The rectangular loop shown in the figure is pivoted about the y axis and carries a current of 15.0 in the direction indicated. T +

Similar documents
Chapter 4: Magnetic Field

Ch 17 Problem Set 31. A toaster is rated at 600 W when connected to a 120-V source. What current does the toaster carry, and what is its resistance?

Exercise Problem Correct. Correct. Heimadæmi 5. Part A. Part B. Due: 11:45pm on Thursday, February 18, 2016

Downloaded from

Ch24 Page 1. Chapter 24 Magnetic Fields and Forces Thursday, March 11, :26 PM

Chapter 4 - Moving Charges and Magnetism. Magnitude of the magnetic field at the centre of the coil is given by the relation,

PHYSICS - CLUTCH CH 26: MAGNETIC FIELDS AND FORCES.

Chapter 27 Magnetism 1/20/ Magnets and Magnetic Fields Magnets and Magnetic Fields Magnets and Magnetic Fields

CHAPTER 20 Magnetism

1 Written and composed by: Prof. Muhammad Ali Malik (M. Phil. Physics), Govt. Degree College, Naushera

CHAPTER 4: MAGNETIC FIELD

Chapter 22: Magnetism

Chapter 22: Magnetism. Brent Royuk Phys-112 Concordia University

Physics 212 Question Bank III 2010

Chapter 27 Magnetism. Copyright 2009 Pearson Education, Inc.

Chapter 28. Magnetic Fields. Copyright 2014 John Wiley & Sons, Inc. All rights reserved.

Physics 212 Question Bank III 2006

Assignment 7 Solutions

Chapter 12. Magnetism and Electromagnetism

Chapter 27 Magnetism. Copyright 2009 Pearson Education, Inc.

1 Fig. 3.1 shows the variation of the magnetic flux linkage with time t for a small generator. magnetic. flux linkage / Wb-turns 1.

Phys102 Lecture 16/17 Magnetic fields


Unit 8: Electromagnetism

Magnetic Fields & Forces

Chapter 7 Magnetism 7.1 Introduction Magnetism has been known thousands of years dating back to the discovery recorded by the ancient Greek.

Physics 2220 Fall 2010 George Williams THIRD MIDTERM - REVIEW PROBLEMS

Every magnet has a north pole and south pole.

Gravity Electromagnetism Weak Strong

2. Draw the Magnetic Field lines created by the below two bar magnets. Homework 3. Draw the Magnetic Field lines created by the below bar magnets.

10/24/2012 PHY 102. (FAWOLE O.G.) Good day. Here we go..

Other Formulae for Electromagnetism. Biot's Law Force on moving charges

AP Physics Electromagnetic Wrap Up

Electromagnetism Notes 1 Magnetic Fields

Physics 54 Lecture March 1, Micro-quiz problems (magnetic fields and forces) Magnetic dipoles and their interaction with magnetic fields

Chapter 27, 28 & 29: Magnetism & Electromagnetic Induction

Substituting in the values we have here (and converting the mass from grams to kilograms): B = ( )(9.81)

Magnetic Fields & Forces

Magnetism Practice Problems PSI AP Physics B

Phys 0175 Practice Midterm Exam II Feb 25, 2009

PHYS 1444 Section 02 Review #2

5. ELECTRIC CURRENTS

Electromagnetic Induction

HW7: Ch. 26 P 34, 36 Ch.27 Q 2, 4, 8, 18 P 2, 8, 17, 19, 37

Magnets. Domain = small magnetized region of a magnetic material. all the atoms are grouped together and aligned

PHYS 202. Lecture 7 Professor Stephen Thornton February 9, 2006

Phys 0175 Midterm Exam III Solutions Apr 3, 2008

Exercise Exercise Correct. Correct. Part A

1. The diagram shows the electric field lines produced by an electrostatic focussing device.

Physics 106, Section 1

Physics 210 Q ( PHYSICS210BRIDGE ) My Courses Course Settings

Physics 4. Magnetic Forces and Fields. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Physics 102: Magnetic Fields

MOTORS AND GENERATORS

Physics 2080 Extra Credit Due March 15, 2011

Magnetism Chapter Questions

St. Vincent College PH : General Physics II. Exam 5 4/8/2016

Ch 29 - Magnetic Fields & Sources

PHYS 272 (Spring 2018): Introductory Physics: Fields Homeworks

PHY222 Lab 8 - Magnetic Fields and Right Hand Rules Magnetic forces on wires, electron beams, coils; direction of magnetic field in a coil

So, according to classical theory, electrical and gravitational forces are absolutely separate and distinct phenomena.

Electromagnetism 03/12/2010. Electromagnetism Canada s Triumph Accelerator. Putting it All Together. Hydrogen Minus. Initial Acceleration

Physics H. Instructor: Dr. Alaa Mahmoud

Physics 420 Fall 2004 Quiz 1 Wednesday This quiz is worth 6 points. Be sure to show your work and label your final answers.

PHY222 Lab 10 - Magnetic Fields: Magnetic Flux and. Lenz's Law Currents induced in coils by magnets and by other coils

End-of-Chapter Exercises

MAGNETIC EFFECT OF CURRENT

a) head-on view b) side view c) side view Use the right hand rule for forces to confirm the direction of the force in each case.

Physics 208, Spring 2016 Exam #3

PHYSICS : CLASS XII ALL SUBJECTIVE ASSESSMENT TEST ASAT

Physics 2401 Summer 2, 2008 Exam III

Exam 2 Solutions. ε 3. ε 1. Problem 1

Electromagnetism IB 12

PH 102 Exam II. 1. Solve 8 problems out of the 12 below. All problems have equal weight.

PS I AP Physics 2 Electromagnetic Induction Multiple Choice Questions

Class XII- Physics - Assignment Topic: - Magnetic Effect of Current

MAGNETIC DEFLECTION. OBJECTIVE: To observe the effect of a magnetic field on an electron beam. To measure the Earth s magnetic field.

Physics 112. Study Notes for Exam II

Level 2 Physics, 2015

Question Bank 4-Magnetic effects of current

PHYSICS ADVANCED HIGHER. Unit 3 Electromagnetism Homework

Phys 0175 Midterm Exam II Solutions Feb 25, m e te rs

Magnetic Fields and Forces

General Physics (PHY 2140)

NAME: PHYSICS 6B SPRING 2011 FINAL EXAM ( VERSION A )

θ θ θ θ current I Fig. 6.1 The conductor and the magnetic field are both in the plane of the paper. State

PhysicsAndMathsTutor.com

Chapter 21. Magnetic Forces and Magnetic Fields

PHYS 1444 Section 003 Lecture #17

Figure 1 A) 2.3 V B) +2.3 V C) +3.6 V D) 1.1 V E) +1.1 V Q2. The current in the 12- Ω resistor shown in the circuit of Figure 2 is:

Magnetic fields. The symbol we use for a magnetic field is B. The unit is the tesla (T). The Earth s magnetic field is about 5 x 10-5 T.

AP Physics 2 Electromagnetic Induction Multiple Choice

Magnets and Electromagnetism

(a) What is the magnitude of the electric force between the proton and the electron?

Universe Video. Magnetic Materials and Magnetic Fields Lab Activity. Discussion of Magnetism and Magnetic Fields

Chapter 17: Magnetism

Chapter 27 Magnetic Field and Magnetic Forces

Physics 2212 GH Quiz #4 Solutions Spring 2016

Electromotive Force. The electromotive force (emf), ε, of a battery is the maximum possible voltage that the battery can provide between its terminals

Version The diagram below represents lines of magnetic flux within a region of space.

Transcription:

Heimadæmi 6 Due: 11:00pm on Thursday, February 25, 2016 You will receive no credit for items you complete after the assignment is due. Grading Policy Problem 27.68 The rectangular loop shown in the figure is pivoted about the y axis and carries a current of 15.0 in the direction indicated. A If the loop is in a uniform magnetic field with magnitude 0.48 in the x direction, find the magnitude of the torque required to hold the loop in the position shown. Express your answer using two significant figures. T + τ = 3.0 10 2 N m Part B What is the direction of the torque required to hold the loop in the position shown. +i^ i^ +j^ j^ +k^ k^

Part C Repeat part A for the case in which the field is in the Express your answer using two significant figures. z direction. τ = 1.7 10 2 N m Part D What is the direction of the torque required to hold the loop in the position shown. +i^ i^ +j^ j^ +k^ k^ Part E For the magnetic field in part A, what torque would be required if the loop were pivoted about an axis through its center, parallel to the y axis? Express your answer using two significant figures. τ = 3.0 10 2 N m Part F For the magnetic field in part C, what torque would be required if the loop were pivoted about an axis through its center, parallel to the y axis? Express your answer using two significant figures. τ = 1.7 10 2 N m

Problem 27.22 A thin copper rod that is 1.0 m long and has a mass of 0.050 kg is in a magnetic field of 0.10 T. What minimum current in the rod is needed in order for the magnetic force to cancel the weight of the rod? 4.9 A 7.6 A 2.5 A 9.8 A 1.2 A Exercise 27.18 An alpha particle (a He nucleus, containing two protons and two neutrons and having a mass of 6.64 10 27 kg) traveling horizontally at 35.6 enters a uniform, vertical, 1.80 magnetic field. km/s T What is the diameter of the path followed by this alpha particle? Express your answer with the appropriate units. d = 0.821 mm Part B What effect does the magnetic field have on the speed of the particle? The speed remains constant. The speed increases with time. The speed decreases with time.

Part C What is the magnitude of the acceleration of the alpha particle while it is in the magnetic field? Express your answer with the appropriate units. a = 3.09 10 12 m s 2 Part D What is the direction of this acceleration? The acceleration is perpendicular to and B and so is horizontal, out of the center of curvature of the particle s path. The acceleration is perpendicular to and B and so is horizontal, toward the center of curvature of the particle s path. The acceleration is parallel to and perpendicular to B and so is vertical, along the particle s path. The acceleration is perpendicular to and parallel to B and so is horizontal, along the particle s path. Part E Explain why the speed of the particle does not change even though an unbalanced external force acts on it. The unbalanced force is parallel to FB so it changes the direction of but not its magnitude, which is the speed. The unbalanced force is perpendicular to FB so it changes the direction of but not its magnitude, which is the speed. The unbalanced force is parallel to FB so it changes the magnitude of but not its direction, which is the speed. The unbalanced force is perpendicular to FB so it changes the magnitude of but not its direction, which is the speed.

Electromagnetic Velocity Filter When a particle with charge q moves across a magnetic field of magnitude B, it experiences a force to the side. If the E proper electric field is simultaneously applied, the electric force on the charge will be in such a direction as to cancel the magnetic force with the result that the particle will travel in a straight line. The balancing condition provides a relationship involving the velocity of the particle. In this problem you will figure out how to arrange the fields to create this balance and then determine this relationship. Consider the arrangement of ion source and electric field plates shown in the figure. The ion source sends particles with velocity along the positive x axis. They encounter electric field plates spaced a distance d apart that generate a uniform electric field of magnitude E in the +y direction. To cancel the resulting electric force with a magnetic force, a magnetic field (not shown) must be added in which direction? Using the right hand rule, you can see that the positive z axis is directed out of the screen. B^ Choose the direction of. Hint 1. Method for determining direction Assume a sign for the charge. Since both the electric force and magnetic force depend on q, in particular, they also depend on its sign. So the sign doesn't matter here. Apply the right hand rule to the equation for the magnetic force, F M. Hint 2. Right hand rule = q B Curl the fingers of your right hand from the first vector to the second in the product. Your outstretched thumb then points in the direction of the cross product vector. i^ i^ j^ j^ k^ k^ Part B

Now find the magnitude of the magnetic field that will cause the charge to travel in a straight line under the combined action of electric and magnetic fields. Express the magnetic field Bbal that will just balance the applied electric field in terms of some or all of the variables q, v, and E. Hint 1. Find the magnetic force What is FM, the magnitude of the force due to a magnetic field B (with a magnitude of B) interacting with a charge q moving at velocity (a speed of v)? Express FM in terms of some or all of the variables q, B, and v. FM = qbv Hint 2. Find the force due to the electric field What is FE, the magnitude of a force on a charge q due to an applied electric field E? Express FE in terms of one or both of the variables q and E. FE = qe Bbal = E v Part C It may seem strange that the selected velocity does not depend on either the mass or the charge of the particle. (For example, would the velocity of a neutral particle be selected by passage through this device?) The explanation of this is that the mass and the charge control the resolution of the device particles with the wrong velocity will be accelerated away from the straight line and will not pass through the exit slit. If the acceleration depends strongly on the velocity, then particles with just slightly wrong velocities will feel a substantial transverse acceleration and will not exit the selector. Because the acceleration depends on the mass and charge, these influence the sharpness (resolution) of the transmitted particles.

Assume that you want a velocity selector that will allow particles of velocity to pass straight through without deflection while also providing the best possible velocity resolution. You set the electric and magnetic fields to select the velocity. To obtain the best possible velocity resolution (the narrowest distribution of velocities of the transmitted particles) you would want to use particles with. Assume that the selector is short enough so that particles that move away from the axis do not have time to come back to it. Hint 1. Use Newton's law If the velocity is "wrong" the forces won't balance and the resulting transverse force will cause a transverse acceleration. Use a = F/m to determine how this acceleration will depend on q and m. You want particles with the incorrect velocity to have the maximum possible deviation in the y direction so that they will not go through a slit placed at the right end. This means that the acceleration should be maximum. both q and m large q large and m small q small and m large both q and m small You want particles with the incorrect velocity to have the maximum possible deviation in the y direction so that they will not go through a slit placed at the right end. The deviation will be maximum when the acceleration is maximum. The acceleration is directly proportional to q and inversely proportional to m: + a= = ( E + B ) F E F M q m m So for maximum deviation, q should be large and m small.. Exercise 27.49 mm The figure shows a portion of a silver ribbon with z1 = 11.0 and y 1 = 0.20 mm, carrying a current of 140 A in the +x direction. The ribbon lies in a uniform magnetic field, in the y direction, with magnitude 0.91 T. Apply the simplified model of the Hall effect. If there are 5.85 10 28 free electrons per cubic meter, find the magnitude of the drift velocity of the electrons in the x direction.

Express your answer using two significant figures. vd = 6.8 10 3 m/s Part B Find the magnitude of the electric field in the z direction due to the Hall effect. Express your answer using two significant figures. E = 6.2 10 3 V/m Part C Find the direction of the electric field in the z direction due to the Hall effect. z +z Part D Find the Hall emf. Express your answer using two significant figures. E Hall = 6.8 10 5 V Exercise 26.35 Ω The resistance of a galvanometer coil is 30.0, and the current required for full scale deflection is 500. μa Show in a diagram how to convert the galvanometer to an ammeter reading 25.0 ma full scale.

add a shunt resistor in parallel with the galvanometer coil add a resistor in series with the galvanometer coil Part B Compute the shunt resistance. R s = 0.612 Ω Part C Show how to convert the galvanometer to a voltmeter reading 500 mv full scale. add a shunt resistor in parallel with the galvanometer coil add a resistor in series with the galvanometer coil Part D Compute the series resistance. R s = 970 Ω Problem 26.21

(a) For the circuit shown in the figure, determine the current in the 7.0 resistor. Express your answer using three significant figures. Ω 1.55 A Part B (b) For the circuit shown in the figure, determine the current in the 8.0 resistor. Express your answer using three significant figures. Ω 1.27 A Part C (c) For the circuit shown in the figure, determine the current in the 4.0 resistor. Express your answer using three significant figures. Ω 0.284 A PSS 27.1: Magnetic Forces Learning Goal: To practice Problem Solving Strategy 27.1: Magnetic Forces. kg = (3.00 10 4 m/s) j^ B = (1.63 T) i^ + (0.980 T) j^ A particle with mass 1.81 10 3 and a charge of 1.22 10 8 has, at a given instant, a velocity magnetic field?. What are the magnitude and direction of the particle s acceleration produced by a uniform Problem Solving Strategy 27.1: Magnetic Forces C

IDENTIFY the relevant concepts: The right hand rule allows you to determine the magnetic force on a moving charged particle. SET UP the problem using the following steps: 1. Draw the velocity vector and magnetic field B with their tails together so that you can visualize the plane in which these two vectors lie. 2. Identify the angle ϕ between the two vectors. 3. Identify the target variables. This may be the magnitude and direction of the force, the velocity, or the magnetic field. EXECUTE the solution as follows: 1. Express the magnetic force using the equation F = q B. The magnitude of the force is given by. F = qvbsin ϕ F B B 2. Remember that is perpendicular to the plane of the vectors and. The direction of is determined by the righthand rule. If q is negative, the force is opposite to B. EVALUATE your answer: Whenever you can, solve the problem in two ways. Verify that the results agree. IDENTIFY the relevant concepts The problem asks for the acceleration of a moving charged particle. Since acceleration is related to force, you will need to determine the magnetic force acting on the particle. SET UP the problem using the following steps Draw the velocity and magnetic field B vectors. Since they have different units, their relative magnitudes aren't relevant. Be certain they have the correct orientations relative to the given coordinate system. The dot in the center of the image represents the particle. Recall that,, and i^ j^ k^ are the unit vectors in the x, y, and z directions, respectively.

The strategy points out that there are two ways to solve problems with magnetic forces. In this problem, you already have the components of the vectors, so the cross product method will be much easier. This means that ϕ B you do not need to find the value of, the angle between and. Also, note that the coordinate system in the vector drawing applet is two dimensional. To make it threedimensional, add a positive z axis oriented out of the screen. EXECUTE the solution as follows Part B Find the acceleration vector for the charge. Enter the x, y, and z components of the acceleration in meters per second squared separated by commas. Hint 1. How to find cross products Recall that the cross product distributes like a regular scalar product: You will also need to use the following relations for products of unit vectors: Finally, remember that the cross product of any vector with itself is zero. For example,. Hint 2. Find Calculate B B, in terms of its components. ( + ) = + A B C A B A C i^ j^ = k^ j^ i^ = k^ j^ k^ = i^ k^ j^ = i^ k^ i^ = j^ i^ k^ = j^ j^ j^ = 0

Enter the x, y, and z components of B in tesla meters per second separated by commas. Hint 1. How to find cross products ( + ) = + Recall that the cross product distributes like a regular scalar product: A B C A B A C You will also need to use the following relations for products of unit vectors: i^ j^ = k^ j^ i^ = k^ j^ k^ = i^ k^ j^ = i^ k^ i^ = j^ i^ k^ = j^ j^ j^ = 0 Finally, remember that the cross product of any vector with itself is zero. For example,. B = 0,0, 4.89 10 4 T m/s a = 0,0, 0.330 m/s 2 EVALUATE your answer Part C You can check your result by comparing its magnitude to the magnitude the acceleration would have if the particle's velocity had the same magnitude but it was perpendicular to the magnetic field. Find the value of the expression (the magnitude of when is perpendicular to ), where is the magnitude of the charge, v is the magnitude of the velocity, B is the magnitude of the magnetic field, and m is the mass of the particle. Express your answer in meters per second squared. qvb/m a B q Hint 1. Find the magnitude of the velocity What is the value of? Remember that the magnitude of a vector Express your answer in meters per second squared. v = 3.00 10 4 m/s 2 v v x i^ + v y j^ + v z k^ + + v 2 x v 2 y v 2 z is given by

Hint 2. Find the magnitude of the magnetic field What is the value of? Remember that the magnitude of a vector is given by Express your answer in teslas. B B x i^ + B y j^ + B z k^ + + B 2 x B 2 y B 2 z B = 1.90 T qvb/m = 0.385 m/s 2 This quantity is of similar size to the magnitude of your answer from Part B. If you wanted to check precisely, you could find the value of ϕ and multiply the value you calculated above by sin ϕ. You would find that you had the same magnitude as the magnitude of the acceleration vector you found in Part B. Note that the magnitude of the magnetic force, and therefore the magnitude of the particle's acceleration, is at its maximum when is perpendicular to B, so it is not surprising that your answer to Part C is somewhat larger than the magnitude of the acceleration calculated in Part B. To check the direction of your answer from Part B, use the right hand rule. Point the fingers of your right hand parallel to in your answer to and then turn your wrist so that you can curl those fingers down toward B. You will find that your thumb points into the screen, which is the negative z direction. Thus, your answer from Part B has the proper direction as well as the proper magnitude. ± Determining the Velocity of a Charged Particle nc = ( F = ( N ) i^ + ( N )j^ A particle with a charge of 5.10 is moving in a uniform magnetic field of B 1.25 ). The magnetic force on the particle is measured to be 3.80 10 7 7.60 10 7. T k^ Are there components of the velocity that cannot be determined by measuring the force? Hint 1. Magnetic force on a moving charged particle Recall the following formula: B B If you know, does uniquely define? F = q B. yes no

Part B Calculate the x component of the velocity of the particle. Express your answer in meters per second to three significant figures. Hint 1. Relation between and F Which component of the force depends on the x component of the velocity? x y v x = 119 m/s Part C Calculate the y component of the velocity of the particle. Express your answer in meters per second to three significant figures. Hint 1. Relation between and F Which component of the force depends on the y component of the velocity? x y v y = 59.6 m/s Part D Calculate the scalar product the symbolic expression. F Express your answer in watts to three significant figures.. Work the problem out symbolically first, then plug in numbers after you've simplified

Hint 1. Formula for dot product The dot product of two vectors and is given by A B A B = A x B x + A y B y + A z B z. 0 W Part E What is the angle between and F? Express your answer in degrees to three significant figures. Hint 1. Another dot product formula Recall that θ A B where is the angle between and. A B = A B cos θ, 90 Notice that the dot product of the velocity and the force is zero. This will always be the case. Since F, F B = q B must be perpendicular to both and. This result is important because it implies that magnetic fields can only change the direction of a charged particle's velocity, not its speed. Exercise 27.38 A A straight, vertical wire carries a current of 2.30 downward in a region between the poles of a large superconducting electromagnet, where the magnetic field has a magnitude of B = 0.594 and is horizontal. T What is the magnitude of the magnetic force on a 1.00 the magnetic field direction is east? cm section of the wire that is in this uniform magnetic field, if Express your answer with the appropriate units. F = 1.37 10 2 N

Part B What is the direction of this magnetic force? west south north east Part C What is the magnitude of the magnetic force on a 1.00 the magnetic field direction is south? Express your answer with the appropriate units. cm section of the wire that is in this uniform magnetic field, if F = 1.37 10 2 N Part D What is the direction of this magnetic force? north east west south Part E What is the magnitude of the magnetic force on a 1.00 the magnetic field direction is 30.0 south of west? Express your answer with the appropriate units. cm section of the wire that is in this uniform magnetic field, if

F = 1.37 10 2 N Part F What is the direction of this magnetic force? ϕ = 60.0 north of west Score Summary: Your score on this assignment is 98.8%. You received 10.87 out of a possible total of 11 points.