Interpolation in h-version finite element spaces

Similar documents
An interpolation operator for H 1 functions on general quadrilateral and hexahedral meshes with hanging nodes

Thomas Apel 1, Ariel L. Lombardi 2 and Max Winkler 1

Anisotropic mesh refinement in polyhedral domains: error estimates with data in L 2 (Ω)

INTRODUCTION TO FINITE ELEMENT METHODS

Three remarks on anisotropic finite elements

Numerical Solutions to Partial Differential Equations

Finite Elements. Colin Cotter. January 18, Colin Cotter FEM

Constrained H 1 -interpolation on quadrilateral and hexahedral meshes with hanging nodes

Hamburger Beiträge zur Angewandten Mathematik

Numerical Solutions to Partial Differential Equations

Adaptive Finite Element Methods Lecture Notes Winter Term 2017/18. R. Verfürth. Fakultät für Mathematik, Ruhr-Universität Bochum

Numerical Solutions to Partial Differential Equations

Basic Principles of Weak Galerkin Finite Element Methods for PDEs

Priority Program 1253

Chapter 5 A priori error estimates for nonconforming finite element approximations 5.1 Strang s first lemma

Priority Program 1253

The hp-version of the boundary element method with quasi-uniform meshes in three dimensions

Scientific Computing WS 2018/2019. Lecture 15. Jürgen Fuhrmann Lecture 15 Slide 1

Scientific Computing WS 2017/2018. Lecture 18. Jürgen Fuhrmann Lecture 18 Slide 1

Hamburger Beiträge zur Angewandten Mathematik

Technische Universität Graz

An anisotropic, superconvergent nonconforming plate finite element

SUPERCONVERGENCE PROPERTIES FOR OPTIMAL CONTROL PROBLEMS DISCRETIZED BY PIECEWISE LINEAR AND DISCONTINUOUS FUNCTIONS

1 Discretizing BVP with Finite Element Methods.

Overview. A Posteriori Error Estimates for the Biharmonic Equation. Variational Formulation and Discretization. The Biharmonic Equation

On Surface Meshes Induced by Level Set Functions

Remarks on the analysis of finite element methods on a Shishkin mesh: are Scott-Zhang interpolants applicable?

Introduction to finite element exterior calculus

On angle conditions in the finite element method. Institute of Mathematics, Academy of Sciences Prague, Czech Republic

Numerical methods for PDEs FEM convergence, error estimates, piecewise polynomials

The Interior Transmission Eigenvalue Problem for Maxwell s Equations

Preconditioned space-time boundary element methods for the heat equation

Analysis of a high order trace finite element method for PDEs on level set surfaces

Mesh Grading towards Singular Points Seminar : Elliptic Problems on Non-smooth Domain

Chapter 3 Conforming Finite Element Methods 3.1 Foundations Ritz-Galerkin Method

Nedelec elements for computational electromagnetics

u = f in Ω, u = q on Γ. (1.2)

Finite Element Error Estimates in Non-Energy Norms for the Two-Dimensional Scalar Signorini Problem

On an Approximation Result for Piecewise Polynomial Functions. O. Karakashian

QUADRILATERAL H(DIV) FINITE ELEMENTS

Dynamic programming using radial basis functions and Shepard approximations

A posteriori error estimation for elliptic problems

Chapter 6 A posteriori error estimates for finite element approximations 6.1 Introduction

Error estimates for Dirichlet control problems in polygonal domains

Lecture Notes: African Institute of Mathematics Senegal, January Topic Title: A short introduction to numerical methods for elliptic PDEs

Goal-oriented error control of the iterative solution of finite element equations

Numerical methods for PDEs FEM convergence, error estimates, piecewise polynomials

Constitutive models. Constitutive model: determines P in terms of deformation

MULTIGRID PRECONDITIONING IN H(div) ON NON-CONVEX POLYGONS* Dedicated to Professor Jim Douglas, Jr. on the occasion of his seventieth birthday.

Maximum norm estimates for energy-corrected finite element method

A Priori Error Analysis for Space-Time Finite Element Discretization of Parabolic Optimal Control Problems

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 4. Subgradient

Convergence Order Studies for Elliptic Test Problems with COMSOL Multiphysics

Singularly Perturbed Partial Differential Equations

Finite Element Methods for Maxwell Equations

Graded Mesh Refinement and Error Estimates of Higher Order for DGFE-solutions of Elliptic Boundary Value Problems in Polygons

Basic Concepts of Adaptive Finite Element Methods for Elliptic Boundary Value Problems

LOW ORDER CROUZEIX-RAVIART TYPE NONCONFORMING FINITE ELEMENT METHODS FOR APPROXIMATING MAXWELL S EQUATIONS

A Higher Order Finite Element Method for Partial Differential Equations on Surfaces

A brief introduction to finite element methods

Supraconvergence of a Non-Uniform Discretisation for an Elliptic Third-Kind Boundary-Value Problem with Mixed Derivatives

MIXED FINITE ELEMENTS FOR PLATES. Ricardo G. Durán Universidad de Buenos Aires

An Iterative Substructuring Method for Mortar Nonconforming Discretization of a Fourth-Order Elliptic Problem in two dimensions

Numerical Solutions to Partial Differential Equations

Technische Universität Graz

The Banach-Tarski paradox

Applied/Numerical Analysis Qualifying Exam

The Finite Line Integration Method (FLIM) - A Fast Variant of Finite Element Modelling

On the relationship of local projection stabilization to other stabilized methods for one-dimensional advection-diffusion equations

A COLLOCATION METHOD FOR SOLVING THE EXTERIOR NEUMANN PROBLEM

Oversampling for the partition of unity parallel finite element algorithm

An exponentially graded mesh for singularly perturbed problems

ASYMPTOTICALLY EXACT A POSTERIORI ESTIMATORS FOR THE POINTWISE GRADIENT ERROR ON EACH ELEMENT IN IRREGULAR MESHES. PART II: THE PIECEWISE LINEAR CASE

DISCRETE MAXIMUM PRINCIPLES in THE FINITE ELEMENT SIMULATIONS

The Closed Form Reproducing Polynomial Particle Shape Functions for Meshfree Particle Methods

The KPP minimal speed within large drift in two dimensions

Goal-oriented error control of the iterative solution of finite element equations

Math 660-Lecture 15: Finite element spaces (I)

Finite Element Spectral Approximation with Numerical Integration for the Biharmonic Eigenvalue Problem

The Graph Realization Problem

Analysis of a DG XFEM Discretization for a Class of Two Phase Mass Transport Problems

PREPRINT 2010:25. Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method ERIK BURMAN PETER HANSBO

Higher-Order Compact Finite Element Method

PAijpam.eu NEW H 1 (Ω) CONFORMING FINITE ELEMENTS ON HEXAHEDRA

Error estimates for some quasi-interpolation operators

Priority Program 1253

Weierstraß Institut. für Angewandte Analysis und Stochastik. im Forschungsverbund Berlin e.v. Preprint ISSN

Your first day at work MATH 806 (Fall 2015)

A gradient recovery method based on an oblique projection and boundary modification

Orthogonality of hat functions in Sobolev spaces

A local-structure-preserving local discontinuous Galerkin method for the Laplace equation

Stability of Kernel Based Interpolation

Key words. optimal control, heat equation, control constraints, state constraints, finite elements, a priori error estimates

arxiv: v1 [math.na] 29 Apr 2018

We consider the Maxwell s equation with periodic coefficients

Finite Elements on Degenerate Meshes: Inverse-type Inequalities and Applications

NUMERICAL ANALYSIS OF THE CAHN-HILLIARD EQUATION AND APPROXIMATION FOR THE HELE-SHAW PROBLEM, PART II: ERROR ANALYSIS AND CONVERGENCE OF THE INTERFACE

Space-time sparse discretization of linear parabolic equations

Maximum-norm stability of the finite element Ritz projection with mixed boundary conditions

ETNA Kent State University

Transcription:

Interpolation in h-version finite element spaces Thomas Apel Institut für Mathematik und Bauinformatik Fakultät für Bauingenieur- und Vermessungswesen Universität der Bundeswehr München Chemnitzer Seminar zur Optimierung mit partiellen Differentialgleichungen Thomas Apel Interpolation in h-version finite element spaces 1 / 25

Plan of the talk 1 Interpolation operators 2 Local error estimates Local error estimates for isotropic elements Local error estimates for anisotropic elements Thomas Apel Interpolation in h-version finite element spaces 2 / 25

Plan of the talk 1 Interpolation operators 2 Local error estimates Local error estimates for isotropic elements Local error estimates for anisotropic elements Thomas Apel Interpolation in h-version finite element spaces 3 / 25

Nodal interpolation I Finite element in the sense of Ciarlet: (K, P K, N K ) K R d with non-empty interior and piecewise smooth boundary, P K is an n-dimensional linear space of functions defined on K ( shape functions ), N K = {N i,k } n i=1 is a basis of the dual space P K ( nodal variables ). Nodal basis {φ j,k } n j=1 of P K : N i,k (φ j,k ) = δ i,j, i, j = 1,..., n, Nodal interpolation operator: I K u := n N i,k (u)φ i,k. i=1 Thomas Apel Interpolation in h-version finite element spaces 4 / 25

Nodal interpolation II Nodal basis: N i,k (φ j,k ) = δ i,j, i, j = 1,..., n, (1) Nodal interpolation operator: I K u := n N i,k (u)φ i,k. i=1 Condition (1) yields I K φ j,k = n N i,k (φ j,k )φ i,k = i=1 n δ i,j φ i,k = φ j,k, j = 1,..., n, i=1 and thus I K φ = φ φ P K. (2) Thomas Apel Interpolation in h-version finite element spaces 5 / 25

Assumption: existence of a reference element There is a reference element ( ˆK, P ˆK, N ˆK ) with For each K T there is a bijective mapping with K = F K ( ˆK ), u P K iff û := u F K P ˆK, and F K : ˆx R d x = F K (ˆx) R d N i,k (u) = N i, ˆK (u F K ), i = 1,..., n, for all u for which the functionals are well defined. Advantage: (I K u) F K = I ˆK û allows to estimate the error on the reference element ˆK and to transform the estimates to K. Thomas Apel Interpolation in h-version finite element spaces 6 / 25

Typical mappings If possible, an affine mapping is chosen, F K (ˆx) = Aˆx + a with A R d d, a R d, otherwise the isoparametric mapping is used, F K (ˆx) = m a i ψ i, (ˆx), ˆK i=1 where the shape of K is determined by the positions of nodes a i R d and shape functions ψ i, ˆK with ψ i, ˆK (a j ) = δ i,j. Thomas Apel Interpolation in h-version finite element spaces 7 / 25

Global nodal interpolation operator I Finite element space via finite element mesh T : FE T := {v L 2 (Ω) : v K := v K P K K T and v K1, v K2 share the same nodal values on K 1 K 2 }, (3) Global interpolation operator I T : (I T u) K = I K (u K ) K T. Thomas Apel Interpolation in h-version finite element spaces 8 / 25

Global nodal interpolation operator II The dimension of FE T is denoted by N +. The set N T,+ = {N i } N+ i=1 is the union of all N K, K T, where common nodal variables of adjacent elements are counted only once. The global basis {φ j } N+ j=1 FE T satisfies N i (φ j ) = δ i,j, i, j = 1,..., N +. Global interpolation operator I T : N + I T u = N i (u)φ i. (4) i=1 Thomas Apel Interpolation in h-version finite element spaces 9 / 25

Quasi-interpolation I T acts only on sufficiently regular functions such that all functionals N i are well defined. The remedy is the definition of a quasi-interpolation operator Q T u = N N i (Π i u)φ i, (5) i=1 that means, we replace the function u in (4) by regularized functions Π i u. The index i indicates that we may use for each functional N i a different, locally defined averaging operator Π i. Thomas Apel Interpolation in h-version finite element spaces 10 / 25

Plan of the talk 1 Interpolation operators 2 Local error estimates Local error estimates for isotropic elements Local error estimates for anisotropic elements Thomas Apel Interpolation in h-version finite element spaces 11 / 25

Isotropic and anisotropic elements h K... diameter of K, ϱ K... diameter of the largest ball inscribed in K, γ K = h K /ϱ K... aspect ratio of K. Isotropic elements have moderate aspect ratio: easy to achieve in mesh generation, numerical analysis at moderate technical expense. Anisotropic elements have large aspect ratio. approximation of anisotropic features in functions, constants must be uniformly bounded in the aspect ratio. Thomas Apel Interpolation in h-version finite element spaces 12 / 25

Plan of the talk 1 Interpolation operators 2 Local error estimates Local error estimates for isotropic elements Local error estimates for anisotropic elements Thomas Apel Interpolation in h-version finite element spaces 13 / 25

Result Let ( ˆK, P ˆK, N ˆK ) be a reference element with P l 1 P ˆK, (6) N ˆK (C s ( ˆK )). (7) Assume that (K, P K, N K ) is affine equivalent to ( ˆK, P ˆK, N ˆK ). Let u W l,p (K ) with l N, p [1, ], such that W l,p ( ˆK ) C s ( ˆK ), i.e. l > s + d p, (8) and let m {0,..., l 1} and q [1, ] be such that Then the estimate holds. W l,p ( ˆK ) W m,q ( ˆK ). (9) u I K u W m,q (K ) C K 1/q 1/p h l K ϱ m K u W l,p (K ) (10) Thomas Apel Interpolation in h-version finite element spaces 14 / 25

Transformation to reference element Let F K (ˆx) = Aˆx + a be an affine mapping with K = F K ( ˆK ). If û W m,q ( ˆK ) then u = û F 1 K W m,q (K ) and u W m,q (K ) C K 1/q ϱ m K û W m,q ( ˆK ). (11) If u W l,p (K ) then û = u F K W l,p ( ˆK ) and û W l,p ( ˆK ) C K 1/p h l K u W l,p (K ). (12) The constants depend on the shape and size of ˆK. Thomas Apel Interpolation in h-version finite element spaces 15 / 25

Error estimate on the reference element Let ( ˆK, P ˆK, N ˆK ) be a reference element with P l 1 P ˆK, N ˆK (C s ( ˆK )). Let û W l,p ( ˆK ) with l N, p [1, ], such that W l,p ( ˆK ) C s ( ˆK ), i.e. l > s + d p, and let m {0,..., l 1} and q [1, ] be such that Then the estimate W l,p ( ˆK ) W m,q ( ˆK ). holds. û I ˆK û W m,q ( ˆK ) C û W l,p ( ˆK ) Thomas Apel Interpolation in h-version finite element spaces 16 / 25

Boundedness of the interpolation operator From (7) and (8) we obtain N i, ˆK (ˆv) C ˆv C s ( ˆK ) C ˆv W l,p ( ˆK ) and thus with φ i, ˆK W m,q ( ˆK C the boundedness of the interpolation ) operator, n I ˆK ˆv W m,q ( ˆK = ) N i, (ˆv)φ ˆK i, ˆK i=1 W m,q ( ˆK ) n N i, (ˆv) φ ˆK i, ˆK W m,q ( ˆK ) i=1 C ˆv W l,p ( ˆK ) where the constant depends not only on ˆK, s, m, q, l, and p, but also on N ˆK. Thomas Apel Interpolation in h-version finite element spaces 17 / 25

The Deny-Lions lemma (1953/54) Let the domain G R d, diam G = 1, be star-shaped with respect to a ball B G, and let l 1 be an integer and p [1, ] real. For each u W l,p (G) there is a w P l 1 such that u w W l,p (G) C u W l,p (G), (13) where the constant C depends only on d, l, and γ := diam G/diam B = 1/diam B. Thomas Apel Interpolation in h-version finite element spaces 18 / 25

Final proof Combining these estimates, choosing ŵ P l 1 according to the Deny-Lions Lemma, and using ŵ = I ˆK ŵ due to (6), we get û I ˆK û W m,q ( ˆK ) = (û ŵ) I ˆK (û ŵ) W m,q ( ˆK ) C û ŵ W l,p ( ˆK ) C û W l,p ( ˆK ). (14) Thomas Apel Interpolation in h-version finite element spaces 19 / 25

Plan of the talk 1 Interpolation operators 2 Local error estimates Local error estimates for isotropic elements Local error estimates for anisotropic elements Thomas Apel Interpolation in h-version finite element spaces 20 / 25

Introduction Anisotropic elements are characterized by a large aspect ratio γ K := h K /ϱ K. The estimate can be rewritten as u I K u W m,q (K ) C K 1/q 1/p h l K ϱ m K u W l,p (K ) u I K u W m,q (K ) C K 1/q 1/p h l m K γ m K u W l,p (K ), that means that the quality of this estimate deteriorates if m 1 and γ K 1. We wish to have at least an estimate of the form u I K u W m,q (K ) C K 1/q 1/p h l m K u W l,p (K ). Thomas Apel Interpolation in h-version finite element spaces 21 / 25

Negative example Consider the triangle K with the nodes ( h, 0), (h, 0), and (0, εh), and interpolate the function u(x 1, x 2 ) = x1 2 in the vertices with polynomials of degree one. Then I K u = h 2 ε 1 hx 2 and u I K u W 1,2 (K ) u W 2,2 (K ) ( 1 = h 6 + 1 ) 1/2 4 ε 2 = c ε h with c ε for ε 0 and c ε Cγ K. Thomas Apel Interpolation in h-version finite element spaces 22 / 25

Positive example Consider now the triangle with the nodes (0, 0), (h, 0), and (0, εh), and interpolate again the function u(x 1, x 2 ) = x1 2 in P 1. We get I K u = hx 1 and u I K u W 1,2 (K ) = 1 h u W 2,2 (K ) 12 where the constant is independent of ε. The desired estimate is valid although the element is anisotropic for small ε. Wir brauchen die Maximalwinkelbedingung! Thomas Apel Interpolation in h-version finite element spaces 23 / 25

Consideration of the reference element The estimate û I ˆK û W 1,2 ( ˆK ) C û W 2,2 ( ˆK ) can be transformed via x 1 = hˆx 1, x 2 = εhˆx 2 to the element K from the last example. We obtain ( (u I h K u) 2 x 1 ( Ch 2 2 u x1 2 L 2 (K ) 2 L 2 (K ) + ε 2 (u I K u) x 2 + ε 2 2 2 u x 1 x 2 2 L 2 (K ) L 2 (K ) The bound for the x 2 -derivative depends on ε 1. ) 1/2 + ε 4 2 u x 2 2 2 L 2 (K ) ) 1/2 Thomas Apel Interpolation in h-version finite element spaces 24 / 25

Consequence We need to prove on the reference element the sharper estimate ( (û I ˆK û) 2 û ˆx C 2 L 2 ( ˆK ) ˆx 1 ˆx 2 2 L 2 ( ˆK ) + 2 û ˆx 2 2 2 L 2 ( ˆK ) ) 1/2. Simple proof: Set ˆv = (û I ˆK û) ˆx 2 Then the desired estimate reduces to ˆv L 2 ( ˆK ) C ˆv W 1,2 ( ˆK ), which is valid since 1 0 v(0, x 2) dx 2 = 0. Thomas Apel Interpolation in h-version finite element spaces 25 / 25