [Kalnay et al., 1996]. The stream function and vorticity fields are calculated from zonal and meridional winds at 300 hpa pressure level. To separate synoptic-eddy component, the daily mean zonal and meridional winds are band-pass filtered in the period of 2 8 days using Lanczos filter (using 41 weights [Duchon, 1979]). The low-frequency variability is defined as seasonal mean value. We calculate anomalous seasonal-mean horizontal eddy-vorticity fluxes and the associated convergence as the eddy-vorticity forcing. We then compute eddy-induced stream function tendency by applying 2D Laplacian inversion to the eddy-vorticity forcing. The divergent component of the eddy-vorticity flux is examined here because only it affects the low-frequency flow. All analyses are done for the boreal winter time (December to following February, DJF). [5] We here propose a weighted three-point covariance method to examine the synoptic eddy structure in the NAO region. This method is based on one-point correlation method introduced by Wallace and Gutzler [1981] and later by Blackmon et al. [1984], and is developed from the calculation of one-point covariance used by Jin et al. [2006a] to depict the structural changes of synoptic eddy flow. Thus, we first calculate one-point covariance field of eddy stream function (y 0 ) at 300 hpa, where the primary base point is chosen nearby the NAO southern action center and also within the Atlantic storm track action center. From this field, we then find two points of the nearest negative centers, one upstream and another downstream. [6] The rescaled one-point covariance field for each of these three points is defined as C j x j ; y j ; x; y; t s ; t ¼ y 0 x j ; y j ; t y 0 ðx; y; t tþ=s c y 0 x j ; y j ; ð1þ where subscript j =0, 1, 1, denotes the primary base point and its upstream and downstream points, respectively, t L11709 1of5

Figure 1. (a) Winter-mean NAO index anomalies from 1978/79 to 2007/08 and (b) regressed 300 hpa anomalous stream function (contour, 10 6 m 2 s 1 ), transient eddy forcing in terms of stream function tendency (shading, m 2 s 2 ), and irrotational component of eddy vorticity fluxes (vector, 10 5 ms 2 ) based on the NAO index. stands for time lag, t s is year. The bar is for seasonal mean, s c expresses climatological standard deviation. The field C j has the unit of stream function. We then define the threepoint weighted average of C j as C ¼ 1 2 C 0 1 ð 2 C 1 þ C 1 Þ : ð2þ fluxes enhance the NAO cyclonic and anticyclonic flows, respectively. [9] To depict the detailed dynamical processes for the positive eddy feedback, we examine how the anomalous eddy-vorticity fluxes and related eddy forcing are conduced. We here use observational data to diagnose the eddystructure statistics by calculating three-point covariance fields under the climatological mean and the strong NAO conditions, respectively (see Figure 2). [10] The climatological mean of three-point rescaled covariance field (Figure 2a) shows a wave-packet-like structure of synoptic eddy field. The amplitude of the packet naturally decays as the distance from the primary base point increases. Overall, it exhibits slightly tilted eddy structure as evident from the depicted phase lines defined as zonal extremes of eddy structure, presumably due to the climatological jet stream. This pattern represents typical synoptic eddy structure in this region under normal condition. To obtain the statistical synoptic eddy structure under the strong NAO conditions, we first regress the anomalous three-point covariance field of each season with the seasonal NAO index. We then multiply a factor of two to this regressed anomalous eddy structure pattern and add it onto the climatological mean, where the two-time inflation is only used to make structure change more clear. [11] It is evident in Figure 2b that eddy structure systematically changes from normal to NAO conditions. The NAO anomalous flow systematically deforms the synoptic eddy structure. The phase lines are anticyclonic slanted consistent This definition is from the typical pattern of one-point correlation or covariance field. The field C represents synoptic eddy structure with the unit of stream function. By examining the typical wave-length and magnitude in C, we find that our method captures the synoptic wave-packet structure better than one-point covariance field. After calculating C in every winter, we can construct climatological mean and define its seasonal anomalies as the departure from the mean. [7] The NAO index, defined by the rotated principal component analysis [Barnston and Livezey, 1987], is from NCEP (http://www.cpc.ncep.noaa.gov/data/teledoc/telecontents. shtml). In this study wintertime index is obtained by averaging monthly mean index in DJF. Figure 1a gives the 30-winter NAO index from 1978/79 to 2007/08. 3. Results [8] It is well-known that the NAO flow is closely related to synoptic eddy activity and there is a positive feedback between them [e.g., Lau, 1988]. As shown in Figure 1b, it is apparent that the anomalous eddy-vorticity fluxes generally follow the left-hand rule suggested by Kug and Jin [2009]. Namely, they are systematically directed toward the left of the NAO flow anomalies. Thus, the eddy-vorticity fluxes converge into the cyclonic flow and diverge from the anticyclonic flow. The convergence (negative eddy forcing) and divergence (positive eddy forcing) of the eddy-vorticity Figure 2. (a) Three-point zero-lag covariance fields for statistical synoptic eddy structures under climatologicalmean (contours) and strong NAO (shading) conditions using 3-point covariance fields. Cross signs denote the 3 points at (330 E, 45 N), (300 E, 45 N), and (357.5 E, 45 N). Red and blue curves are phase lines of the statistical synoptic eddy structures under climatological-mean (blue) and strong NAO (red) conditions. Red and blue shading (solid and dash contours) corresponds to anticyclonic and cyclonic eddy patterns, respectively. (b) Regressed winter-mean stream function pattern. Contour interval is 1 10 6 m 2 s 1, and 0 line is omitted in Figure 2a. 2of5

Figure 3. (a) Three-point zero-lag covariance fields for statistical synoptic eddy structures under climatologicalmean (contours) and anomalous eddy-vorticity structure (shading unit: 2 10 6 s 1 ) under NAO conditions). (b) Anomalous eddy-vorticity fluxes (red vectors, obtained by averaging the vector field from lead 2 days to lag 2 days including zero lag, unit: 1 10 5 ms 2 ). Contour is the same as Figure 1b with interval of 1 10 6 m 2 s 1 and 0 line is omitted in Figure 3a. with the kinematic effect of the NAO anomalous flow via its related differential eddy-vorticity advection. Therefore, the eddy-structure patterns are zonally slanted where zonal winds are strong westerly on the north side and easterly on the south side of southern NAO center. In addition, the eddy-structure patterns are meridionally stretched or squeezed where meridional winds are strong northerly on the east side and southerly on the west side of southern NAO center. In general, zonal deformation is prevailing due to much stronger zonal wind anomalies of the NAO flow. This observational evidence clearly documents that the NAO flow alters the synoptic eddy structure in a statistical sense. [12] Our next focus will be on the question how the deformation of eddy characteristics leads to a positive feedback onto the NAO flow. We now use the three-point covariance field to separate synoptic eddy statistics into two components: normal and anomalous eddy-structure patterns. Because this covariance field is normalized or more precisely rescaled into the physical dimension of stream function field, we can use the anomalous eddy-structure field to calculate the associated anomalous eddy-vorticitystructure pattern by simply applying to it with a Laplacian operator. As is shown in Figure 3a, relative to the upper left (right) and lower right (left) of the anticyclone center in normal eddy-structure pattern, there are positive (negative) vorticity anomalies with a quadrupole distribution. [13] Using the normal eddy-flow-structure and anomalous eddy-vorticity-structure patterns (denoted as V * 0 c and z 0 a, respectively), we can directly assess the quantitative anomalous eddy-vorticity fluxes (viz., V * 0 c z 0 a) associated with the NAO (Figure 3b), where rotational component has been removed. These estimated anomalous eddy-vorticity fluxes tend to follow the left-hand rule with poleward fluxes on the northern flank of NAO anticyclonic center and equatorward fluxes on the other flank. Besides the meridional eddy-vorticity fluxes, the zonal component of eddy-vorticity fluxes with relatively smaller magnitude is clear over the areas on the eastern and western sides of southern centers of the NAO. In these areas, meridional winds are relatively strong and so induce zonal eddy-vorticity fluxes. Thus, all of anomalous eddy-vorticity fluxes diverge from anomalous anticyclonic circulation in the NAO pattern. As a result, this leads to an eddy-induced negative vorticity tendency over anticyclonic center of the NAO and thus reinforces the NAO. [14] Although only based on the three-point covariance field, the eddy-vorticity-flux pattern in Figure 3b is clearly consistent with that shown in Figure 1b, indicating that there is an eddy-induced positive feedback onto the NAO mode under the kinematic control of the ambient NAO flow anomalies. The advantage of using three-point covariance statistics here is that the reconstructed eddy structures and corresponding calculated eddy-vorticity fluxes delineate a simple kinematic mechanism for the positive eddy feedback between synoptic eddies and the NAO, which is further illustrated schematically in Figure 4. [15] Without losing the generality, we consider an anticyclonic anomalous circulation similar to southern center of positive-phase NAO. As the ubiquitous synoptic cyclones and anticyclones pass through the anticyclonic NAO flow anomalies, they are anomalously deformed during their relatively short lifetime by differential NAO-related advections. The resultant anomalous eddy structures give rise to anomalous zonal and meridional eddy-vorticity fluxes that are always preferably directed to the left of the anomalous flow. The zonal component of the anomalous flow associated with the NAO tends to slant synoptic eddies to yield meridional eddy-vorticity fluxes directed toward the left, whereas the meridional component of the anomalous flow tends to stretch or squeeze eddies to yield zonal eddyvorticity fluxes directed also to the left. Thus the NAO flow anomalies organize synoptic eddies and get amplification by harvesting their vorticity. [16] Recent studies suggest that the NAO onset accompanies strong nonlinear changes in the wave-breaking process of synoptic eddies [Benedict et al., 2004; Franzke et al., 2004; Rivière and Orlanski, 2007; Woolings et al., 2008], essentially based on the weather view for the NAO [Feldstein, 2003]. The dynamical mechanism described here should be not inconsistent with the wave-breaking mechanism proposed for the NAO onset. In particular, the anticyclonic eddy-structure change in Figure 2 is quite similar to the anticyclonic-type wave-breaking, indicating that some linkages may exist between them. Actually, what we are focusing on is not onset but the self-maintenance of the NAO by considering the statistical effect of transient synoptic eddies which leave their impacts on the time-mean flow during the limited lifetime. 4. Summary and Discussion [17] This study focuses on the depiction of the dynamical processes for the NAO interacting with synoptic eddies. We 3of5

Figure 4. Schematic diagram for synoptic eddy feedback onto climatic mode. Thick green solid circle (anticyclonic) and hollow black arrows represent a climatic flow anomaly. Solid thin circles indicate idealized transient synoptic wave patterns with cyclonic (red) and anticyclonic (blue) eddies, whereas slanted dashed circles indicate the changed patterns of these synoptic eddies during their short lifetime as the result of anomalous climatic flow. Shaded circles stand for anomalous pattern of eddy positive (yellow) and negative (blue) vorticity as the result of the eddy structure change. used the observational data to construct the statistical structure of synoptic eddies and the changes of that structure in association with the NAO. It is demonstrated that as the leading climate mode in the northern hemisphere the anomalous flow of the NAO gains reinforcement by kinematically altering the statistical structure of transient synoptic eddies in the northern Atlantic storm track region. Eddyvorticity fluxes tend to be systematically modulated by and feed back onto the seasonal-mean anomalies associated with the NAO. [18] It was demonstrated by Lau [1988] that the changes in storm track such as anomalies in synoptic eddy variance and eddy-vorticity fluxes are well correlated with the other leading low-frequency modes such as the NAO. The evidence documented in this work provides additional observational facts that underline this relationship between the low-frequency flow anomalies and changes in synoptic eddy statistics. Based on regression analysis, we showed the clear evidence for the kinematic mechanism of synoptic eddy-structure changes under the influence of the NAOrelated anomalous flow. In the presence of the NAO-related flow anomalies, synoptic eddies in storm track region are systematically slanted and stretched to generate anomalies in time-mean eddy-vorticity fluxes that preferentially points to the left-hand side of anomalous flow associated with the NAO. Thus, the eddy-vorticity fluxes tend to converge into the center of the cyclonic flow and diverge from the center of the anticyclonic flow of the NAO. As a result, there is a positive eddy feedback or eddy-induced instability for climate modes such as the NAO, and synoptic eddy serves as a fundamental energy source for the NAO and other climate modes [e.g., Lau, 1988; Branstator, 1992; Nakamura et al., 1997]. [19] It can be further inferred that such the kinematic mechanism suggested here should be at work for the eddymean flow interactions in association with other climate modes (e.g., the PNA) as well as more general lowfrequency flow variability. Also, the relationship between the kinematic mechanism and the wave-breaking mechanism will be discussed in further work. [20] Acknowledgments. This work is jointly supported by National Science foundation (NSF) grants ATM 0652145 and ATM 0650552 and NSF of China (NSFC) grants 40705021 and 40805028, the Meteorological Special Project (GYHY200806005), and the National Science and Technology Support Program of China (2007BAC29B03). J.-S. Kug is supported by KORDI (PE98425, PE98401, and PP00720). References Barnston, A. G., and R. E. Livezey (1987), Classification, seasonality and persistence of low-frequency atmospheric circulation patterns, Mon. Weather Rev., 115, 1083 1126. Benedict, J. J., S. Lee, and S. B. Feldstein (2004), Synoptic view of the North Atlantic Oscillation, J. Atmos. Sci., 61, 121 144. Blackmon, M. L., Y. H. Lee, and J. M. Wallace (1984), Horizontal structure of 500 mb height fluctuations with long, intermediate and short time scales, J. Atmos. Sci., 41, 961 979. Branstator, G. (1992), The maintenance of low-frequency atmospheric anomalies, J. Atmos. Sci., 49, 1924 1946. Branstator, G. (1995), Organization of storm track anomalies by recurring low-frequency circulation anomalies, J. Atmos. Sci., 52, 207 226. Cai, M., and M. Mak (1990), Symbolic relation between planetary and synoptic-scale waves, J. Atmos. Sci., 47, 2953 2968. Duchon, C. (1979), Lanczos filtering in one and two dimensions, J. Appl. Meteorol., 18, 1016 1022. Feldstein, S. B. (2003), The dynamics of NAO teleconnection pattern growth and decay, Q. J. R. Meteorol. Soc., 129, 901 924. Franzke, C., S. Lee, and S. B. Feldstein (2004), Is the North Atlantic Oscillation a breaking wave?, J. Atmos. Sci., 61, 145 160. Jin, F.-F., L.-L. Pan, and M. Watanabe (2006a), Dynamics of synoptic eddy and low-frequency flow interaction. Part I: A linear closure, J. Atmos. Sci., 63, 1677 1694. Jin, F.-F., L.-L. Pan, and M. Watanabe (2006b), Dynamics of synoptic eddy and low-frequency flow interaction. Part II: A theory for low-frequency modes, J. Atmos. Sci., 63, 1695 1708. Kalnay, E., et al. (1996), The NCEP/NCAR 40-year reanalysis project, Bull. Am. Meteorol. Soc., 77, 437 470. Kug, J.-S., and F.-F. Jin (2009), Left-hand rule for synoptic eddy feedback on low-frequency flow, Geophys. Res. Lett., 36, L05709, doi:10.1029/ 2008GL036435. Lau, N.-C. (1988), Variability of the observed midlatitude storm tracks in relation to low-frequency changes in the circulation pattern, J. Atmos. Sci., 45, 2718 2743. Lau, N.-C., and M. J. Nath (1991), Variability of the baroclinic and barotropic transient eddy forcing associated with monthly changes in the midlatitude storm tracks, J. Atmos. Sci., 48, 2589 2613. 4of5

Lorenz, D. J., and D. L. Hartmann (2003), Eddy-zonal flow feedback in the Northern Hemisphere winter, J. Clim., 16, 1212 1227. Nakamura, H., M. Nakamura, and J. L. Anderson (1997), The role of high- and low-frequency dynamics in blocking formation, Mon. Weather Rev., 125, 2074 2093. Rivière, G., and I. Orlanski (2007), Characteristics of the Atlantic storm-track eddy activity and its relation with the North Atlantic Oscillation, J. Atmos. Sci., 64, 241 266. Robinson, W. A. (1991), The dynamics of low-frequency variability in a simple model of the global atmosphere, J. Atmos. Sci., 48, 429 441. Wallace, J. M., and D. S. Gutzler (1981), Teleconnections in the geopotential height field during the Northern Hemisphere winter, Mon. Weather Rev., 109, 784 812. Woolings, T., B. J. Hoskins, M. Blackburn, and P. Berrisford (2008), A new Rossby wave-breaking interpretation of the North Atlantic Oscillation, J. Atmos. Sci., 65, 609 626. F.-F. Jin, H.-L. Ren, and J.-X. Zhao, Department of Meteorology, School of Ocean and Earth Sciences and Technology, University of Hawaii, Honolulu, Hawaii, USA. (honglir@hawaii.edu) J.-S. Kug, Korea Ocean Research and Development Institute, Ansan 425-600, South Korea. J. Park, School of Earth and Environment Sciences, Seoul National University, Seoul 151-742, South Korea. 5of5