SAFNWC/MSG SEVIRI CLOUD PRODUCTS

Similar documents
Product User Manual for Cloud. Products (CMa-PGE01 v3.2, CT-

OPERATIONAL CLOUD MASKING FOR THE OSI SAF GLOBAL METOP/AVHRR SST PRODUCT

SAFNWC/MSG Dust flag.

Algorithm Theoretical Basis Document for Cloud Products (CMa-PGE01 v3.2, CT-PGE02 v2.2 & CTTH-PGE03 v2.2)

CLOUD MASKING FOR THE O&SI SAF GLOBAL METOP/AVHRR SST PRODUCT

USE OF SATELLITE INFORMATION IN THE HUNGARIAN NOWCASTING SYSTEM

CTTH Cloud Top Temperature and Height

VALIDATION RESULTS OF THE OPERATIONAL LSA-SAF SNOW COVER MAPPING

Cloud detection for IASI/AIRS using imagery

MAIA a software package for cloud detection and characterization for VIIRS and AVHRR imagers

HOMOGENEOUS VALIDATION SCHEME OF THE OSI SAF SEA SURFACE TEMPERATURE PRODUCTS

NEW OSI SAF SST GEOSTATIONARY CHAIN VALIDATION RESULTS

INTERPRETATION OF MSG IMAGES, PRODUCTS AND SAFNWC OUTPUTS FOR DUTY FORECASTERS

THE LAND-SAF SURFACE ALBEDO AND DOWNWELLING SHORTWAVE RADIATION FLUX PRODUCTS

Cloud detection for IASI/AIRS using imagery

MAIA v4 science ATBD MAIA VERSION 4 FOR NPP-VIIRS AND NOAA/METOP-AVHRR CLOUD MASK AND CLASSIFICATION SCIENTIFIC USER MANUAL

IMPACT OF IN-LINE CLEAR-SKY SIMULATIONS EXPECTED FOR THE NWCSAF GEO CLOUD MASK

ITSC-16 Conference. May 2008 Using AVHRR radiances analysis for retrieving atmospheric profiles with IASI in cloudy conditions

The use of the high resolution visible in SAFNWC/MSG cloud mask

NWC-SAF Satellite Application Facility in Support to Nowcasting and Very Short Range Forecasting

MSG system over view

OSI SAF SST Products and Services

Bias correction of satellite data at Météo-France

TEMPORAL-DIFFERENCING AND REGION-GROWING TECHNIQUES TO IMPROVE TWILIGHT LOW CLOUD DETECTION FROM SEVIRI DATA

VALIDATION OF THE OSI SAF RADIATIVE FLUXES

EUMETSAT SAF NETWORK. Lothar Schüller, EUMETSAT SAF Network Manager

The LSA-SAF Albedo products

Preparation for Himawari 8

THE ATMOSPHERIC MOTION VECTOR RETRIEVAL SCHEME FOR METEOSAT SECOND GENERATION. Kenneth Holmlund. EUMETSAT Am Kavalleriesand Darmstadt Germany

General Aspects I: What is a cloud?

EUMETSAT SAF NETWORK. Lothar Schüller, EUMETSAT SAF Network Manager

Introduction to the NWC SAF

LANDSAF SNOW COVER MAPPING USING MSG/SEVIRI DATA

Cloud detection in Meteosat Second Generation imagery at the Met Office

Satellite-Based Detection of Fog and Very Low Stratus

CLAVR-x is the Clouds from AVHRR Extended Processing System. Responsible for AVHRR cloud products and other products at various times.

SNOW COVER MAPPING USING METOP/AVHRR DATA

INTERCOMPARISON OF METEOSAT-8 DERIVED LST WITH MODIS AND AATSR SIMILAR PRODUCTS

Validation Report for Precipitation products from Cloud Physical Properties (PPh-PGE14: PCPh v1.0 & CRPh v1.0)

P3.24 EVALUATION OF MODERATE-RESOLUTION IMAGING SPECTRORADIOMETER (MODIS) SHORTWAVE INFRARED BANDS FOR OPTIMUM NIGHTTIME FOG DETECTION

A statistical approach for rainfall confidence estimation using MSG-SEVIRI observations

DEFINING OPTIMAL BRIGHTNESS TEMPERATURE SIMULATION ADJUSTMENT PARAMETERS TO IMPROVE METOP-A/AVHRR SST OVER THE MEDITERRANEAN SEA

Meteorological Products Generation Using Combined Analysis of NOAA AVHRR and ATOVS Data.

The ATOVS and AVHRR Product Processing Facility of EPS

PROBA-V CLOUD MASK VALIDATION

DESCRIPTION AND VALIDATION RESULTS OF THE HIGH RESOLUTION WIND PRODUCT FROM HRVIS MSG CHANNEL, AT EUMETSAT NOWCASTING SAF (SAFNWC)

LAND SURFACE ALBEDO AND DOWNWELLING SHORTWAVE RADIATION FROM MSG GEOSTATIONARY SATELLITE (METHOD FOR RETRIEVAL, VALIDATION, AND APPLICATION)

Applications of the SEVIRI window channels in the infrared.

SNOW COVER MAPPING USING METOP/AVHRR AND MSG/SEVIRI

Validation Report for SEVIRI Physical Retrieval Product (SPhR-PGE13) v1.2

Algorithm Theoretical Basis Document for MSG/SEVIRI Sea Surface Temperature data record OSI-250 DOI: /EUM_SAF_OSI_0004

MONITORING WEATHER AND CLIMATE FROM SPACE

PRECONVECTIVE SOUNDING ANALYSIS USING IASI AND MSG- SEVIRI

A HIGH RESOLUTION EUROPEAN CLOUD CLIMATOLOGY FROM 15 YEARS OF NOAA/AVHRR DATA

Meteosat Second Generation (MSG) Cloud Mask, Cloud Property Determination and Rainfall Comparison with In-situ Observations

Improving real time observation and nowcasting RDT. E de Coning, M Gijben, B Maseko and L van Hemert Nowcasting and Very Short Range Forecasting

ECNU WORKSHOP LAB ONE 2011/05/25)

Climatologies of ultra-low clouds over the southern West African monsoon region

Bias correction of satellite data at the Met Office

Atmospheric Motion Vectors: Product Guide

Combined and parallel use of MSG composite images and SAFNWC/MSG products at the Hungarian Meteorological Service

NWCSAF AVHRR Cloud Detection and Analysis Using Dynamic Thresholds and Radiative Transfer Modeling. Part I: Algorithm Description

HARMONISING SEVIRI RGB COMPOSITES FOR OPERATIONAL FORECASTING

OPERATIONAL USE OF METEOSAT-8 SEVIRI DATA AND DERIVED NOWCASTING PRODUCTS. Nataša Strelec Mahović

Cloud detection using SEVIRI IR channels

Isabel Trigo, Sandra Freitas, Carla Barroso, Isabel Monteiro, Pedro Viterbo

Plans for the Assimilation of Cloud-Affected Infrared Soundings at the Met Office

A Land and Ocean Microwave Cloud Classification Algorithm Derived from AMSU-A and -B, Trained Using MSG-SEVIRI Infrared and Visible Observations

Comparison of cloud statistics from Meteosat with regional climate model data

How to display RGB imagery by SATAID

Polar Multi-Sensor Aerosol Product: User Requirements

Towards a better use of AMSU over land at ECMWF

FUTURE PLAN AND RECENT ACTIVITIES FOR THE JAPANESE FOLLOW-ON GEOSTATIONARY METEOROLOGICAL SATELLITE HIMAWARI-8/9

EUMETSAT products and services for monitoring storms - New missions, more data and more meteorological products

22nd-26th February th International Wind Workshop Tokyo, Japan

Evapotranspiration monitoring with Meteosat Second Generation satellites: method, products and utility in drought detection.

REVISION OF THE STATEMENT OF GUIDANCE FOR GLOBAL NUMERICAL WEATHER PREDICTION. (Submitted by Dr. J. Eyre)

GEOMETRIC CLOUD HEIGHTS FROM METEOSAT AND AVHRR. G. Garrett Campbell 1 and Kenneth Holmlund 2

"Experiences with use of EUMETSAT MPEF GII product for convection/storm nowcasting"

APPLICATIONS WITH METEOROLOGICAL SATELLITES. W. Paul Menzel. Office of Research and Applications NOAA/NESDIS University of Wisconsin Madison, WI

Satellite observation of atmospheric dust

Rain rate retrieval using the 183-WSL algorithm

Assimilation of precipitation-related observations into global NWP models

Data assimilation of IASI radiances over land.

OBJECTIVE USE OF HIGH RESOLUTION WINDS PRODUCT FROM HRV MSG CHANNEL FOR NOWCASTING PURPOSES

Day Microphysics RGB Nephanalysis in daytime. Meteorological Satellite Center, JMA

Meteorological product extraction: Making use of MSG imagery

Himawari-8 True Color RGB

Cloud Analysis Image: Product Guide

ASSESSMENT OF ALGORITHMS FOR LAND SURFACE ANALYSIS DOWN-WELLING LONG-WAVE RADIATION AT THE SURFACE

UPDATES IN THE ASSIMILATION OF GEOSTATIONARY RADIANCES AT ECMWF

Fog detection product

Bayesian Cloud Detection for 37 Years of Advanced Very High Resolution Radiometer (AVHRR) Global Area Coverage (GAC) Data

Land surface albedo from MSG/SEVIRI: retrieval method, validation, and application for weather forecast

H-SAF future developments on Convective Precipitation Retrieval

CLOUD CLASSIFICATION AND CLOUD PROPERTY RETRIEVAL FROM MODIS AND AIRS

STATUS OF JAPANESE METEOROLOGICAL SATELLITES AND RECENT ACTIVITIES OF MSC

Day Snow-Fog RGB Detection of low-level clouds and snow/ice covered area

CLOUD HEIGHT DETERMINATION AND COMPARISON WITH OBSERVED RAINFALL BY USING METEOSAT SECOND GENERATION (MSG) IMAGERIES

RTTOV 10 Theory & Exercise

Transcription:

SAFNWC/MSG SEVIRI CLOUD PRODUCTS M. Derrien and H. Le Gléau Météo-France / DP / Centre de Météorologie Spatiale BP 147 22302 Lannion. France ABSTRACT Within the SAF in support to Nowcasting and Very Short Range Forecasting (SAF NWC), Météo-France has developed a software to extract cloud parameters (cloud mask and types, cloud top temperature and height) from MSG SEVIRI imagery. These modules are part of the SAFNWC/MSG software package, whose version v1.0 (scientifically checked with real SEVIRI images) will be available in 2004. This paper outlines the cloud mask and type algorithms (prototyped using GOES-East, AVHRR and MODIS imagery), summarizes the results of the extensive validation performed using GOES and ground-based observations (SYNOP), and finally presents the first results obtained from SEVIRI images. 1. INTRODUCTION Within the SAF in support to Nowcasting and Very Short Range Forecasting (SAF NWC), Météo-France has developed a software to extract cloud parameters (cloud mask and types, cloud top temperature and height) from MSG SEVIRI imagery. These modules are part of the SAFNWC/MSG software package whose version v1.0 (scientifically checked with real SEVIRI images) will be distributed in 2004. During the development phase 1 (1997-1999), prototypes to extract these cloud parameters from locallyreceived AVHRR imagery (to simulate European conditions), GOES-East imagery (to simulate geostationary conditions) and HIRS sounder (to simulate sounding channels) have been developed and validated. The experience gained during this prototyping phase has allowed to design the final software. Since Autumn 2000, this software has been routinely applied to GOES-East imagery (acting as SEVIRI images with missing channels); retrieved cloud type and top pressure may be still displayed from www.meteorologie.eu.org/safnwc. Taking benefits of the MSG launch delay, the software has been intensively checked during the period 2001-2003 with MODIS imagery (some examples are available on www.meteorologie.eu.org/safnwc) leading to algorithm s improvements implemented in the version v0.1 of the SAFNWC/MSG software package. Finally, SEVIRI images are presently being used to scientifically check and tune the algorithms that will be available in SAFNWC/MSG software package version v1.0. This paper focuses on the algorithms to extract the cloud mask and type. We outline the latest version of the algorithms, detail the product s content and recall the validation results obtained during the prototyping phase using ground-based observations (SYNOP). We present examples from SEVIRI images (more examples can be found on www.meteorologie.eu.org/safnwc ). A detailed description of the algorithms can be obtained from www.meteorologie.eu.org/safnwc or from the SAFNWC helpdesk (nwcsaf.inm.es).

2. CLOUD MASK (CMA) ALGORITHM The cloud mask (CMa) algorithm is based on a multispectral threshold technique applied to each pixel of the image. A first series of tests allows the identification of pixels contaminated by clouds or snow/ice; this process is stopped if one test is really successful (i.e., if the threshold is not too close to the measured value). The characteristics of this set of tests are summed up below: The tests, applied to land or sea pixels, depend on the solar illumination and on the viewing angles (daytime, night-time, twilight, sunglint) and are listed in tables 1 and 2. Most thresholds are determined from satellite-dependent look-up tables (available in coefficients files) using as input the viewing geometry (sun and satellite viewing angles), NWP forecast fields (surface temperature and total atmospheric water vapour content) and ancillary data (elevation and climatological data). These look-up tables have been prepared off-line using radiative transfer models (RTTOV-6 (Eyre, 1991) for infrared channels except for 3.8µm channel (MODTRAN 3.5 is used for this channel, because RTTOV-6 gave bad simulations for this band), 6S (Tanre et al., 1990) for the solar channels). An example of such dynamic threshold is given in figure 1. Some thresholds are empirical, constant or satellite-dependent values (available in coefficients files). The quality of the cloud detection process is assessed by analysing how close the measurements and the thresholds are from each other. A spatial filtering is applied. It may reclassify pixels having a class type different from their neighbours. A simple test is applied to cloud contaminated pixels to check whether the cloud cover is opaque and completely fills the FOV. This first series of tests determines the cloud cover category of each pixel (cloud-free, cloud contaminated, cloud filled, snow/ice contaminated or undefined/non processed) and computes a quality flag on the processing itself. Moreover, the tests that have caused the cloud detection (more than one test are possible, if some tests were not really successful) are stored. A second process aimed to the identification of dust clouds at daytime is applied to all pixels (even already classified as cloud-free or contaminated by clouds): visible reflectances, 10.8µm brightness temperatures and their textures, and 10.8µm-12.0µm brightness differences are thresholded, the 3.8µm brightness temperatures being used only over continental areas. The result is stored in a separate dust cloud flag. A third process aimed to the identification of volcanic ash clouds is applied to all pixels: it relies on the low 10.8µm-12.0µm brightness differences of most volcanic ash clouds, the 3.8µm-10.8µm brightness differences and the 0.6µm/1.6µm reflectances (over land only) being used to minimize the false alerts. The result is stored in a separate volcanic ash cloud flag. Daytime Twilight Nighttime Snow detection T10.8µm T10.8µm T10.8µm R0.6µm T10.8µm-T12.0µm R0.6µm T10.8µm-T12.0µm T8.7µm-T10.8µm T10.8µm-T12.0µm T8.7µm-T10.8µm T10.8µm-T3.8µm T8.7µm-T10.8µm T10.8µm-T3.8µm T3.8µm-T10.8µm T10.8µm-T3.8µm T3.8µm-T10.8µm Local Spatial Texture T3.8µm-T10.8µm Local Spatial Texture Local Spatial Texture Table 1. Cloud mask test sequence over land

Daytime Sunglint Twilight Nighttime Ice detection Ice detection SST SST SST SST R0.8µm (R0.6µm) T10.8µm-T12.0µm R0.8µm (R0.6µm) T10.8µm-T12.0µm R1.6µm T8.7µm-T10.8µm R1.6µm T8.7µm-T10.8µm T10.8µm-T12.0µm T10.8µm-T3.8µm T10.8µm-T12.0µm Local Spatial texture T8.7µm-T10.8µm T3.8µm-T10.8µm T8.7µm-T10.8µm R0.8µm (R0.6µm) T10.8µm-T3.8µm Local Spatial Texture T10.8µm-T3.8µm T10.8µm-T3.8µm T3.8µm-T10.8µm T3.8µm-T10.8µm Local Spatial Texture Low Clouds in Sunglint Local Spatial Texture Table 2. Cloud mask test sequence over sea [T3.8µm, T8.7µm, T10.8µm and T12.0µm stand for brightness temperatures at 3.8, 8.7, 10.8 and 12.0 micrometer ; R0.6µm,R0.8µm and R1.6µm stand for VIS/NIR bi-directional top of atmosphere reflectances at 0.6, 0.8 and 1.6 micrometer normalised for solar illumination ; SST is the split-window (used for SST calculation) computed from T10.8µm and T12.0µm measurements. Low Clouds in Sunglint is a specific module for low clouds identification in sunglint areas.] Figure 1. Illustration of SEVIRI T10.8µm-T3.8µm threshold for a satellite zenith angle of 48 degrees. Over ocean (solid blue line), vegetated areas (dashed green line) and desert (brown dotted line). This algorithm has been prototyped using GOES-East and AVHRR imagery (for the use of the 1.6µm), and further checked and improved with MODIS imagery. A comprehensive validation has been performed by comparing the cloud mask retrieved from GOES-East imagery over continental areas to visual cloud observations done in meteorological synoptic stations (available in SYNOP messages). Validation results for mid-latitude regions for the period July 1997-July 1999 are summed up in figure 2.

5 Cloud cover (Satellite-SYNOP) 4 3 2 1 0-1 0 1 2 3 4 5 6 7 8 Mean Error. All RMS Error. All Mean Error. Day RMS Error. Day Mean Error. Night RMS Error. Night Mean Error. Twilight -2 RMS Error. Twilight -3 SYNOP total cloud cover report Figure 2. Comparison of cloud cover (in octa) automatically derived from satellite measurement (GOES-East imagery) and visually observed in meteorological station (SYNOP measurements) for continental mid-latitude regions. 3. CLOUD TYPE (CT) ALGORITHM The cloud type (CT) output consists in twenty-one classes (listed in table 3), a separate cloud phase flag (indicating whether the cloud top is made up with ice or water) and a quality flag. Non processed Land Sea Snow Sea Ice Unclassified Fractional clouds Very low clouds (cumuliform & stratiform) Low clouds (cumuliform & stratiform) Medium clouds (cumuliform & stratiform) High clouds (cumuliform & stratiform) Very high clouds (cumuliform & stratiform) Semi-transparent ice clouds (3 classes according to thickness + cirrus above clouds) Table 3. Cloud type classes The cloud type (CT) algorithm is a threshold algorithm applied at the pixel scale, based on the use of the Cloud Mask (CMa) and spectral & textural features computed from the multispectral satellite images and compared with a set of thresholds. The CT classification algorithm is based on the following approach: Main cloud types are separable within two sets: the fractional and high semitransparent clouds, from the low/medium/high opaque clouds. These two systems are distinguished using spectral features : T10.8µm-T12.0µm, T3.8µm-T10.8µm (in night-time conditions only), R0.6µm (in day-time conditions only), and textural features (variance T10.8µm coupled to variance R0.6µm in daytime conditions). Within the first set, the fractional and high semitransparent are separated mainly using their T8.7µm- T10.8µm brightness temperature differences. The remaining categories are distinguished through the comparison of their T10.8µm to NWP forecast temperatures at several pressure levels (850, 700 and 500hPa, and at tropopause level) No separation between cumuliform and stratiform clouds is performed in the current version of CT. No cloud phase flag is available in the current version of CT. The test sequence to be applied depends on the illumination conditions (an example is given on figure 4), whereas the values of the thresholds themselves may depend on the illumination, the viewing geometry, the

geographical location and NWP data describing the water vapour content and a coarse vertical structure of the atmosphere. Figure 3. Test sequence used in the CT algorithm in night-time conditions. A comprehensive validation has been performed by comparing the cloud type automatically retrieved from GOES-East imagery to cloud classification manually labelled from the satellite imagery using an interactive visualization tool (more than 20000 such interactive comparisons have been done, including 10000 in midlatitude regions). Validation results for mid-latitude regions have been illustrated in figure 4 by plotting the CT user accuracy, defined as the probability of a pixel classified into a category to really belong to that category, for various illuminations.

100 Midlatitude Interactive Targets: User Accuracy 80 60 40 20 Mid-latitude Day Twilight 0 Night Sea land Snow/ice Low Mid Semi High Figure 4. Variation of the Cloud Type s user accuracy with illumination for mid-latitude regions. 4. FIRST RESULTS WITH SEVIRI IMAGERY The first SEVIRI images that were processed at CMS with the SAFNWC cloud modules were a daytime image (12 February 2003 at 13h30UTC) made available on CD-Rom by Eumetsat and a nightime image locally received through the EUMETCast system (29 April 2003 at 22h45). Since June 2003, SEVIRI images are regularly received at CMS and processed using SAFNWC cloud modules. A regular analysis of the Cloud Types obtained with the SAFNWC cloud modules has led to identify some needed improvements that will be included in v1.0. Most of them concern the cloud detection step: better snow detection in case low solar elevation, better tuning of the visible tests in case low solar elevation, better use of the 3.8µm channel in the low cloud detection (both daytime and nightime), better tuning of infrared thresholds over desert. The night-time cloud classification of thin cirrus clouds has also been improved. Figure 5. Variation of night-time T10.8µm-T3.8µm brightness temperature difference with integrated atmospheric water vapour content for GOES-8 (left) and MSG1/SEVIRI (right). For cloud free continental surface (brown stars *), cloud free ocean (plus symbol +) and low clouds (diamonds).

A database is being interactively gathered (similarly to what was done for GOES-8, see paragraph 3) to ease the improvement of the algorithms. For example, the T10.8µm-T3.8µm brightness temperature in nightime conditions is illustrated on figure 5 with such interactive database. This spectral feature is essential for the nightime low cloud detection. It can be seen on figure 5 that the observed T10.8µm-T3.8µm values are quite different for GOES-8 and MSG1/SEVIRI, which can be explained by their different spectral filter. The use of an infrared radiative transfer model to compute the cloud detection thresholds (as explained in paragraph 2) allows the algorithm to easily adapt to each instrument s spectral characteristics. Some cloud types examples obtained with the last available software version (a draft version of V1.0) are presented in figure 6 and 7. You can also find cloud types from the day before on the web page: www.meteorologie.eu.org/safnwc Figure 6. SEVIRI Cloud type, 0.6µm visible and 10.8µm infrared channels.

Figure 7. Cloud type extracted from the first MSG-1/SEVIRI image made available by Eumetsat: 12 February 2003 at 13h30 UTC. 5. ON-GOING AND PLANNED DEVELOPMENTS The SEVIRI cloud software (partly presented in this paper) will be tuned using additional SEVIRI images before being delivered to INM (SAFNWC host institute) at the end of 2003 for integration in the SAFNWC package version 1.0. This software will be routinely applied at Météo-France to SEVIRI imagery over the whole MSG disk; retrieved cloud types and top pressures are available for visualisation on www.meteorologie.eu.org/safnwc. The algorithms will then be intensively validated in 2004 against ground based visual observations following the same procedure applied during the validation of the prototypes with GOES imagery. 6. REFERENCES Eyre J., 1991, A fast radiative transfer model for satellite soundings systems. ECMWF Res.Dep.Tech.Mem 176. ECMWF, Reading, United Kingdom. Tanre D, Deroo C., Duhaut P., Herman M., Morcrette J.J., Perbos J., Deschamps P.Y., 1990, Description of a computer code to simulate the satellite signal in the solar spectrum. International Journal of Remote Sensing, 11, pp 659-668.