Brown University PHYS 0050/0070. Free Fall Velocity

Similar documents
Experiment 2. F r e e F a l l

PHYSICS 3 LABORATORY MANUAL BASIC PHYSICS

Physics 191 Free Fall

EXPERIMENT 3 Analysis of a freely falling body Dependence of speed and position on time Objectives

The Acceleration Due to Gravity: Free Fall Name

Angular Momentum. Brown University Physics 0030 Physics Department Lab 4

Lab 4: Projectile Motion

Lab 5: Projectile Motion

Experiment 4 Free Fall

General Physics I Lab (PHYS-2011) Experiment MECH-1: Projectile Motion

Free-Fall Acceleration

THE CONSERVATION OF ENERGY - PENDULUM -

Uniformly Accelerated Motion

PHYS 2211L - Principles of Physics Laboratory I

Motion in Two Dimensions Teacher s Guide

EXPERIMENT 1: ONE-DIMENSIONAL KINEMATICS

PHY 111L Activity 9 Moments of Inertia

Introduction to Simple Harmonic Motion

PHY 221 Lab 2. Acceleration and Uniform Motion

EXPERIMENT 2 Acceleration of Gravity

LAB 4: PROJECTILE MOTION

IU1. Modul Universal Constants. Gravitational Acceleration

Physics 30 - Ballistic Pendulum Lab 2010, Science Kit All Rights Reserved

Conservation of Mechanical Energy Activity Purpose

Free Fall and Projectile Motion

Physics 1020 Experiment 6. Equilibrium of a Rigid Body

Lab 10 - Harmonic Motion and the Pendulum

Free fall with an interface system

Conservation of Mechanical Energy Activity Purpose

Linear Motion with Constant Acceleration

Lab 8: Centripetal Acceleration

Updated 2013 (Mathematica Version) M1.1. Lab M1: The Simple Pendulum

EXPERIMENT 2-6. e/m OF THE ELECTRON GENERAL DISCUSSION

Look over: Chapter 2 Sections 1-9 Sample Problems 1, 2, 5, 7. Look over: Chapter 2 Sections 1-7 Examples 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 PHYS 2211

Ballistic Pendulum. Caution

MEASUREMENTS ACCELERATION OF GRAVITY

Lab 8: Ballistic Pendulum

Linear Momentum and Kinetic Energy

CHARGE TO MASS RATIO FOR THE ELECTRON

Lab 10: Harmonic Motion and the Pendulum

LAB 10: HARMONIC MOTION AND THE PENDULUM

Projectile Motion. Figure 1. The system of coordinates for the projectile motion.

Physics 6L, Summer 2008 Lab #2: Dynamics and Newton's Second Law

Experiment 6. Rotational Motion

The purpose of this laboratory exercise is to verify Newton s second law.

Conservation of Angular Momentum

Physical Measurements

Circular Motion and Centripetal Force

Falling Bodies (last

= o + t = ot + ½ t 2 = o + 2

Chapter 3 Acceleration

Lab M1: The Simple Pendulum

for MiLAB Desktop Experiments in Physics imagine explore learn

CHAPTER 2: Describing Motion: Kinematics in One Dimension

PHYS 272 Fall 2010 Thursday, December 16, 2010

AP Physics Electromagnetic Wrap Up

PHYS 1111L - Introductory Physics Laboratory I

LAB #8: SIMPLE HARMONIC MOTION

13-Nov-2015 PHYS Rotational Inertia

Science TEKS Verification

Experiment 3. d s = 3-2 t ANALYSIS OF ONE DIMENSIONAL MOTION

Physics 1021 Experiment 1. Introduction to Simple Harmonic Motion

General Physics (PHY 170) Chap 2. Acceleration motion with constant acceleration. Tuesday, January 15, 13

BALLISTIC PENDULUM. EXPERIMENT: Measuring the Projectile Speed Consider a steel ball of mass

Lab 9 - Harmonic Motion and the Pendulum

Physics 150 Laboratory Manual

TEKS Physics, Beginning with School Year Correlation to CPO Science Link

2d g. t = d = 1 f gt. GENERAL SCIENCE LABORATORY 1110L Experiment 1 Human Response Time (2)

Experiment 4. Newton s Second Law. Measure the frictional force on a body on a low-friction air track.

Error? Relative error = Theory: g = 9.8 m/sec 2 Measured: g = 9.7 m/sec 2

Brown University Physics 0030 Physics Department Lab 5

Projectile motion. Objectives. Assessment. Assessment. Equations. Physics terms 5/20/14. Identify examples of projectile motion.

Lab 11 Simple Harmonic Motion A study of the kind of motion that results from the force applied to an object by a spring

Ballistic Pendulum. Equipment- ballistic pendulum apparatus, 2 meter ruler, 30 cm ruler, blank paper, carbon paper, masking tape, scale PRECAUTION

Conservation of Momentum

The Photoelectric Effect and the Quantization of Light

Experiment P30: Centripetal Force on a Pendulum (Force Sensor, Photogate)

Charge to Mass Ratio of The Electron

LABORATORY II DESCRIPTION OF MOTION IN TWO DIMENSIONS

3 Vectors and Two- Dimensional Motion

Potential and Kinetic Energy

Pendulums and the Acceleration of Gravity

THE BALLISTIC PENDULUM AND THE LAW OF CONSERVATION OF ENERGY

Trial 1 Trial 2 Trial 3. From your results, how many seconds would it take the car to travel 1.50 meters? (3 significant digits)

Acceleration levels of dropped objects. Technical paper 321

Centripetal Force. Equipment: Centripetal Force apparatus, meter stick, ruler, timer, slotted weights, weight hanger, and analog scale.

Rotation. PHYS 101 Previous Exam Problems CHAPTER

Lab E3: The Wheatstone Bridge

ACCELERATION. 2. Tilt the Track. Place one block under the leg of the track where the motion sensor is located.

Motion on a linear air track

The Ballistic Pendulum

PHY 123 Lab 4 - Conservation of Energy

Physics E-1ax, Fall 2014 Experiment 3. Experiment 3: Force. 2. Find your center of mass by balancing yourself on two force plates.

Remember... Average rate of change slope of a secant (between two points)

VELA. Getting started with the VELA Versatile Laboratory Aid. Paul Vernon

LAB: MOTION ON HILLS

Introduction. Pre-Lab Questions: Physics 1CL PERIODIC MOTION - PART II Spring 2009

Newton s 2nd Law with demonstration track and Cobra4

LAB: MOTION ON HILLS

E X P E R I M E N T 11

Transcription:

Brown niversity PHYS 0050/0070 This experiment studies uniform acceleration in one dimension by systematic measurements of a falling body's position and instantaneous velocity. The positions of timing detectors are varied to generate precise values of these quantities from average quantities. The Basis Plan and Procedure sections that follow describe the experiment; the function and nomenclature of the timing equipment will be found in the Guide to aboratory easurements.. Basis of the Experiment It is shown in many texts that if an object is released from rest and allowed to fall its instantaneous velocity at a distance S is given by v as () where the accepted value of the acceleration due to gravity a is about 9.8 m / s. The instantaneous velocity cannot be measured directly because the body must move over a finite distance S in an interval of time t in order for us to measure a velocity. What we measure is an average velocity v S / t. There is a way however to relate a particular instantaneous velocity to a measured average velocity. The method is based on the fact that the instantaneous velocity v (t) is linearly related to the elapsed time if the acceleration is constant: v( t) at () Here the zero of time is defined as the instant of releasev ( 0) 0. Suppose the body falls from an upper point () along its trajectory at time t to a lower point () at time t. The average velocity v ( t t ) in this time interval between t and t is defined as the mean of the instantaneous velocities at the instants t and t v( t t ) v( t ) v( t ) (3) t t t a v( t t) v( t ) v( t) at at t t (4) Fig. 36

Brown niversity PHYS 0050/0070 The mid-time instant t in the fall from to is by definition t t t (5) Substituting this in the right hand side of Eq. (4) we have v( t. t) at (6) But at as shown in Eq. () is just the instantaneous velocity at time t so we have converted our measurement of average velocity over an interval to the instantaneous velocity at t the TIE IDPOIT of that interval: v t ) v( t t ) (7) ( We go through all this trouble because the average velocity is easy to measure. The average velocity is s( t t ) s( t t) S v s / t (8) ( t t ) T s( t s( t ) v0t ( at ) ( gt ) (9) ) v0t ( at ) ( gt ) (0) v 0 is 0 because the cylinder is dropped from rest with no initial velocity (free fall ). S As a check let us verify that equation 7 is in fact true. Does v( t )? T g v( t ) ( t t ) () S T ( gt ) ( gt ) ( g( t t )) () ( t t ) Equations and are thus equal and hence validate equation 7. otice that the time midpoint t is not the space midpoint as shown in Fig.. Because of the acceleration the body travels farther in the second half of the time interval than in the first half. But if we develop a way of locating the space point corresponding to the time midpointt we can take the instantaneous velocity at to be the measured average velocity over the interval and use Eq. () to calculate the acceleration a. Solving Eq. () for a we get for the acceleration 36

Brown niversity PHYS 0050/0070 v a (3) S Z In our case S Z (see figure) is the total distance traveled in the time interval between t = 0 and t = t. It is not the distance S or S. So we can calculate g from equation 3 by substituting v S /( t t ) and measuring S Z. But remember this will only be true when the photobridges are set so that T t t T ( t t ). Electronic timer will read T and electronic timer will read T. Plan of the Experiment We use photobridges across the path of the falling body to measure the time intervals we need. The apparatus consists of a rigid vertical rod adjacent to the body's trajectory on which the photobridges marked and in Figure are mounted. The body latched magnetically at Z until released defines an exact zero point in time distance and velocity. Two electronic timers marked T and T in the figure are set to operate in pulse mode. ot intended to be a wiring diagram (these are present in the laboratory) the figure indicates the logic flow of signals from the photocells to the timers. The pulse from the cell as the body first cuts its beam is passed to both the and timers starting both counters. When the body first cuts the beam its photocell sends a second pulse to the T timer which causes the timer to stop giving the time of fall from to. The T timer continues until the beam is cut to photocell at which time its pulse stops the timer with the time of fall from to. All the bridges are movable on the rod. Suppose we start with the bridge high on the rod and the bridge mounted about a meter below it. ow let the bridge be placed midway in space between the other two. When a drop is made the timer will contain the total fall time through the bridges and the timer will show the fall stop stop T T z start Fig. 36 3

Brown niversity PHYS 0050/0070 time from to the space midpoint. The latter because of acceleration will be larger than one-half the reading. But now leaving the other bridges locked in their positions we move the center photobridge upward searching for the time midpoint. At the next drop we can verify the constancy of the T reading and check to see if we have reached half that value on the T timer. This step is repeated until the position corresponding to the time midpoint is found. Once the time midpoint is found we can apply Equation (8) using the time readings and distance measurements as described on pages and to get a precise value of the acceleration. The measured average velocity over the interval equals the instantaneous velocity of the body at the instant it cut the photobeam at the TIE IDPOIT. The distance S is that from the rest position Z (not merely from the bridge) to photobeam. Distance measurements are critical. ote that measurements at the rest position always refer to the lower edge of the body because that is the edge that activates the photobeam switches. The distance from the rest level to the upper photobeam can be made a onetime problem by choosing a good location for the upper bridge (one that allows easy access for placing the mass at the rest position) and locking it there for the entire experiment. All measurements to or between photobeams are best made by using the well-defined metal frame of the photobridge itself. The distance between photobeams for example is exactly the distance between corresponding edges on their photobridges. Where the beam itself must be located as in the case of the upper beam relative to the rest position use the offset of the beam from the edge of the photobridge that you are using. This can be obtained (again a one-time problem) by measuring the vertical underline{width} of any bridge with a caliper; the offset is just one-half this width. 3. Procedure and Data KEEP A RECORD OF YOR PROCEDRE THROGHOT THE EXPERIET. Align the apparatus so that the beams are cut reliably over the entire drop length. Small shifts of the mounting board on the floor and small rotations of the bridges may be needed. Be sure that there is a box at the base to catch the body. Set the top bridge position high but allow ready access to the launch position. ake several drops to check for good alignment for repeatability at fixed bridge positions and to decide on a good range of positions for the lowest bridge. ote that the highest position of the lowest bridge should not be such as to give small (two-digit or very low three digit) time readings since any digital reading can inherently be in error by one in the lowest digit. easure carefully the constant distances discussed above and record them. In your notebook set up a Table in which to enter your data in a clear understandable way. Always record the numbers as you measure them - leave calculations even simple ones for later. Include units for all numbers. 36 4

Brown niversity PHYS 0050/0070 Choose a lowest setting of the lower photobridge and hunt with the middle bridge for the half-time (TIE IDPOIT) position. Once located and verified record all distances and the timer readings. These will be used to calculate the acceleration a from equation (8) as described in the Basis section. Record all the times for a fixed position: The variation in this number reflects the reproducibility of the measurements with this apparatus. For at least four more (higher) positions of the lower photo bridge repeat and record the procedure and data as you did in the preceding steps. 4. Calculations For each setting of the lowest bridge calculate the acceleration by determining v ( ) and S from your measurements and then using Eq (8). Expect some variation among your values of a. 5. Results The best value obtained from a series of measurements of a quantity is the mean value simply the arithmetic average of the individual measurements. sing all independent acceleration determinations a i (where is at least 5) calculate a best value for your experiment as the mean or average of the individual values a i a a i i o experimental result is complete or meaningful without an estimate of the experimental uncertainty. A good measure of the uncertainty in the mean is the standard deviation of the mean S.D. which is obtained from the mean square deviation (S) of your measured values from their mean: and S i S S. D. ( a i a) where the a i are your individual determinations of a. A final best value with its uncertainty is then a S.D. 36 5

Brown niversity PHYS 0050/0070 6. Discussion and Conclusion Compare your measured value to the accepted value of the acceleration of gravity and discuss the result taking into account your experimental uncertainty and the reproducibility of measurements with the apparatus. Try to include a discussion of sources of experimental uncertainties. ote: In your report you are not expected to repeat the plan of the experiment as given in the handout but to say briefly what you actually did - e.g. how many drops you made to find the time midpoint and what the time was for each drop any problems you encountered. REFERECES [] aboratory easurements (Physics 0030); and Young and Freedman; [] niversity Physics (9th Ed Extended Version) Chapter. 36 6