Partner: Judy 6 October An Activity Series

Similar documents
Single replacement reactions

Single Replacement Reactions

11-1 Notes. Chemical Reactions

Unit 8 Chemical Reactions- Funsheets

Chem 2115 Experiment # 6 PERIODIC RELATIONSHIPS

Chemical Reactions. Chemical changes are occurring around us all the time

What Do You Think? Investigate GOALS

PERIODIC RELATIONSHIPS

4.4. Revision Checklist: Chemical Changes

Chemical Reactions. Ch. 11 Chemical Reactions. Chemical Reactions. Chemical Reactions

Draw one line from each solution to the ph value of the solution. Solution ph value of the solution

CSUS Department of Chemistry Experiment 9 Chem. 1A Experiment 9. Qualitative Analysis of Ions Pre Laboratory Assignment

Lab #14: Electrochemical Cells

Reaction Types and Chemical Equations

4.4. Revision Checklist: Chemical Changes

Reactants: Products: Definition:

Chemical Reactions CHAPTER Reactions and Equations

Solubility Rules and Net Ionic Equations

Chemical Equations and Chemical Reactions

Single Displacement Reactions

You have mastered this topic when you can: CHEMICAL REACTIONS AND THE KINETIC MOLECULAR THEORY AQUEOUS SOLUTIONS

Unit 6.3 Types of Chemical reactions

2) Solve for protons neutrons and electrons for the bromide ION.

Chemical Families. Group 0 The Noble Gases

LAB # 5: Metals and Single Replacement Reactions

DOX REACTIONS AND ACTIVITY S

Chemistry Semester One Exam Review

Questions Q1. Describe, in detail, how you would carry out this experiment. (6) ...

5072 CHEMISTRY (NEW PAPERS WITH SPA) BASIC TECHNIQUES 5067 CHEMISTRY (NEW PAPERS WITH PRACTICAL EXAM) BASIC TECHNIQUES

EXPERIMENT 10 The Activity Series

AP Chemistry Unit 2 Test (Chapters 3 and 4)

...[1] (ii) Name two elements from group 0....[2] (b)(i) Which box best represents particles from group 0 elements?...[1]......[1]

Colours in common redox reactions

(i) Calculate the relative formula mass of carbon dioxide, CO 2.. (Relative atomic masses: C = 12, O = 16) (1) CaCO 3.

To observe trends in solubility and exceptions to these trends. To write chemical formulas based on cation/anion charges.

Year 8 Chemistry Knowledge Organiser Topic 1: Periodic Table

Solid Type of solid Type of particle Attractive forces between particles Na P 4 MgO SO 3

Definition: the process by which one or more substances are rearranged to form different substances. Another name for a chemical change.

TYPES OF CHEMICAL REACTIONS

Lab: Types of Chemical Reactions

WJEC England GCSE Chemistry. Topic 4: The periodic table and properties of elements. Notes. (Content in bold is for Higher Tier only)

D O UBLE DISPL Ac EMENT REACTIONS

Net Ionic Equations. Making Sense of Chemical Reactions

Chemical Reactions Chapter 11 Study Guide (Unit 8)

AP Questions: Electrochemistry

Year 10 Chemistry Exam June 2011 Multiple Choice. Section A Multiple Choice

EXPERIMENT. Oxidation-Reduction Activity Series

5. [7 points] What is the mass of gallons (a fifth) of pure ethanol (density = g/cm 3 )? [1 gallon = Liters]

2.3 Group 7 The Halogens

Experiment 6. Investigating Chemical Reactions

CSUS Department of Chemistry Experiment 3 Chem.1A

CHM-201 General Chemistry and Laboratory I Laboratory 4. Introduction to Chemical Reactions (based in part on Small Scale Chemistry methodology as

Test 3: Lab Safety, Measurements, Matter and Periodic Table

For the element X in the ionic compound MX, explain the meaning of the term oxidation state.

Chemical Reactions and Equations

11.2 Types of Chemical Reactions> Chapter 11 Chemical Reactions Types of Chemical Reactions Describing Chemical Reactions

BALANCING EQUATIONS NOTES

Chapter 9. Chemical Reaction


NET IONIC EQUATIONS. Electrolyte Behavior

2. Relative molecular mass, M r - The relative molecular mass of a molecule is the average mass of the one molecule when compared with

Set 4 Marking Scheme: Acid Bases & Salts 2010

Experiment Three. Lab two: Parts 2B and 3. Halogens used in Parts 2 and 3. Lab one: Parts 1 and 2A. Halogens (Family VIIA) used in Parts 2 and 3

Chemical Bonds In elements and compounds, the atoms are held together by chemical bonds.

D O UBLE DISPL Ac EMENT REACTIONS

Electrodes are normally made out of inert (unreactive) materials. Graphite and platinum are common electrode materials.

Name HONORS CHEMISTRY / / Oxide Reactions & Net Ionic Reactions

Metal/Metal Ion Reactions Laboratory Simulation

1/31/2013 CHEMICAL EQUATIONS & REACTIONS NOTES. Write the formulas of the following compounds: 1. nickel (II) chloride. 2. copper (II) nitrate

Electrochemistry: Oxidation-Reduction Electron Transfer Reactions

reactions involving the halogens.

Types of Chemical Reactions

****************************************************************************

insoluble partial very soluble (< 0.1 g/100ml) solubility (> 1 g/100ml) Factors Affecting Solubility in Water

Reactions in aqueous solutions Redox reactions

Chapter 7: Chemical Reactions

CHAPTER 11: CHEMICAL REACTIONS. Mrs. Brayfield

10.3 Types of Chemical Reactions

Section B: Some Essential Background Chemistry

Balancing CHEMICAL EQUATIONS

Santa Monica College Chemistry 11

Part 01 - Notes: Reactions & Classification

What is the importance of redox reactions? Their importance lies in the fact that we can use the transfer of electrons between species to do useful

CIE Chemistry A-Level Practicals for Papers 3 and 5

CHAPTER 8 CHEMICAL REACTIONS AND EQUATIONS

3. Solids cannot conduct electricity because the ions cannot move freely 4. Electrolytic cell

Science 1.8 AS Investigate selected chemical reactions WORKBOOK

Reactions in Aqueous Solution

F321: Atoms, Bonds and Groups Group 7

Classifying Chemical Reactions

Chemical Equilibrium and Le Chatlier s Principle

Unit Learning Targets (L.T.):

8 Chemical Equations. Flames and sparks result when aluminum foil is dropped into liquid bromine.

(09) WMP/Jun10/CHEM1

NCEA Chemistry 2.2 Identify Ions AS 91162

Balancing Equations Notes

Reactions in Aqueous Solutions

Chemistry 1B Experiment 14 65

EXPERIMENT 17. Oxidation-Reduction Reactions INTRODUCTION

Transcription:

Partner: Judy 6 October 2011 An Activity Series Purpose: The purpose of this lab is to verify the activity series of five metals and three halogens. This can be done by reacting the metal with various metal solutions to see which of them creates a displacement reaction. As for the halogens, it can be done in a similar way as metal, but with the halogens in their liquid form and ion form. The significance of this experiment is that geologist could use them to extract minerals from ores. Hypothesis: The hypothesis of this experiment is that the experiment will help verify the activity series of metals and halogens. This is because the reaction would not occur if the substance trying to replace the other substance is less reactive than that other substance. If the reaction did happen, there would be an apparent change in the sample. For example, if one metal was replaced by the other, the solid in the solution would be changed to the metal that was replaced. As for halogens, each halogen possess different color from another and so if one halogen was replaced by the other, the color of the solution would be changed. Materials: Part 1 Materials Quantity 6 6 mm Copper foil (Cu) 4 mm 3 0.1 M Copper (ll) nitrate (Cu(NO 3 ) 2 ) 4mL 6 6 mm Lead foil (Pb) 4 mm 3 0.1 M Lead nitrate (Pb(NO 3 ) 2 ) 4mL 6 mm Magnesium ribbon (Mg) 4 mm 3 0.1 M Magnesium nitrate (Mg(NO 3 ) 2 ) 4mL 0.1 M Silver nitrate (AgNO 3 ) 4mL 6 6 mm Zinc foil (Zn) 4 mm 3 0.1 M Zinc nitrate (ZnNO 3 ) 4mL 5mL Beral-type pipette 5 pipettes 13 100mm test tube 24 test tubes Labeling tape 30 labels Part 2 Materials Bromine water (Br 2 ) Chlorine water (Cl 2 ) Iodine water (I 2 ) Mineral oil 0.1 M Potassium iodide solution (KI) 5mL 0.1 M Sodium bromide (NaBr) 5mL Quantity 3mL 3mL 3mL 36mL 0.1 M Sodium chloride (NaCl) 5mL Labeling tape 1 roll

13 100mm test tube 18 test tubes Test tube rack 2 racks Pipette 1 pipette Dropper 6 droppers Size 2 rubber stopper 18 stoppers Procedures: Part 1. Determine an Activity Series for Metals 1.) Place a reaction plate with at least 24 wells on a piece of white paper and make sure there are 6 wells across and 4 wells down. 2.) Place a test tube in every well 3.) Label each test tubes as following: 4.) Put 1mL of Copper(ll) nitrate solution into wells B1, C1, and D1 using a pipet 5.) Put 1mL of magnesium nitrate solutions in wells A2, C2, and D2 using a different pipet 6.) Put 1mL of lead nitrate solution in wells A3, B3, and D3 using a different pipet 7.) Put 1mL of zinc nitrate solution in wells A4, B4, and C4 using a different pipet 8.) Put 1mL of silver nitrate solution in every test tube in column 5 9.) Place a piece of copper metal in every test tube in row A 10.) Place a piece of magnesium metal in every test tube in row B 11.) Place a piece of lead metal in every test tube in row C 12.) Place a piece of zinc metal in every test tube in row D 13.) Swirl every test tube one by one and make observations 14.) Observe every test tube once a while within 10 mins 15.) Determine whether a reaction has occurred or not? Part 2. Determine an Activity Series for Some Halogens 1.) Label 3 test tubes as Cl 2, Br 2, and I 2 2.) Transfer approximately 1mL of Cl 2 in the labeled test tube 3.) Transfer approximately 1mL of Br 2 into the Br 2 test tube using another dropper

4.) Transfer approximately 1mL of I 2 to the I 2 test tube with a pipette 5.) Add 2mL of mineral oil into each test tube 6.) Cork all three test tubes 7.) Shake each of them for 10 seconds 8.) Observe the change in the test tube 9.) Record the data 10.) Label 3 more test tubes as NaCl, NaBr, and KI 11.) Transfer approximately 1mL of 0.1 M NaCl to the NaCl test tube 12.) Transfer approximately 1mL of 0.1 M NaBr to the NaBr test tube 13.) Transfer approximately 1mL of 0.1 M KI to the last test tube 14.) Add 2mL of mineral oil into each test tube 15.) Cork all three test tubes 16.) Shake each of them for 10 seconds 17.) Observe the change in the test tube 18.) Record the observation 19.) Repeat step 1 to 19 for two more times 20.) Arrange the test tube so that there s 6 test tube in the front of the rack with 2 Cl 2 test tubes in the left, 2 Br 2 test tubes in the middle, and 2 I 2 test tubes in the right 21.) Label the test tubes as 1-6 from left to right 22.) Add 1mL of NaBr to test tube 1 and 6 23.) Cork the test tubes 24.) Shake both test tubes for 10 seconds 25.) Record the observation 26.) Add 1mL of KI to test tube 2 and 4 27.) Repeat step 23 to 25 28.) Add 1mL of NaCl to test tube 3 and 5 29.) Repeat step 23 to 25 Results: Cu (s) + 2Ag + (aq) 2Ag (s) + Cu 2+ (aq) Mg (s) + Cu 2+ (aq) Cu (s) + Mg 2+ (aq) Mg (s) + Pb 2+ (aq) Pb (s) + Mg 2+ (aq) Mg (s) + Zn 2+ (aq) Zn (s) + Mg 2+ (aq) Mg (s) + 2Ag + (aq) 2Ag (s) + Mg 2+ (aq) Pb (s) + Cu 2+ (aq) Cu (s) + Pb 2+ (aq) Pb (s) + 2Ag + (aq) Ag (s) + Pb 2+ (aq) Zn (s) + Cu 2+ (aq) Cu (s) + Zn 2+ (aq)

Zn (s) + Pb 2+ (aq) Pb (s) + Zn 2+ (aq) Zn (s) + 2Ag + (aq) 2Ag (s) + Zn 2+ (aq) Cu (s) Part 1. An Activity Series for Some Metals Cu 2+ (aq) Mg 2+ (aq) Pb 2+ (aq) Zn 2+ (aq) Ag + (aq) No reaction Cu is oxidized. Mg (s) Pb (s) Zn (s) Color of Mg metal fades along the reaction. Bubbles forming. Cu is reduced. Color of the Cu solution fades away. Pb is oxidized. Cu is reduced. Slow reaction. Zn is oxidized. Cu is reduced. Bubbles form during the reaction. Pb is extracted. Pb is reduced. Medium reaction (slower than Ag). Zn is oxidized. Pb is reduced. Slow reaction. Zn is reduced. Little reaction occurred after a long period of time. Pb is oxidized. Zn is reduced. Fast Reaction. Fast Reaction. Pb is oxidized. Zn is oxidized. 2Br - (aq) + Cl 2 (g) Br 2 (g) + 2Cl - (aq) 2I - (aq) + Cl 2 (g) I 2 (g) + 2Cl - (aq) 2I - (aq) + Br 2 (g) I 2 (g) + 2Br - (aq) Part 2. An Activity Series for Some Halogens Halogens Color in Mineral Oil Halide Ions Color in Mineral Oil Cl 2 Colorless in mineral oil NaCl Colorless Br 2 From pale yellow to orange yellow NaBr Colorless I 2 From light yellow to pink/purple color KI Colorless

Part 2. Reaction Data Table Reactants Cl 2 (aq) Br 2 (aq) I 2 (aq) Cl - (aq) Br - (aq) I- (aq) Orange on top with milky color on the Different color from Cl 2 in Br is oxidized. Cl is reduced. Dark purple color on the top with a brownbronze color in the bottom with some purple dots. Different from Cl 2 in I is oxidized. Cl is reduced. Light orange on top while colorless on the Similar color to Br 2 in Magenta color on top with yellow oil-like color on the Have small purple dots on the Different from the Br 2 in I is oxidized. Br is reduced. Light purple color on top while colorless on the Have a purple dot on the Same color as the I 2 in Milky pink-purple color on top. Colorless on the bottom with many little dots of pink-purple color. Similar color to the I 2 in Experiment Magnesium Zinc Lead Copper Silver Metal Activity Series Textbook Chemistry: The Central Science (11 th Edition) Magnesium Zinc Lead Copper Silver Experiment Chlorine Bromine Iodine Halogens Activity Series Textbook Chemistry: The Central Science (11 th Edition) Chlorine Bromine Iodine

Analysis: Both the experiment and the book showed the same activity series. They both showed that magnesium is the most reactive of all five metals while silver is the least reactive as well as the easiest to be oxidized. This is because the reactivity of an element increases from top to bottom because the ionization energy decrease thus it became easier to be oxidized. To determine that a reaction occurs in the halogen, the observation must be made from the color of the solutions. If a reaction occurs, the color of the halogen solution will change. Halide ions should not dissolve in mineral oil because mineral oil is nonpolar where as the halide ions are. For liquid, the rule for dissolving is that nonpolar liquid dissolves in nonpolar liquid while the polar liquid dissolves in polar liquid. Solvent extraction is the separation of compounds base on their solubility. In part 2, this technique was used in order to separate the chlorine solution and the chloride ions apart. This was done by adding the mineral oil to the test tube so the chlorine solution will be dissolved in Thus, the chlorine solution will be separated from the chloride ions which do not dissolve. It was necessary to test the halide ions for their color in mineral oil because otherwise, what caused the colors would not be known. It could be the reaction between the halogen molecules and the halide ions. However, it could also be that the color of the halogen molecules in mineral oil and the halide ions in mineral oil were mixed together causing a different color. There would be no difference in case calcium bromide was used instead of sodium bromide. This is because the alkali metals in compounds are spectator ions and do not affect the reaction. Conclusion: The hypothesis of is true. The experiment actually helped confirm reactivity of metals and halogens. There could have been several errors during the course of the experiment. An error could be that the test tubes were not clean and caused the color that was apparent to be affected by the contaminants. This would caused the color to be altered from what it should have been. Another error could be that the color observed was incorrect. The colors were blending into each other, so it was hard to determine which color was which. Thus, it could be that the color shown from the reaction was thought to be from the halogen mixing with mineral oil and so was thought that no reaction had happened. In the future, the test tubes should be made sure that they were clean. Also, when determining the colors, they should be observed by others as well to make sure whether a reaction had occurred or not.