Induced subgraphs of graphs with large chromatic number. IX. Rainbow paths

Similar documents
Induced subgraphs of graphs with large chromatic number. VIII. Long odd holes

Induced subgraphs of graphs with large chromatic number. III. Long holes

Induced subgraphs of graphs with large chromatic number. VIII. Long odd holes

Tree-chromatic number

Induced subgraphs of graphs with large chromatic number. I. Odd holes

K 4 -free graphs with no odd holes

Induced subgraphs of graphs with large chromatic number. VI. Banana trees

Near-domination in graphs

Induced subgraphs of graphs with large chromatic number. V. Chandeliers and strings

Induced subgraphs of graphs with large chromatic number. V. Chandeliers and strings

Triangle-free graphs that do not contain an induced subdivision of K 4 are 3-colorable

Large Cliques and Stable Sets in Undirected Graphs

Paths with two blocks in n-chromatic digraphs

On (δ, χ)-bounded families of graphs

Triangle-free graphs with no six-vertex induced path

The edge-density for K 2,t minors

INDUCED CYCLES AND CHROMATIC NUMBER

Disjoint paths in tournaments

Graph coloring, perfect graphs

An approximate version of Hadwiger s conjecture for claw-free graphs

Tournaments and colouring

ARRANGEABILITY AND CLIQUE SUBDIVISIONS. Department of Mathematics and Computer Science Emory University Atlanta, GA and

Perfect divisibility and 2-divisibility

On DP-coloring of graphs and multigraphs

Coloring square-free Berge graphs

UNAVOIDABLE INDUCED SUBGRAPHS IN LARGE GRAPHS WITH NO HOMOGENEOUS SETS

GIRTH SIX CUBIC GRAPHS HAVE PETERSEN MINORS

Paths with two blocks in n-chromatic digraphs

A well-quasi-order for tournaments

Tournaments and colouring

Cycle lengths in sparse graphs

Even Pairs and Prism Corners in Square-Free Berge Graphs

Disjoint paths in unions of tournaments

Rao s degree sequence conjecture

Graph Classes and Ramsey Numbers

Domination in tournaments

R(p, k) = the near regular complete k-partite graph of order p. Let p = sk+r, where s and r are positive integers such that 0 r < k.

arxiv: v1 [math.co] 17 Jul 2017

Dirac s Map-Color Theorem for Choosability

Coloring. Basics. A k-coloring of a loopless graph G is a function f : V (G) S where S = k (often S = [k]).

The structure of bull-free graphs I three-edge-paths with centers and anticenters

Wheel-free planar graphs

Tree-width and planar minors

SUB-EXPONENTIALLY MANY 3-COLORINGS OF TRIANGLE-FREE PLANAR GRAPHS

Claw-free Graphs. III. Sparse decomposition

A note on Gallai-Ramsey number of even wheels

Berge Trigraphs. Maria Chudnovsky 1 Princeton University, Princeton NJ March 15, 2004; revised December 2, Research Fellow.

CLIQUES IN THE UNION OF GRAPHS

The Erdös-Hajnal Conjecture A Survey

Cographs; chordal graphs and tree decompositions

THE EXTREMAL FUNCTIONS FOR TRIANGLE-FREE GRAPHS WITH EXCLUDED MINORS 1

FIVE-LIST-COLORING GRAPHS ON SURFACES I. TWO LISTS OF SIZE TWO IN PLANAR GRAPHS

4-coloring P 6 -free graphs with no induced 5-cycles

arxiv: v2 [math.co] 19 Jun 2018

Minimal Paths and Cycles in Set Systems

1 Notation. 2 Sergey Norin OPEN PROBLEMS

Large subgraphs in rainbow-triangle free colorings. Adam Zsolt Wagner

Coloring graphs with forbidden induced subgraphs

A counterexample to a conjecture of Schwartz

Claws in digraphs. Amine El Sahili and Mekkia Kouider

Sergey Norin Department of Mathematics and Statistics McGill University Montreal, Quebec H3A 2K6, Canada. and

On the Turán number of forests

UNIQUENESS OF HIGHLY REPRESENTATIVE SURFACE EMBEDDINGS

Supereulerian planar graphs

GRAPH MINORS AND HADWIGER S CONJECTURE

Multi-coloring and Mycielski s construction

Even Cycles in Hypergraphs.

A Short Proof of the Wonderful Lemma

MINIMALLY NON-PFAFFIAN GRAPHS

arxiv:math/ v1 [math.co] 17 Apr 2002

Fine structure of 4-critical triangle-free graphs III. General surfaces

Chromatic Ramsey number of acyclic hypergraphs

Ramsey-type problem for an almost monochromatic K 4

Acyclic subgraphs with high chromatic number

Recognizing Berge Graphs

On Some Three-Color Ramsey Numbers for Paths

Partitioning 2-edge-colored Ore-type graphs by monochromatic cycles

Destroying non-complete regular components in graph partitions

An Ore-type Condition for Cyclability

List-coloring the Square of a Subcubic Graph

Edge-colouring seven-regular planar graphs

and critical partial Latin squares.

Choice Numbers of Multi-Bridge Graphs

The strong perfect graph theorem

Partial characterizations of clique-perfect graphs I: subclasses of claw-free graphs

On a list-coloring problem

Even pairs in Artemis graphs. Irena Rusu. L.I.F.O., Université d Orléans, bât. 3IA, B.P. 6759, Orléans-cedex 2, France

Spanning Paths in Infinite Planar Graphs

Gallai s Conjecture For Graphs of Girth at Least Four. Peter Harding and Sean McGuinness Thompson Rivers University

Graph Minor Theory. Sergey Norin. March 13, Abstract Lecture notes for the topics course on Graph Minor theory. Winter 2017.

Probabilistic Method. Benny Sudakov. Princeton University

On colorability of graphs with forbidden minors along paths and circuits

Disjoint Subgraphs in Sparse Graphs 1

A counterexample to a conjecture of Schwartz

12.1 The Achromatic Number of a Graph

Quasi-parity and perfect graphs. Irena Rusu. L.R.I., U.R.A. 410 du C.N.R.S., bât. 490, Orsay-cedex, France

EXCLUDING SUBDIVISIONS OF INFINITE CLIQUES. Neil Robertson* Department of Mathematics Ohio State University 231 W. 18th Ave. Columbus, Ohio 43210, USA

All Ramsey numbers for brooms in graphs

Extremal Graphs Having No Stable Cutsets

On the chromatic number and independence number of hypergraph products

Transcription:

Induced subgraphs of graphs with large chromatic number. IX. Rainbow paths Alex Scott Oxford University, Oxford, UK Paul Seymour 1 Princeton University, Princeton, NJ 08544, USA January 20, 2017; revised February 1, 2017 1 Supported by ONR grant N00014-14-1-0084 and NSF grant DMS-1265563.

Abstract We prove that for all integers κ, s 0 there exists c with the following property. Let G be a graph with clique number at most κ and chromatic number more than c. Then for every vertex-colouring (not necessarily optimal) of G, some induced subgraph of G is an s-vertex path, and all its vertices have different colours. This extends a recent result of Gyárfás and Sárközy [6], who proved the same for graphs G with κ = 2 and girth at least five.

1 Introduction Graphs in this paper are finite and have no loops or multiple edges. We denote the chromatic number and the clique number of G by χ(g), ω(g) respectively. If X V (G), the subgraph of G induced on X is denoted by G[X]. A colouring of a graph G is a map φ from V (G) to the set of positive integers such that φ(u) φ(v) for all adjacent u, v; and a coloured graph is a pair (G, φ) where G is a graph and φ is a colouring of G. Given a coloured graph (G, φ), a subgraph H of G is said to be rainbow if φ(u) φ(v) for all distinct u, v V (H). The following interesting conjecture on rainbow paths is due to Aravind (see [1]). 1.1 Conjecture: Let G be a triangle-free graph. Then for every colouring (not necessarily optimal) of G, there is a rainbow induced subgraph isomorphic to a χ(g)-vertex path. This remains open, but some special cases have been proved. For instance, if we just ask for an induced path (not necessarily rainbow), then it holds by a theorem of Gyárfás [5]. Or if we just ask for a rainbow path (not necessarily induced), then it holds by the Gallai-Roy theorem [3, 8], even without the bound on clique number: if we direct every edge of G towards the end with higher colour, then every directed path of the digraph obtained is rainbow. The conjecture also holds if the girth of G equals its chromatic number, by a result of Babu, Basavaraju, Chandran and Francis [1]: in particular, if (G, φ) is a triangle-free coloured graph with χ(g) 4, then some induced four-vertex path of G is rainbow. A recent paper of Gyárfás and Sárközy [6] proves the following result. 1.2 For all s 1 there exists c such that the following holds. Let G be a graph with girth at least 5 and χ(g) > c. Then for every colouring of G there is a rainbow induced subgraph isomorphic to an s-vertex path. In this paper, we extend this theorem in two ways: we remove the girth restriction, and allow a general bound on clique size. Here is our result. 1.3 For all κ, s 1 there exists c such that for every coloured graph (G, φ) with ω(g) κ and χ(g) > c, there is a rainbow induced subgraph of G isomorphic to an s-vertex path. We prove this in the next section, and include some further discussion in the conclusion. 2 The proof We will need the following theorem of Galvin, Rival and Sands [4]: 2.1 For all integers s 0 there exists r 0 with the following property. For every graph G that has a path with at least r vertices, either some induced path of G has at least s vertices, or some subgraph of G is isomorphic to the complete bipartite graph K s,s. A grading in a graph G is a sequence (W 1,..., W n ) of subsets of V (G), pairwise disjoint and with union V (G). If w 0 is such that χ(g[w i ]) w for 1 i n we say the grading is w-colourable. We say that u V (G) is earlier than v V (G), and v is later than u (with respect to some grading (W 1,..., W n )) if u W i and v W j where i < j. We need the following lemma: 1

2.2 Let s 0 be an integer, and let r be as in 2.1. Let w 0, and let (G, φ) be a coloured graph with χ(g) wr, such that no s-vertex induced path of G is rainbow. Let (W 1,..., W n ) be a w-colourable grading in G. Then there exist i {1,..., n}, and a vertex v W i, and a set of s vertices, pairwise with different colours, all later than v and all adjacent to v. Proof. Choose r as in 2.1. Since each G[W i ] is w-colourable, there is a partition (A 1,..., A w ) of V (G) such that W i A j is stable for 1 i n and 1 j w. Since χ(g) wr, there exists j such that χ(g[a j ]) > r. For each edge e = uv of G[A j ] direct e from u to v if φ(u) < φ(v), obtaining a digraph D say. By the Gallai-Roy theorem, there is a directed path P of D with χ(g[a j ]) > r vertices. From the definition of D, it follows that all vertices of P have different colours. Since no s-vertex induced path of G is rainbow, it follows from 2.1 applied to G[V (P )] that some subgraph H of G[V (P )] is isomorphic to K s,s and rainbow. Choose i {1,..., n} minimum such that W i V (H), and choose v W i V (H). Since H is rainbow, there are s vertices of H all with different colours and all adjacent to v. From the choice of i, none of them is earlier than v; and since they all belong to V (H) A j and W i A j is stable, none of them belongs to W j. Consequently they are all later than v. This proves 2.2. Now we prove 1.3, which we restate: 2.3 Let s, κ 0 be integers. Then there exists c 0 such that for every coloured graph (G, φ) with ω(g) κ and χ(g) > c, some induced s-vertex path of G is rainbow. Proof. Since the result holds if κ 1, we may assume by induction on κ that κ 2 and there exists c such that for every coloured graph (G, φ) with ω(g) κ 1 and χ(g) > c, some induced s-vertex path of G is rainbow. Let r be as in 2.1. Define w s = 0, and for j = s 1,..., 0 let w j = w j+1 r + c. Let c = (w 1 + 1)r; we claim that c satisfies the theorem. Let (G, φ) be a coloured graph with ω(g) κ and χ(g) > c. We must show that some induced s-vertex path of G is rainbow. Suppose not. For each vertex v, if N denotes the set of neighbours of v, then ω(g[n]) κ 1, and so χ(g[n]) c. For each vertex z, let A(z) be the set of all vertices v such that there is an induced rainbow path of G between z, v. (1) χ(g[a(z)]) > w 1 + 1 for some vertex z. For suppose not. Let V (G) = {v 1,..., v n }, and for 1 i n let W i = A(v i ) \ (A(v 1 ) A(v i 1 )). Thus (W 1,..., W n ) is a (w 1 + 1)-colourable grading in G. By 2.2, since χ(g) > c = (w 1 + 1)r, there exist i {1,..., n}, and a vertex v W i, and a set X of s vertices, pairwise with different colours, all later than v and all adjacent to v. Since v A(v i ), there is an induced rainbow path of G between v i, v, say P. Since G has no induced rainbow s-vertex path, V (P ) < s. Consequently some vertex x X has a colour different from the colours of the vertices of P. But then adding x to P gives a rainbow path between v i, x, and therefore there is an induced rainbow path between v i, x. Consequently x A(v i ). But x is later than v, a contradiction. This proves (1). 2

Choose z as in (1). Let Q be a rainbow induced path of G with first vertex z. An extension of Q is a rainbow induced path P of G with first vertex z such that Q is a subpath of P and Q P. We denote by B(Q) the set of all vertices v V (G) such that there is an extension of Q between z, v. Choose a rainbow induced path Q of G with first vertex z, and χ(g[b(q)]) > w j where j = V (Q), such that j is maximum. (This is well-defined, since every such path has fewer than s vertices by hypothesis, and since Q exists with j = 1.) Thus j < s. Let Q have ends z, y say, and let V be the set of all vertices of G adjacent to y, adjacent to no other vertex of Q, and with a different colour from every vertex of Q. Thus every extension of Q contains a vertex in V ; and for each v V, adding v to Q gives an extension of Q, say Q v. Every vertex in B(Q) belongs either to V or to B(Q v ) for some v V ; and the vertices in B(Q v ) for some v are precisely the vertices in B(Q) that are nonadjacent to y, and these vertices have no neighbours in V (Q) at all. Now ω(g[v ]) κ 1, and so χ(g[v ]) c ; and consequently χ(b(q) \ V ) > w j c = w j+1 r. From the choice of Q, χ(g[b(q v )]) w j+1 for each v V. Let v = {v 1,..., v n }, and for 1 i n let B i = B(Q vi ), and W i = B i \ (B 1 B i 1 ). Thus (W 1,..., W n ) is a w j+1 -colourable grading of G[B(Q) \ V ]. By 2.2, there exist i {1,..., n} and v W i, and a set X of neighbours of v, all later than v and all with different colours, with X = s. Since v W i B i, there is an extension P of Q between z, v, and therefore V (P ) < s by hypothesis. Since X s, there exists x X with a colour different from the colour of every vertex in P. Adding x to P gives a rainbow path between z, x of which P is a subpath; and since P is induced, and x has no neighbour in V (Q), there is an extension of Q(v i ) between z, x, and so x B i. But this is impossible since x is later than v. This contradiction shows that there is a rainbow induced path in G with s vertices, and so proves 2.3. 3 Conclusion Can 1.3 be extended beyond paths? One could ask which graphs H have the following property: for every triangle-free graph G with sufficiently large chromatic number, and for every colouring of G, some induced subgraph of G is isomorphic to H and rainbow. But for H to have this property: H must have no cycles. Otherwise we can take G to have girth larger than the length of such a cycle and large chromatic number, and then G contains no copy of H at all, rainbow or otherwise. Every vertex of H must have degree at most two. Otherwise, as shown by Kierstead and Trotter [7], a counterexample is given by the shift graph of triples: the vertex set is [n] (3), and two triples are adjacent if the smallest two elements of one are the same as the largest two elements of the other. If we colour every triple by its middle element then no rainbow subgraph has a vertex of degree more than two. So the only graphs H which might have the desired property are forests with maximum degree at most two, that is, induced subgraphs of paths. We might also ask: is it true that if G is triangle-free and has sufficiently large chromatic number then for every colouring of G, some induced subgraph of G is isomorphic to a cycle and is rainbow? In other words, does G contain a rainbow hole? But here again the shift graph of triples (again coloured by middle elements) gives a counterexample. Indeed, this coloured graph does not even have a hole 3

in which every three consecutive vertices are rainbow (every three-vertex path is monotonic, so there is no way for the cycle to close up ). But we do not know the following: is it true that for all fixed s, κ, if G is a graph with ω(g) κ and χ(g) sufficiently large then in every colouring of G there is a hole in which some set of s consecutive vertices is rainbow? (We note that, resolving an old conjecture of Gyárfás [5], it was shown in [2] that every such graph does at least contain a long hole.) Let us also mention another question to which we do not know the answer. Let G be a trianglefree graph with very large chromatic number, and let A be a set of stable subsets (not necessarily pairwise disjoint) of V (G) with union V (G). Does there necessarily exist an s-vertex induced path P of G such that for each v V (P ), some X A satisfies X V (P ) = {v}? Finally, we remark that we do not believe 1.1, but have not found a counterexample. Since 1.1 is known to hold for χ(g) = 4, the first place to look for counterexamples to 1.1 is when χ(g) = 5 and we want a five-vertex induced rainbow path. In a laborious and unavailing search for a counterexample, we checked by hand all colourings of G when G is the Mycielski graph on 23 vertices, for which χ(g) = 5 and ω(g) = 2; they all satisfy the conjecture. References [1] J. Babu, M. Basavaraju, L. Chandran and M. Francis, On induced colorful graphs in trianglefree graphs, arxiv:1604.06070. [2] M. Chudnovsky, A. Scott and P. Seymour, Induced subgraphs of graphs with large chromatic number. III. Long holes, Combinatorica, to appear. [3] T. Gallai, On directed graphs and circuits, in Theory of Graphs (Proc. Colloquium Tihany, 1966), Academic Press, 1968, 115 118. [4] F. Galvin, I. Rival and B. Sands, A Ramsey-type theorem for traceable graphs, J. Combinatorial Theory, Ser. B, 33 (1982), 7 16. [5] A. Gyárfás, Problems from the world surrounding perfect graphs, Proceedings of the International Conference on Combinatorial Analysis and its Applications, (Pokrzywna, 1985), Zastos. Mat. 19 (1987), 413 441. [6] A. Gyárfás and G. Sárközy, Induced colorful trees and paths in large chromatic graphs, Electronic J. Combinatorics 23 (2016), #P4.46. [7] H. Kierstead and W. Trotter, Colorful induced subgraphs, Discrete Math. 101 (1992), 165 169. [8] B. Roy, Nombre chromatique et plus longs chemins d un graphe, Rev. Franaise Informat. Recherche Opérationnelle 1 (1967), 129 132. 4