ADVANCES IN MATHEMATICS(CHINA)

Similar documents
Partial Hamming graphs and expansion procedures

An Example file... log.txt

Two-ended regular median graphs

This document has been prepared by Sunder Kidambi with the blessings of


2016 xó ADVANCES IN MATHEMATICS(CHINA) xxx., 2016

arxiv: v4 [math.co] 12 Nov 2015

Axiomatic Characterization of the Interval Function of a Graph

Partial cubes: structures, characterizations, and constructions

Edge-counting vectors, Fibonacci cubes, and Fibonacci triangle

ETIKA V PROFESII PSYCHOLÓGA

Convex sets in lexicographic products of graphs

LA PRISE DE CALAIS. çoys, çoys, har - dis. çoys, dis. tons, mantz, tons, Gas. c est. à ce. C est à ce. coup, c est à ce

The median function on median graphs and semilattices

â, Đ (Very Long Baseline Interferometry, VLBI)

Framework for functional tree simulation applied to 'golden delicious' apple trees

Convexities Related to Path Properties on Graphs; a Unified Approach

Reconstructing subgraph-counting graph polynomials of increasing families of graphs

General Neoclassical Closure Theory: Diagonalizing the Drift Kinetic Operator

An Introduction to Optimal Control Applied to Disease Models

arxiv: v3 [math.co] 18 Jul 2014

Thermal Conductivity of Electric Molding Composites Filled with β-si 3 N 4

Research Article Bipartite Diametrical Graphs of Diameter 4 and Extreme Orders

Application of ICA and PCA to extracting structure from stock return

Ä D C Ã F D {f n } F,

Juan Juan Salon. EH National Bank. Sandwich Shop Nail Design. OSKA Beverly. Chase Bank. Marina Rinaldi. Orogold. Mariposa.

CONVEX OPTIMIZATION OVER POSITIVE POLYNOMIALS AND FILTER DESIGN. Y. Genin, Y. Hachez, Yu. Nesterov, P. Van Dooren

A Robust Adaptive Digital Audio Watermarking Scheme Against MP3 Compression

Bucolic complexes. Koroška cesta 160, SI-2000 Maribor, Slovenia

New method for solving nonlinear sum of ratios problem based on simplicial bisection

ALTER TABLE Employee ADD ( Mname VARCHAR2(20), Birthday DATE );

. ffflffluary 7, 1855.

Discrete Mathematics

Examination paper for TFY4240 Electromagnetic theory

CALCULATING THE DEGREE DISTANCE OF PARTIAL HAMMING GRAPHS

cº " 6 >IJV 5 l i u $

New BaBar Results on Rare Leptonic B Decays

Prime Factorization and Domination in the Hierarchical Product of Graphs

I118 Graphs and Automata

F O R SOCI AL WORK RESE ARCH

Applications of Isometric Embeddings to Chemical Graphs

Vectors. Teaching Learning Point. Ç, where OP. l m n

B œ c " " ã B œ c 8 8. such that substituting these values for the B 3 's will make all the equations true

UNIQUE FJORDS AND THE ROYAL CAPITALS UNIQUE FJORDS & THE NORTH CAPE & UNIQUE NORTHERN CAPITALS

h : sh +i F J a n W i m +i F D eh, 1 ; 5 i A cl m i n i sh» si N «q a : 1? ek ser P t r \. e a & im a n alaa p ( M Scanned by CamScanner

OVER 150 J-HOP To Q JCATS S(MJ) BY NOON TUESDAY CO-ED S LEAGUE HOLDS MEETING

Max. Input Power (W) Input Current (Arms) Dimming. Enclosure

Constructive Decision Theory

T T V e g em D e j ) a S D } a o "m ek j g ed b m "d mq m [ d, )

2 Hallén s integral equation for the thin wire dipole antenna

Planning for Reactive Behaviors in Hide and Seek

QUESTIONS ON QUARKONIUM PRODUCTION IN NUCLEAR COLLISIONS

" #$ P UTS W U X [ZY \ Z _ `a \ dfe ih j mlk n p q sr t u s q e ps s t x q s y i_z { U U z W } y ~ y x t i e l US T { d ƒ ƒ ƒ j s q e uˆ ps i ˆ p q y

Mutually orthogonal latin squares (MOLS) and Orthogonal arrays (OA)

ON THE NUMBERS OF CUT-VERTICES AND END-BLOCKS IN 4-REGULAR GRAPHS

Subrings and Ideals 2.1 INTRODUCTION 2.2 SUBRING

On Hamiltonian cycles and Hamiltonian paths

Surface Modification of Nano-Hydroxyapatite with Silane Agent

Ú Bruguieres, A. Virelizier, A. [4] Á «Î µà Monoidal

A Creative Review on Integer Additive Set-Valued Graphs

Applications of Discrete Mathematics to the Analysis of Algorithms

On the difference between the revised Szeged index and the Wiener index

Randomized Simultaneous Messages: Solution of a Problem of Yao in Communication Complexity

Periodic monopoles and difference modules

Observation 4.1 G has a proper separation of order 0 if and only if G is disconnected.

Generalized Fibonacci cubes

Pose Determination from a Single Image of a Single Parallelogram

Algebraic Properties and Panconnectivity of Folded Hypercubes

A Double-objective Rank Level Classifier Fusion Method

MATCHINGS EXTEND TO HAMILTONIAN CYCLES IN 5-CUBE 1

Optimal Control of PDEs

Books. Book Collection Editor. Editor. Name Name Company. Title "SA" A tree pattern. A database instance

Folder complexes and multiflow combinatorial dualities

Resonance graphs of kinky benzenoid systems are daisy cubes

Fat Hoffman graphs with smallest eigenvalue greater than 3

EXTRACT THE PLASTIC PROPERTIES OF METALS US- ING REVERSE ANALYSIS OF NANOINDENTATION TEST

Endomorphism Breaking in Graphs

TOPOLOGICAL ENTROPY FOR DIFFERENTIABLE MAPS OF INTERVALS

Disjoint Hamiltonian Cycles in Bipartite Graphs

Complex Analysis. PH 503 Course TM. Charudatt Kadolkar Indian Institute of Technology, Guwahati

Minimal Decompositions of Hypergraphs into Mutually Isomorphic Subhypergraphs

Estimation of Retention Factors of Nucleotides by Buffer Concentrations in RP-HPLC

Eigenvalues of graphs

4.3 Laplace Transform in Linear System Analysis

$%! & (, -3 / 0 4, 5 6/ 6 +7, 6 8 9/ 5 :/ 5 A BDC EF G H I EJ KL N G H I. ] ^ _ ` _ ^ a b=c o e f p a q i h f i a j k e i l _ ^ m=c n ^

A Study on Dental Health Awareness of High School Students

OC330C. Wiring Diagram. Recommended PKH- P35 / P50 GALH PKA- RP35 / RP50. Remarks (Drawing No.) No. Parts No. Parts Name Specifications

On the connectivity of the direct product of graphs

ADJACENT VERTEX DISTINGUISHING TOTAL COLORING OF GRAPHS WITH LOWER AVERAGE DEGREE. Weifan Wang and Yiqiao Wang

Neighbor Sum Distinguishing Total Colorings of Triangle Free Planar Graphs

On non-bipartite distance-regular graphs with valency k and smallest eigenvalue not larger than k/2

JEE-ADVANCED MATHEMATICS. Paper-1. SECTION 1: (One or More Options Correct Type)

Embedding and Spectrum of Graphs

Proper connection number and 2-proper connection number of a graph

T i t l e o f t h e w o r k : L a M a r e a Y o k o h a m a. A r t i s t : M a r i a n o P e n s o t t i ( P l a y w r i g h t, D i r e c t o r )

On the adjacency matrix of a block graph

On a Conjecture of Thomassen

Hanoi Graphs and Some Classical Numbers

The NP-Hardness of the Connected p-median Problem on Bipartite Graphs and Split Graphs

Principal Secretary to Government Haryana, Town & Country Planning Department, Haryana, Chandigarh.

Transcription:

Æ Ý ¹ ADVANCES IN MATHEMATICS(CHINA) 0 median Đ Ó ( ºÕ ³,, ÓÚ, 330013) doi: 10.11845/sxjz.2012080b : u,v ¹ w G, z ÁÇÉ Ë½ ±, È z À u,v ¹ w Ä median. G À²Ï median, G Î Å Ì ÆÄ median. à ²Ï median µ» ÂÍ, ¾ ²Ï median ³, ²Ï median, ºÊ ²Ï median ¼ ²Ï median. Ì: ± ; median; ²Ï median ; ¼ MR(2000) Ý : 05C12; 05C75 / : O157.5 ÉØÐ: A u,v,w É G Â, Ì z ÁÖ ¾Â ľ, z Ô u,v,w median.  G Ô median, G  u,v,w» Ó Â median. Ñ median Á µ. Mulder ÖÍ median Û É ß, «¾ [1]. ÇÔ ÐÉ, median ¹ Î ØÆ ¼ É È ß [2 6]. median ß Þ Â Ç, 1947 Birkhoff Kiss [7] ±Í, Avann 1961 median Æ ÄÇ [8]. É Ì ¾ Ô median É Nebeský [9]. È median Â Ñ º [10] [1,11]. Chung, Graham Saks median À À «Å Á ß, «À ² ß ( Median graphs arise naturally in the study of ordered sets and discrete distributive lattices, and have an extensive literature ) [12]. ¼ median ØÆ, ¹ Å, «ß ØÆ. quasi-median [1] semi-median [13] almost median [13] weakly median [14] µ. À,   median É ØƱ? Ð Â ±? Ô, median, Ù Ã ¹ :  G Ô median, Ì G »  median. Þ Â median»é median,. Ñ Æ K 2,3 É median, É median, median É median Â. Ò ß median Æ ². 1 È Ù G = (V,E) É À, ¹ V Æ G, E Æ G ËÀ : 2012-05-08. À˲ : 2012-06-02. Ù : Ë Á Ù (No. 11126171, No. 11261019). E-mail: wgfmath@126.com

2 Ü. ÁÔ, Å V(G) E(G) Æ G.  «p = v 0 e 1 v 1 e 2...v k 1 e k v k ĐÔ Ô, 1 i k, e i ½ Ô v i 1 v i, ¾¹ Đ, p Ô v 0 ± v k, Ð Ô v 0 v k. k Ô p ¼. v 0 v k ¼Ä Ô v 0 v k Î, ľ ¼ Ô v 0 v k, Ô d G (v 0,v k ). G Ü, Ð Ô d(v 0,v k ). p ¼ v 0 v k, Á p ÔÖ, C k Æ, ¹ k Ô ¼. k Ô», C k ÔÔÖ, ÔÒÖ. G V ³  V 1 V 2, ij G ½ V 1, ½ V 2, G Ô ÊÐ. Û, V 1  V 2 » Ð, G Ô ÊÐ. V 1 = m, V 2 = n, ¾ Ñ Æ Ô K m,n. ¹ Õ¹ ϱ Ï Ñ [15]. Í«1 G = (V,E) u,v,w V(G). G z Ô u,v w  median, Ì ÁÖ Ä¾ u v ľ u w ľ v w. Í«2 G u v Ô½ Õ ¹ Ô Ö u v ľ Æ, Ô I G (u,v), I G (u,v) = {w V(G) d G (u,w)+d G (w,v) = d G (u,v)}, Ð Ô I(u,v). ¾, u,v w median É I(u,v) I(u,w) I(v,w). Í«3 G Ô median Ð, Ì G  u,v,w,»½  median, É I(u,v) I(u,w) I(v,w) = 1. Í«4 G ÔÏ median Ð, Ì G  u,v w,»  median, É I(u,v) I(u,w) I(v,w) 1. Þ Â median»é median,. Ñ Æ K m,n (¹ m,n 2 ¾ m+n 5) É Â median, É median. 2 Å G H Ô Â, V(H) V(G) ¾ E(H) E(G), H Ô G, Ô H G. Ì H G, ¾ H  x,y, d H (x,y) = d G (x,y), H É G µ Å. 1 [11] G É Â, u 1,u 2,u 3 V(G), Ì z É u 1,u 2,u 3  median, d(u i,z) = 1 2 (d(u i,u j )+d(u i,u k ) d(u j,u k )), ¹ {i,j,k} = {1,2,3}. 2 [11] C É G ľ ľ», C G ɵ Å. 3 [15] G É Æ ¾Ú λ. 1  median»é Æ. Ñ. G É median, G É Æ. C = v 1 v 2...v 2k+1 v 1 É G Âľ». «2, C G ɵ Å. v 1, v k+1 v k+2, d G (v 1,v k+1 ) = d G (v 1,v k+2 ) = k. z É Â median, «1, d G (v 1,z) = 1 2 (d(v 1,v k+1 )+d(v 1,v k+2 ) d(v k+1,v k+2 )) = 2k 1, 2

ÒÊ : median º 3 ¾ ¹ É Â, Å ³ É,. G É Æ. Í«5 G = (V,E) ± G = (V,E ) ÞÚ, É f : V V, à uv E, f(u)f(v) E. Í«6 G Ê ϕ É G ± À Â, à G u, ϕ 2 (u) = ϕ(u). Ù G ϕ Ç Ü H Ô G ÂÊ. H v, Đ ϕ(v) = v. ÈÃ, v V(H), à ϕ(v) = w v. u V(G), à ϕ(u) = v. u = w, ϕ 2 (v) = ϕ(ϕ(v)) = ϕ(w) = ϕ(u) = v, ϕ(v) = w, ϕ 2 (v) ϕ(v),. u w, ϕ 2 (u) = ϕ(ϕ(u)) = ϕ(v) = w, ϕ(u) = v, ϕ 2 (u) ϕ(u),. 4 [11] G Ê H É G µ Å. 2 median Ê É median. Ñ G É median, H É G Ê. Ü H É median. «4, H É G µ Å., H  u,v w, H median» É G median. z É u,v,w G  median, P,Q,R ÅÉ G ľ u v, u w, v w. G ± H Ê Ô ϕ, ϕp, ϕq, ϕr H, Ô H ɵ Å, ϕp, ϕq, ϕr ÅÉ H ϕ(u) ϕ(v), ϕ(u) ϕ(w), ϕ(v) ϕ(w) ľ. ϕ(z) ÁÖ ϕ(u) ϕ(v), ϕ(u) ϕ(w), ϕ(v) ϕ(w) ľ. ϕ(z) É H ϕ(u), ϕ(v), ϕ(w)   median. H, ϕ(u) = u, ϕ(v) = v, ϕ(w) = w, ϕ(z) = z. ¾, z É u,v,w H  median., H »  median. Ç H É median.. Í«7 G 1 = (V 1,E 1 ) G 2 = (V 2,E 2 ), ¹ G 1 G 2 Ð, Ç G 1 G 2, Ü: V(G 1 G 2 ) = V 1 V 2, (u 1,u 2 ) (v 1,v 2 ) Ð ¾Ú u 1 = v 1 ¾ u 2 v 2 E 2, ½ u 1 v 1 E 1 ¾ u 2 = v 2. ÂÀ, ÔßÆ: É V(G 1 G 2 ) ± V 1 p 1 : (u,v) u; É V(G 1 G 2 ) ± V 2 p 2 : (u,v) v. 5 [11] (u,v) (x,y) É G 1 G 2 Â, d G1 G 2 ((u,v),(x,y)) = d G1 (u,x)+d G2 (v,y). Û, Ì Q É (u,v) (x,y) ľ, p 1 Q É G 1 u x ľ, p 2 Q É G 2 v y ľ. 3 median É median. Ñ G 1 G 2 É Â median G 1 G 2, u,v w É G 1 G 2 Â. ¹ z É G 1 G 2 u,v w  median. Ý z. P,Q R ÅÉ G 1 G 2 Í z u v, u w v w ľ. «5, p i z É G i p i u, p i v p i w median, ¹ i {1,2}. Ü Â u,v,w V(G 1 G 2 ), ¾ median. Ô G 1 G 2»É median, z i É G i p i u, p i v p i w  median, ¹

4 Ü i {1,2}. Þ, d G1 (p 1 u,z 1 )+d G1 (z 1,p 1 v) = d G1 (p 1 u,p 1 v), (1) d G2 (p 2 u,z 2 )+d G2 (z 2,p 2 v) = d G2 (p 2 u,p 2 v). (2) (1)+(2) ³ «3 ³ d G1 (p 1 u,z 1 )+d G1 (z 1,p 1 v)+d G2 (p 2 u,z 2 )+d G2 (z 2,p 2 v) = d G1 (p 1 u,p 1 v)+d G2 (p 2 u,p 2 v). (3) (3) ÅÅ = [d G1 (p 1 u,z 1 )+d G1 (z 1,p 1 v)]+[d G2 (p 2 u,z 2 )+d G2 (z 2,p 2 v)] = [d G1 (p 1 u,z 1 )+d G2 (p 2 u,z 2 )]+[d G1 (z 1,p 1 v)+d G2 (z 2,p 2 v)] ((p 1 u,p 2 u),(z 1,z 2 ))+d G1 G 2 ((z 1,z 2 ),(p 1 v,p 2 v)) (u,z)+d G1 G 2 (z,v), (3) Å = d G1 (p 1 u,p 1 v)+d G2 (p 2 u,p 2 v) ((p 1 u,p 2 u),(p 1 v,p 2 v)) (u,v). É d G1 G 2 (u,z)+d G1 G 2 (z,v) (u,v), z G 1 G 2 ľ u v. «, z G 1 G 2 ľ v w ľ u w., G 1 G 2 u,v w,  medianz = (z 1,z 2 ). ÇØ. 3 Û G = (V,E) É Â, G 1,G 2 É G Â. G 1,G 2 É G  (proper cover), V(G 1 ) V(G 2 ) = V(G), V(G 1 ) V(G 2 ) = V(G 0 ), «¾ V(G 1 )\V(G 0 ) V(G 2 )\V(G 0 ) Ð. G È G 1 G 2 É G Ƶ Ü G : ; 1) Ò V(G 0 ) v Ð v 1 v 2 ; 2) v 1 v V(G 1 )\V(G 0 )», v 2 v V(G 2 )\V(G 0 )» 3) Ì u,v V(G 0 ) ¾ uv E(G), u 1 v 1, u 2 v 2. G 1 G 2»É G, G É G (convex expansion). ß median quasi-median µ Á,» µ Å [1,16 17]. Mulder [1,18] G É median ¾Ú G  ÞÍ Û»³±. Ü ØÒÉÙ Û Æ. Ü median É ¾» ØÆ? Ë [1] Mulder, H.M., The Interval Function of a Graph, Amsterdam: Mathematisch Centrum, 1980.

ÒÊ : median º 5 [2] Brešar, B., Klavžar, S. and Škrekovski, R., On cube-free median graphs, Discrete Mathematics, 2007, 307(3/4/5): 345-351. [3] Klavžar, S., Mulder, H.M. and Škrekovski, R., An Euler-type formula for median graphs, Discrete Mathematics, 1998, 187(1): 255-258. [4] Brešar, B. and Klavžar, S., Maximal proper subgraphs of median graphs, Discrete Mathematics, 2007, 307(11/12): 1389-1394. [5] Mulder, H.M., n-cubes and median graphs, Journal of Graph Theory, 1980, 4(1): 107-110. [6] Mulder, H.M. and Schrijver, A., Median graphs and Helly hypergraphs, Discrete Mathematics, 1979, 25(1): 41-50. [7] Birkhoff, G. and Kiss, S.A., A ternary operation in distributive lattices, Bulletin of the American Mathematical Society, 1947, 53(8): 749-752. [8] Avann, S.P., Metric ternary distributive semi-lattices, Proceedings of the American Mathematical Society, 1961, 12(3): 407-414. [9] Nebeský, L., Median graphs, Commentationes Mathematicae Universitatis Carolinae, 1971, 12(2): 317-325. [10] Klavžar, S. and Mulder, H.M., Median graphs: characterizations, location theory and related structures, Journal of Combinatorial Mathematics and Combinatorial Computing, 1999, 30: 103-127. [11] Imrich, W. and Klavžar, S., Product Graphs: Structure and Recognition, New York: John Wiley & Sons, 2000. [12] Chung, F.R.K., Graham, R.L. and Saks, M.E., Dynamic search in graphs, In: Discrete Algorithms and Complexity(Wilf, H.S., Nozaki, A., Johnson, D.S. and Takao, N. eds.), Perspectives in Computing, Vol. 15, New York: Academic Press, 1987. [13] Imrich, W. and Klavžar S., A convexity lemma and expansion procedures for bipartite graphs, European Journal of Combinatorics, 1998, 19(6): 677-685. [14] Bandelt, H.J. and Chepoi, V.D., The algebra of metric betweenness II: Geometry and equational characterization of weakly median graphs, European Journal of Combinatorics, 2008, 29(3): 676-700. [15] West, D.B., Introduction to Graph Theory(Second Edition), New Jersey: Prentice Hall, 2001. [16] Bandelt, H.J., Mulder, H.M. and Wilkeit, E., Quasi-median graphs and algebras, Journal of Graph Theory, 1994, 18(7): 681-703. [17] Chepoi, V.D., Isometric subgraphs of Hamming graphs and d-convexity, Cybernetics and Systems Analysis, 1988, 24(1): 6-11. [18] Mulder, H.M., The structure of median graphs, Discrete Mathematics, 1978, 24(2): 197-204. Multimedian Graph and Its Properties WANG Guangfu (School of Basic Science, East China Jiaotong University, Nanchang, Jiangxi, 330013, P. R. China) Abstract: Suppose that u,v and w are three vertices of a graph G. A vertex z is called a median of u,v and w, if the vertex z simultaneously lies on shortest paths between any two of u,v and w. A graph G is called a multimedian graph, if every three vertices of G have at least one median. Some elementary properties are studied. The results show that any multimedian graph is bipartite, the retraction of a multimedian graph is also a multimedian graph, and the product graph of two multimedian graphs is a multimedian graph, too. Key words: shortest path; median; multimedian graph; product graph