Introduction to the Yang-Baxter Equation with Open Problems

Similar documents
The Yang-Baxter Equation, (Quantum) Computers and Unifying Theories

SOME RESULTS ON THE YANG-BAXTER EQUATIONS AND APPLICATIONS

arxiv: v3 [math.ho] 16 Jan 2014

Hopf Algebras of Dimension p 2

Research Statement. Seung-Moon Hong Department of Mathematics and Statistics University of Toledo

PUBLICAŢII. 3. C. Băeţica, S. Dăscălescu, Probleme de algebră, Editura Universităţii

Groups, Group rings and the Yang-Baxter equation. International Workshop Groups, Rings, Lie and Hopf Algebras.III

Radical Rings, Quantum Groups, and Theory of the Unknot

Past Research Sarah Witherspoon

IVAN LOSEV. KEK 1 = q 2 E, KF K 1 = q 2 F, EF F E = K K 1 q q 1.

THE QUANTUM DOUBLE AS A HOPF ALGEBRA

Quantizations and classical non-commutative non-associative algebras

Lectures on Quantum Groups

Libin Li s Curriculum Vitae

ISSN Article. Yang Baxter Equations, Computational Methods and Applications

A note on standard equivalences

On Extensions over Semigroups and Applications

Vertex algebras, chiral algebras, and factorisation algebras

SELF-DUAL HOPF QUIVERS

ON JORDAN ALGEBRAS AND UNIFICATION THEORIES

Hopf Algebras and Noncommutative Algebra

HOM-TENSOR CATEGORIES. Paul T. Schrader. A Dissertation

PROJECTIVITY AND FLATNESS OVER THE ENDOMORPHISM RING OF A FINITELY GENERATED COMODULE

On set-theoretic solutions to the Yang-Baxter equation. Victoria LEBED (Nantes) with Leandro VENDRAMIN (Buenos Aires)

arxiv: v1 [math.ra] 11 Apr 2016

Quantum Groups and Link Invariants

arxiv:math/ v2 [math.qa] 18 Nov 2003

A Class of Vertex Transitive Graphs

Quantum Groups. Jesse Frohlich. September 18, 2018

A QUATERNIONIC BRAID REPRESENTATION (AFTER GOLDSCHMIDT AND JONES)

A CHARACTERIZATION OF THE MOONSHINE VERTEX OPERATOR ALGEBRA BY MEANS OF VIRASORO FRAMES. 1. Introduction

Flat hierarchy. Vassily O. Manturov (Moscow)

Towards a modular functor from quantum higher Teichmüller theory

RINGS IN POST ALGEBRAS. 1. Introduction

Universal K-matrices via quantum symmetric pairs

Thus we get. ρj. Nρj i = δ D(i),j.

Borcherds proof of the moonshine conjecture

The Maschke Theorem for L-R-smash Products

On Transcendental Numbers: New Results and a Little History

Hopf Algebras. Zajj Daugherty. March 6, 2012

Topological Quantum Field Theory in two dimensions. Daniel Murfet

Dieudonné modules, part I: a study of primitively generated Hopf algebras

A quantum double construction in Rel

Dual Adjunctions Between Algebras and Coalgebras

Lecture 21 - Jordan Algebras and Projective Spaces

arxiv: v1 [math.qa] 14 Nov 2013

A NOTE ON TENSOR CATEGORIES OF LIE TYPE E 9

On surface-knots with triple point number at most three

SOME EXAMPLES IN MODULES

REMARKS ON REFLEXIVE MODULES, COVERS, AND ENVELOPES

ON POINTED HOPF ALGEBRAS OF DIMENSION 2n

The Variety of 7-Dimensional 2-Step Nilpotent Lie Algebras

Lecture Notes in Physics

Recollement of Grothendieck categories. Applications to schemes

Unexpected facets of the Yang-Baxter equation

Research Article New Partition Theoretic Interpretations of Rogers-Ramanujan Identities

NORMAL SMASH PRODUCTS

Non-Commutative Covariant Differential Calculi on Quantum Spaces and Quantum Groups

Is the Universe Uniquely Determined by Invariance Under Quantisation?

THE CLASSICAL HOM-YANG-BAXTER EQUATION AND HOM-LIE BIALGEBRAS. Donald Yau

CURRICULUM VITAE. 1. Professor Frederick R. Cohen, Rochester University, NY, U. S. A.

Sheet 11. PD Dr. Ralf Holtkamp Prof. Dr. C. Schweigert Hopf algebras Winter term 2014/2015. Algebra and Number Theory Mathematics department

Finite generation of the cohomology rings of some pointed Hopf algebras

Cohomology of Hopf Algebras

TROPICAL SCHEME THEORY

List of topics for the preliminary exam in algebra

Representations of algebraic groups and their Lie algebras Jens Carsten Jantzen Lecture III

arxiv: v1 [math.ra] 19 Sep 2011

Research Article Minor Prime Factorization for n-d Polynomial Matrices over Arbitrary Coefficient Field

SELF-EQUIVALENCES OF THE DERIVED CATEGORY OF BRAUER TREE ALGEBRAS WITH EXCEPTIONAL VERTEX

ON THE MEASURABILITY OF FUNCTIONS WITH RESPECT TO CERTAIN CLASSES OF MEASURES

Solving the Yang-Baxter Matrix Equation

Research Article Morita Equivalence of Brandt Semigroup Algebras

Deformation of the `embedding'

REVIEW. Evaluation of the Applicants

SCHUR-WEYL DUALITY FOR QUANTUM GROUPS

Local Moves and Gordian Complexes, II

Finitely presented algebras defined by homogeneous semigroup relations

arxiv:math/ v1 [math.gt] 2 Nov 1999

CV of Dr. Takeo Kojima

P.M. Cohn. Basic Algebra. Groups, Rings and Fields. m Springer

arxiv: v1 [math.ra] 3 Oct 2009

Generalized Cayley Digraphs

Remarks on Chern-Simons Theory. Dan Freed University of Texas at Austin

LIE CENTRAL TRIPLE RACKS. Guy Roger Biyogmam

A Z N -graded generalization of the Witt algebra

Institut für Mathematik, Universität Wien, Strudlhofgasse 4, A-1090 Wien, Austria.

Do Super Cats Make Odd Knots?

Renormalization: An Attack on Critical Exponents

INTRODUCTION TO QUANTUM LIE ALGEBRAS

Finite groups determined by an inequality of the orders of their elements

Defects in topological field theory: from categorical tools to applications in physics and representation theory

Depth of some square free monomial ideals

arxiv:math/ v2 [math.ac] 25 Sep 2006

Random Involutions and the Distinct Prime Divisor Function

Cohen-Fischman-Westreich s Double Centralizer Theorem for Almost-Triangular Hopf Algebras

1 Fields and vector spaces

Polynomials in knot theory. Rama Mishra. January 10, 2012

Three Descriptions of the Cohomology of Bun G (X) (Lecture 4)

Relative Hopf Modules in the Braided Monoidal Category L M 1

Transcription:

Axioms 2012, 1, 33-37; doi:10.3390/axioms1010033 Communication OPEN ACCESS axioms ISSN 2075-1680 www.mdpi.com/journal/axioms/ Introduction to the Yang-Baxter Equation with Open Problems Florin Nichita Institute of Mathematics of the Romanian Academy, P.O. Box 1-764, Bucharest, Romania; E-Mail: Florin.Nichita@imar.ro; Tel.: +40-213-196-506; Fax: +40-213-196-505 Received: 29 March 2012; in revised form: 17 April 2012 / Accepted: 18 April 2012 / Published: 26 April 2012 Abstract: The Yang-Baxter equation first appeared in theoretical physics, in a paper by the Nobel laureate C. N. Yang, and in statistical mechanics, in R. J. Baxter s work. Later, it turned out that this equation plays a crucial role in: quantum groups, knot theory, braided categories, analysis of integrable systems, quantum mechanics, non-commutative descent theory, quantum computing, non-commutative geometry, etc. Many scientists have found solutions for the Yang-Baxter equation, obtaining qualitative results (using the axioms of various algebraic structures) or quantitative results (usually using computer calculations). However, the full classification of its solutions remains an open problem. In this paper, we present the (set-theoretical) Yang-Baxter equation, we sketch the proof of a new theorem, we state some problems, and discuss about directions for future research. Keywords: Yang-Baxter equation; set-theoretical Yang-Baxter equation; algebra structures; Hopf algebras; quantum groups; relations on sets 1. Introduction The Yang-Baxter equation first appeared in theoretical physics, in a paper by Yang [1], and in the work of Baxter in Statistical Mechanics [2,3]. It turned out to be one of the basic equations in mathematical physics, and more precisely for introducing the theory of quantum groups. It also plays a crucial role in: Knot theory, braided categories, non-commutative descent theory, quantum computing, non-commutative geometry, etc. Many scientists have used the axioms of various algebraic structures (quasi-triangular Hopf algebras, Yetter-Drinfeld categories, quandles, group actions, Lie (super)algebras, (co)algebra structures, Jordan triples, Boolean algebras, relations on sets, etc.) or computer calculations (and Grobner bases) in order to produce solutions for the Yang-Baxter equation. However, the full classification of its solutions remains an open problem. At present the study of

Axioms 2012, 1 34 solutions of the Yang-Baxter equation attracts the attention of a broad circle of scientists (including mathematicians). Some suggested references related to our paper could be References [4,5,6,7,8], etc. In this paper we present qualitative results concerning the (set-theoretical) Yang-Baxter equation. We first consider the solutions arising from relations. For any relation on a given set we construct a map. We give necessary and sufficient conditions for this map to be a solution to the set-theoretical Yang-Baxter equation. In Section 3 we give other examples of solutions for the Yang-Baxter equation, we present some of their applications, and we sketch the proof of a theorem which resembles Kaplansky s tenth conjecture about the classification of finite dimensional Hopf algebras. Finally, we conclude with a short section about directions for future research. 2. Preliminaries Let V be a vector space over a field k, which is algebraically closed and of characteristic zero. Definition. A linear automorphism R of V V is a solution of the Yang-Baxter equation (sometimes called the braid relation), if the equality (R id) o (id R) o (R id) = (id R) o (R id) o (id R) (1) holds in the automorphism group of V V V. Definition. R is a solution of the quantum Yang-Baxter equation (QYBE) if R12 R13 R23 R23 R13 R12 (2) where R ij means R acting on the i-th and j-th component. Let T be the twist map, T (v w) w v. Then R satisfies (1) if and only if R T satisfies (2) if and only if T R satisfies (2). Finding all solutions of the Yang-Baxter equation is a difficult task far from being resolved. Nevertheless many solutions of these equations have been found during the last 30 years and the related algebraic structures have been studied. Reference [9] posed the problem of studying set-theoretical solutions of the Yang-Baxter equation. Specifically, we consider a set X and S: X X X X, and we consider the equation (1) as an equality of maps from X X X to X X X: ( S id) ( id S) ( S id) ( id S) ( S id) ( id S) (3) We call (3) the set-theoretical Yang-Baxter equation. It is obvious that from a solution to (3), one could obtain a solution to (1), by considering the vector space generated by the set X, and linearly extending the map S. A lesser known example of solutions for the set-theoretical Yang-Baxter equation is the following. Given a binary relation R on X (i.e., R is a subset of X X), we define a map S: X X X X S(u, v) = (u, v) if (u, v) R (v, u) if (u, v) R (4)

Axioms 2012, 1 35 Theorem 1. (D. Hobby and F. F. Nichita, [10]). Assume R is a reflexive relation. The function S derived from the relation R satisfies (3) if and only if R R op is an equivalence relation on X and the complement relation of R is a strict partial order on each class of R R op (where R op is the opposite relation of R). Remark. The above theorem generalizes the twist map if R is an equivalence relation. For a vector space, if we give an equivalence relation on a basis of the space, we can construct a generalization of the twist map using formula (4). Remark. [10] compared the above solutions with the solutions from Boolean algebras. More precisely, the function ( ab, ) ( a ba, b) is a solution for the set-theoretical Yang-Baxter equation. 3. Main Results and Discussion Let A be a k-algebra, and x, y k-{0}. We define the k-linear map A : A A A A, ( a b) xab 1 y1 ab xa b. Then, according to [11], φ is an invertible solution to (1). Such an operator is called a Yang-Baxter operator, or, simply, a YB operator. Remarks. (i) The above operator is connected to the theory of entwining structures and corings (see [12]). (ii) Using the method of [13], the operator φ leads to the Alexander polynomial of knots (see [14]). (iii) Other generalizations and properties for φ were presented in [15]: solutions for the initial Yang s equation (see [1]) and a possible vertex model in statistical mechanics. Definition. Two YB operators (V, R) and (W, Q) are called isomorphic if there exists such that Q ( f f) ( f f) R. f : V W Remark. Reference [11] showed that for non-isomorphic algebra structures, the associated YB operators are non-isomorphic. It follows that, for any finite dimension vector space, the number of non-isomorphic classes of algebras structures on that vector space is less than the number of nonisomorphic YB operators on the same vector space. Conjecture. The YB operators from algebra structures can be obtained from some kind of universal R-matrix (a universal R-matrix is related to the quasi-triangular structures presented in [6]). The Kaplansky s tenth conjecture about the classification of finite dimensional Hopf algebras was proved in negative by references [16 18]. We present a similar result for Yang-Baxter operators below. Theorem 2. There exist finite dimensional vector spaces for which there are infinitely many non-isomorphic Yang-Baxter operators. Proof. The idea of the proof is shown below. The omitted technical details will be included in another paper. We take an arbitrary Hopf algebra from [17]. (We know that there are infinitely many non-isomorphic finite dimensional Hopf algebras.) Because this Hopf algebra can be viewed as an entwining structure, we associate a WXZ system as in [12]. But X is invertible, since its inverse could

Axioms 2012, 1 36 be obtained by using the antipode of this arbitrary Hopf algebra. We now construct a new Yang-Baxter operator using a remark from [12], because X is invertible: H H R : ( H H ) ( H H ) ( H H ) ( H H ), R. X T According to [11], for non-isomorphic algebra (respective coalgebras) structures, ( resp. ) are non-isomorphic operators. It follows that for non-isomorphic Hopf algebras we obtain non-isomorphic YB operators. 4. Conclusions and Directions for Future Research The author of [19] constructed solutions to the Yang-Baxter equation from algebra and coalgebra structures showing that the Yang-Baxter equation captures the fundamental piece of information encapsulated in the algebra and coalgebra structures. The solutions for the set-theoretical Yang-Baxter equation presented in Section 2 were shown in an attempt to relate the equivalence relations and the order relations. Some directions for future research are: Finding the smallest dimension of a vector space for which Theorem 2 holds, and the study of solutions derived from relations for other non-linear equations from Quantum Group Theory. For example, these equations might be: Pentagonal equation, Long equation, Frobenius-separability equation (see [4]) or Yang-Baxter systems (which were introduced in [20]). Acknowledgments The author would like to thank Sorin Dascalescu, Tomasz Brzezinski and the referees. References and Notes 1. Yang, C.N. Some exact results for the many-body problem in one dimension with repulsive delta-function interaction. Phys. Rev. Lett. 1967, 19, 1312 1315. 2. Baxter, R.J. Partition function for the eight-vertex lattice model. Ann. Phys. 1972, 70, 193 228. 3. Baxter, R.J. Exactly Solved Models in Statistical Mechanics; Academic Press: London, UK, 1982. 4. Caenepeel, S.; Militaru, G.; Zhu, S. Frobenius and separable functors for generalized Hopf modules and Nonlinear equations. In Lecture Notes in Mathematics 1787; Springer: Berlin, Germany, 2002. 5. Gateva-Ivanova, T. A combinatorial approach to the set-theoretical solutions of the Yang-Baxter equation. J. Math. Phys. 2004, 45, 3828 3859. 6. Kassel, C. Quantum groups. In Graduate Texts in Mathematics; Springer Verlag: Berlin, Germany, 1995. 7. Lambe, L.; Radford, D. Introduction to the quantum Yang-Baxter equation and quantum groups: An algebraic approach. In Mathematics and Its Applications 423; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1997. 8. Nichita, F.F. Non-Linear Equations, Quantum Groups, and Duality Theorems; VDM Verlag: Saarbrücken, Germany, 2009.

Axioms 2012, 1 37 9. Drinfeld, V.G. On some unsolved problems in quantum group theory. In Quantum Groups, Lecture Notes in Mathematics, Kulish, P.P., Ed.; Springer-Verlag: Berlin, Germany, 1992; Volume 1510, pp. 1 8. 10. Hobby, D.; Nichita, F.F. Solutions of the set-theoretical Yang-Baxter equation derived from relations. Acta Universitatis Apulensis, 2012, in press. 11. Dascalescu, S.; Nichita, F.F. Yang-Baxter operators arising from (co)algebra structures. Commun. Algebra 1999, 27, 5833 5845. 12. Brzezinski, T.; Nichita, F.F. Yang-baxter systems and entwining structures. Commun. Algebra 2005, 33, 1083 1093. 13. Turaev, V. The Yang-Baxter equation and invariants of links. Invent. Math. 1988, 92, 527 553. 14. Massuyeau, G.; Nichita, F.F. Yang-Baxter operators arising from algebra structures and the Alexander polynomial of knots. Commun. Algebra 2005, 33, 2375 2385. 15. Nichita, F.F.; Parashar, D. Spectral-parameter dependent Yang-Baxter operators and Yang-Baxter systems from algebra structures. Commun. Algebra 2006, 34, 2713 2726. 16. Andruskiewitsch, N.; Schneider, H.J. Lifting of quantum linear spaces and pointed Hopf algebras of order p3. J. Algebra 1998, 209, 658 691. 17. Beattie, M.; Dascalescu, S.; Grünenfelder, L. On the number of types of finite dimensional Hopf algebras. Invent. Math. 1999, 136, 1 7. 18. Gelaki, S. Pointed Hopf algebras and Kaplansky s 10-th conjecture. J. Algebra 1998, 209, 635 657. 19. Nichita, F.F. Self-inverse Yang-Baxter operators from (co)algebra structures. J. Algebra 1999, 218, 738 759. 20. Hlavaty, L.; Snobl, L. Solutions of a Yang-Baxter system. 1998, arxiv:math.qa/9811016v2. arxiv.org e-print archive. http://arxiv.org/pdf/math/9811016.pdf (accessed on 24 April 2012). 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).