Propagation of Surface Plasmon Polariton in the Single Interface of Gallium Lanthanum Sulfide and Silver

Similar documents
FDTD Simulations of Surface Plasmons Using the Effective Permittivity Applied to the Dispersive Media

Nanoscale optical circuits: controlling light using localized surface plasmon resonances

The Dielectric Function of a Metal ( Jellium )

Nanophysics: Main trends

Surface Plasmon Polaritons on Metallic Surfaces

Ankara, Turkey Published online: 20 Sep 2013.

Title. Author(s)Nagasaki, Akira; Saitoh, Kunimasa; Koshiba, Masanori. CitationOptics Express, 19(4): Issue Date Doc URL.

Metamaterials & Plasmonics

II Theory Of Surface Plasmon Resonance (SPR)

Chapter 5. Photonic Crystals, Plasmonics, and Metamaterials

Modeling of Kerr non-linear photonic components with mode expansion

EXTENSIONS OF THE COMPLEX JACOBI ITERATION TO SIMULATE PHOTONIC WAVELENGTH SCALE COMPONENTS

Study of Propagating Modes and Reflectivity in Bragg Filters with AlxGa1-xN/GaN Material Composition

Superconductivity Induced Transparency

The observation of super-long range surface plasmon polaritons modes and its application as sensory devices

CHAPTER 9 ELECTROMAGNETIC WAVES

Plane Waves and Planar Boundaries in FDTD Simulations

Fundamentals of fiber waveguide modes

Tunable plasmon resonance of a touching gold cylinder arrays

Density of modes maps for design of photonic crystal devices

Generalized Analysis of Stability and Numerical Dispersion in the Discrete-Convolution FDTD Method

Lecture 10: Surface Plasmon Excitation. 5 nm

A Study on the Suitability of Indium Nitride for Terahertz Plasmonics

Numerical Technique for Electromagnetic Field Computation Including High Contrast Composite Material

THERE are two main aspects to the interaction of electromagnetic

A MATLAB GUI FOR SIMULATING THE PROPAGATION OF THE ELECTROMAGNETIC FIELD IN A 2-D INFINITE SPACE

Negative epsilon medium based optical fiber for transmission around UV and visible region

Research Article Trapped-Mode Resonance Regime of Thin Microwave Electromagnetic Arrays with Two Concentric Rings in Unit Cell

FINITE-DIFFERENCE FREQUENCY-DOMAIN ANALYSIS OF NOVEL PHOTONIC

A Novel Design of Photonic Crystal Lens Based on Negative Refractive Index

SCATTERING OF ELECTROMAGNETIC WAVES ON METAL NANOPARTICLES. Tomáš Váry, Juraj Chlpík, Peter Markoš

ECE 484 Semiconductor Lasers

Nanomaterials and their Optical Applications

Wednesday 3 September Session 3: Metamaterials Theory (16:15 16:45, Huxley LT308)

Chalcogenide glass Photonic Crystal Fiber with flattened dispersion and high nonlinearity at telecommunication wavelength

SUPPLEMENTARY INFORMATION

SENSITIVITY ENHANCEMENT OF A D-SHAPE SPR-POF LOW-COST SENSOR USING GRAPHENE

Second Quantization Model of Surface Plasmon Polariton at Metal Planar Surface

Low Losses Left Handed Materials Using Metallic Magnetic Cylinders.

PROCEEDINGS OF SPIE. FDTD method and models in optical education. Xiaogang Lin, Nan Wan, Lingdong Weng, Hao Zhu, Jihe Du

10. Optics of metals - plasmons

Photonic/Plasmonic Structures from Metallic Nanoparticles in a Glass Matrix

Liquid Crystals IAM-CHOON 1(1100 .,4 WILEY 2007 WILEY-INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION. 'i; Second Edition. n z

Extinction properties of a sphere with negative permittivity and permeability

Optimizing the performance of metal-semiconductor-metal photodetectors by embedding nanoparticles in the absorption layer

New Scaling Factors of 2-D Isotropic-Dispersion Finite Difference Time Domain (ID-FDTD) Algorithm for Lossy Media

arxiv: v2 [cond-mat.other] 20 Nov 2008

Empirical formulae for hollow-core antiresonant fibers: dispersion and effective mode area

THE total-field/scattered-field (TFSF) boundary, first proposed

Dispersive contour-path finite-difference time-domain algorithm for modelling surface plasmon polaritons at flat interfaces

Supplementary Figure 1 Schematics of an optical pulse in a nonlinear medium. A Gaussian optical pulse propagates along z-axis in a nonlinear medium

Author(s) Tamayama, Y; Nakanishi, T; Sugiyama. Citation PHYSICAL REVIEW B (2006), 73(19)

FDTD Analysis on Optical Confinement Structure with Electromagnetic Metamaterial

Optical cavity modes in gold shell particles

City, University of London Institutional Repository

Optics, Optoelectronics and Photonics

Publication II Wiley Periodicals. Reprinted by permission of John Wiley & Sons.

Nanomaterials and their Optical Applications

MODAL ANALYSIS OF EXTRAORDINARY TRANSMISSION THROUGH AN ARRAY OF SUBWAVELENGTH SLITS

ABSTRACT 1. INTRODUCTION

Surface plasmon toy-model of a rotating black hole.

Plasmonic Metasurfaces

Finite element simulation of surface plasmon-polaritons: generation by edge effects, and resonance

Chapter 2 Surface Plasmon Resonance

Electromagnetic Waves

Energy transport in metal nanoparticle plasmon waveguides

Finite-Difference Time-Domain and Beam Propagation Methods for Maxwell s Equations

ANALYSIS OF DISPERSION RELATION OF PIECEWISE LINEAR RECURSIVE CONVOLUTION FDTD METHOD FOR SPACE-VARYING PLASMA

FINITE DIFFERENCE TIME DOMAIN SIMULATION OF LIGHT TRAPPING IN A GaAs COMPLEX STRUCTURE

Introduction to Photonic Crystals

Impact of the Opto-Geometric Parameters on the Band Diagram and Transmission and Reflection Spectrum of the Bragg Structure

Advanced Vitreous State The Physical Properties of Glass

Optics, Light and Lasers

Summary of Beam Optics

S-matrix approach for calculations of the optical properties of metallic-dielectric photonic crystal slabs

SURFACE PLASMONS AND THEIR APPLICATIONS IN ELECTRO-OPTICAL DEVICES

USAGE OF NUMERICAL METHODS FOR ELECTROMAGNETIC SHIELDS OPTIMIZATION

Surface plasmon waveguides

Comparison Study of the Band-gap Structure of a 1D-Photonic Crystal by Using TMM and FDTD Analyses

Introduction to optical waveguide modes

Observation of coupled plasmon-polariton modes of plasmon waveguides for electromagnetic energy transport below the diffraction limit

Surface Plasmon-polaritons on thin metal films - IMI (insulator-metal-insulator) structure -

Electromagnetic Wave Guidance Mechanisms in Photonic Crystal Fibers

Quantum Information Processing with Electrons?

Surface plasmon modes of finite, planar, metal-insulator-metal plasmonic waveguides

Multiple extraordinary optical transmission peaks from evanescent coupling in perforated metal plates surrounded by dielectrics

Electromagnetic Absorption by Metamaterial Grating System

A tutorial on meta-materials and THz technology

Plasmonics. The long wavelength of light ( μm) creates a problem for extending optoelectronics into the nanometer regime.

Fresnel Equations cont.

GENERALIZED SURFACE PLASMON RESONANCE SENSORS USING METAMATERIALS AND NEGATIVE INDEX MATERIALS

Optical and Photonic Glasses. Lecture 37. Non-Linear Optical Glasses I - Fundamentals. Professor Rui Almeida

Research Article Plasmonic Structure Enhanced Exciton Generation at the Interface between the Perovskite Absorber and Copper Nanoparticles

EE485 Introduction to Photonics. Introduction

Mathematical Pattern of Plasmon Surface Selection Rules According to DrudeModel

Design of a Multi-Mode Interference Crossing Structure for Three Periodic Dielectric Waveguides

Nano-optics of surface plasmon polaritons

Left-handed materials: Transfer matrix method studies

The physics of the perfect lens

Plasmonics: elementary excitation of a plasma (gas of free charges) nano-scale optics done with plasmons at metal interfaces

Transcription:

PHOTONIC SENSORS / Vol., No., : 58 6 Propagation of Surface Plasmon Polariton in the Single Interface of Gallium Lanthanum Sulfide and Silver Rakibul Hasan SAGOR, Md. Ghulam SABER *, and Md. Ruhul AMIN Department of Electrical and Electronic Engineering, Islamic University of Technology, Board Bazar, Gazipur-7, Bangladesh * Corresponding author: Md. Ghulam SABER E-mail: saber.iut@gmail.com Abstract: The propagation characteristics of the surface-plasmon-polariton (SPP) mode in the single interface of silver (Ag) and gallium lanthanum sulfide (GLS) have been studied both analytically and numerically. The obtained numerical results show an excellent agreement with the analytical ones. The locations of the spatial resonance point along the direction of propagation were determined for the dielectric and the metal. Keywords: Surface-plasmon-polariton, gallium lanthanum sulfide, glass-metal interface Citation: Rakibul Hasan SAGOR, Md. Ghulam SABER, and Md. Ruhul AMIN, Propagation of Surface Plasmon Polariton in the Single Interface of Gallium Lanthanum Sulfide and Silver, Photonic Sensors,, (): 58 6.. Introduction In the past few years, research interest in the field of plasmonics has increased significantly due to the potential application in sensing, communications, computing, and imaging [ ]. The enhanced propagation of the surface-plasmonpolariton (SPP) can be a pioneering step towards the miniaturization of integrated photonic devices. Recently, chalcogenide glasses have drawn more attention of the researchers because of their photosensitivity to the visible light and transparent behavior in the mid-infrared region of the electromagnetic spectrum []. They provide strong confinement and dispersion which enhance the SPP propagation distance as well as the signal strength. R. Ahmad et al. [5] demonstrated an optical parametric oscillator (OPO) based on the chalcogenide glass that holds promise for realizing mid-infrared OPOs employing currently available optical sources in the optical communication wavelength region. T. North et al. [6] reported the fabrication and characterization of a pulsed fiber ring laser based on the chalcogenide glass. A. Al-kadry et al. [7] reported the generation of a broadband supercontinuum in chalcogenide wires by avoiding the two-photon absorption effects. P. Kumar Maharana et al. [8] proposed a method for the electric field enhancement in the surface plasmon resonance bimetallic configuration based on the chalcogenide prism. Herein, we provide a detailed investigation into SPP propagation characteristics in the single interface of Ag and gallium lanthanum sulfide (GLS). The properties we have studied are the SPP wavelength, penetration depth into both Ag and GLS layers, and electric field strength at different distances from the interface for different wavelengths of the input signal. Numerically obtained results have been compared with the Received: August / Revised version: September The Author(s). This article is published with open access at Springerlink.com DOI:.7/s--- Article type: Regular

Rakibul Hasan SAGOR et al.: Propagation of Surface Plasmon Polariton in the Single Interface of Gallium Lanthanum Sulfide and Silver 59 analytical results, and an excellent agreement has been observed. To the best of our knowledge, this is the first time one has analyzed the propagation behavior of the SPP mode in the single interface of GLS and Ag.. Material models The frequency dependent permittivity function of the second order single pole-pair Lorentz model is given by o ( s ) r ( ) () o j where is the infinite frequency relative s permittivity, is the zero frequency relative permittivity, j is the imaginary unit, is the damping co-efficient, and o is the frequency of the pole pair. The frequency dependent permittivity function of the Lorentz-Drude 6 (six) pole model is given by f 5 op fip r ( ) () j i o oi j i where p is the plasma frequency, i is the damping frequency, f i is the oscillator strength, j is the imaginary unit, and is the resonant oi frequency. The second order single pole-pair Lorenz model has been used to model GLS, and the 6-pole Lorentz-Drude model has been used to model Ag. The modeling parameters for the materials have been obtained from different resources. For Ag, we used the parameters obtained by Rakic et al. [9], and for GLS, we used the parameters determined by R. H. Sagor [].. Methodology of analysis A two-dimensional simulation model has been developed based on the finite-difference time-domain (FDTD) [] algorithm in order to simulate the glass-metal structure. The original FDTD algorithm formulated by Yee does not account for the frequency dependent permittivity of the materials. Therefore, we used the auxiliary differential equation (ADE) based general FDTD algorithm in order to incorporate the frequency dependent dispersion property of the materials. This algorithm can handle the case when there are materials with different dispersion properties. The perfectly matched layer [] is also used in order to avoid reflection of incident waves from the boundaries. Considering the material dispersion, the frequency-dependent electric flux density can be given as D( ) o E( ) P( ). () The general Lorentz model is given by a P( ) E( ) b jc d () which can be written in time-domain through the inverse Fourier transform as bp( t) cp'( t) dp''( t) ae( t). (5) The FDTD solution for the first order polarization of (5) can be expressed as n n n n P CP CP CE ((6) where d b t, d c C C t, C a t d ct d ct d c t. The values of C, C, and C depend on the material under consideration. Finally, the electric field intensity becomes N n n D P n i E (7) o n where D is the update value of the electric flux density calculated using the FDTD algorithm.. Specification of the structure The single interface glass-metal structure that was used for simulation is given in Fig.. The width of the Ag layer is taken as 5 nm, and a 5-nm cladding of the GLS glass is given on the top of Ag. The step size is taken as x nm, y nm, and the time step has been set as t.95 c x y

6 Photonic Sensors where c is the speed of light and taken as 8 c ms. We found it sufficient to satisfy the Courant stability condition []. y y x Gallium lanthanum sulfide (GLS) SPP mode Silver (metal) 5 nm 5 nm Fig. Structure of the single interface used for simulation. 5. Results and discussion The SPP wavelength is given by (8) ' ' SPP o ( d m) d m where o is the free space wavelength, d is the real part of the complex relative permittivity of the dielectric, and ' m is the real part of the complex relative permittivity of the metal. In Fig., the plot of the normalized SPP wavelength obtained by using both equation and simulation has been given, and we can observe a very good agreement between both the results. SPP Wavelength 6 5 From Equation From Simulation 6 7 8 9 Fig. SPP wavelength calculated analytically and numerically. The equation for the penetration depth into the dielectric and metal are given by '.5 k ( ) (9) d o d m d '.5 m ko ( d m) m () where ko o is the wave-vector for light in the free space. The plot of the penetration depth into silver and GLS layers obtained both analytically and numerically is given in Fig. which shows a quite good agreement. The penetration depth in GLS is higher than that in the metallic layer. This happens because the SPP mode field attenuates more in the metal, and the dissipated energy is transformed into heat. The minor disparity between the numerical and analytical results in Figs. and can be attributed to the difficulty in determining the exact location where the SPP gets matured. Also, in the simulation model, the material defining parameters are not % accurate. Penetration depth into Ag layer (nm) Penetration depth into GLS layer (nm)..5..5..5. From equation From simulation 9.5 6 7 8 9 5 5 5 From equation From simulation (a) 6 7 8 9 (b) Fig. Field penetration depth into (a) Ag layer and (b) GLS layer. The variations of the electric field strength in the y-direction in both silver and GLS are presented in Fig.. For Ag, we recorded the electric field from 5 nm to nm in the step of 5 nm in the y-direction, and for GLS, we recorded from nm to 6 nm in the step of nm for different input signal wavelengths. It can be observed that the electric field strength decreases as we go away from the interface, and the amount of decrease is more in the case of Ag. This is the reason why the SPP mode

Rakibul Hasan SAGOR et al.: Propagation of Surface Plasmon Polariton in the Single Interface of Gallium Lanthanum Sulfide and Silver 6 field decreases exponentially in strength as one goes further from the interface in the y-direction. This happens due to the skin effect of the SPP mode in the Ag and GLS layers. The resonance mode is also clearly visible in Fig. with peak amplitudes centered at the input signal wavelength of 55 nm. Electric field strength (V/m) Electric field strength (V/m) 5 5 Increasing distance of y y (Ag)=5 nm y (Ag)= nm y (Ag) =5 nm y (Ag)= nm y (Ag)=5 nm y (Ag) = nm 6 8 Increasing distance of y (a) y (GLS)= nm y (GLS)= nm y (GLS)= nm y (GLS)= nm y (GLS)=5 nm y (GLS)=6 nm 6 8 (b) Fig. Electric field strength as a function of the distance (a) in Ag layer (b) in GLS layer. The electric field distribution in the Ag-GLS interface has been given in Fig. 5. Height (nm) 9 8 7 6 5 5 6 7 8 9 Distance (nm) Fig. 5 Electric field distribution in the single interface of Ag and GLS. 6. Conclusions The propagation characteristics of the SPP mode 6 5 in the GLS-Ag interface have been presented. The SPP wavelength and penetration depth have been determined using both simulation and analytical equations, which have the good agreement. The electric field strength decreases exponentially in the y-direction which is also consistent with the theoretical results. This analysis will be helpful in the fabrication process of highly integrated photonic devices using GLS. Acknowledgment The authors would like to acknowledge the support of Islamic University of Technology. Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. References [] W. Saj, T. Antosiewicz, J. Pniewski, and T. Szoplik, Energy transport in plasmon waveguides on chains of metal nanoplates, Opto-Electronics Review, 6, (): 5. [] S. A. Maier, Plasmonics: fundamentals and applications, Berlin Heideberg: Springer, 7: 5. [] W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal, Nano letters, 8, 8(): 8 86. [] M. Asobe, Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching, Optical Fiber Technology, 997, (): 8. [5] R. Ahmad and M. Rochette, Chalcogenide optical parametric oscillator, Optics Express,, (9): 95 99. [6] T. North and M. Rochette, Fabrication and characterization of a pulsed fiber ring laser based on As S, Optics Letters,, 7(): 76 78. [7] A. Al-kadry, C. Baker, M. El Amraoui, Y. Messaddeq, and M. Rochette, Broadband supercontinuum generation in As Se chalcogenide wires by avoiding the two-photon absorption effects, Optics Letters,, 8(7): 85 87.

6 Photonic Sensors [8] P. Kumar Maharana, S. Bharadwaj, and R. Jha, Electric field enhancement in surface plasmon resonance bimetallic configuration based on chalcogenide prism, Journal of Applied Physics,, (): - -. [9] A. D. Rakic, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, Optical properties of metallic films for vertical-cavity optoelectronic devices, Applied optics, 998, 7(): 57 58. [] R. H. Sagor, Plasmon enhanced symmetric mode generation in metal-insulator-metal structure with Kerr nonlinear effect, International Journal of Computer Applications,, 5(8): 8. [] K. Yee, Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media, IEEE Transactions on Antennas and Propagation, 966, (): 7. [] J. P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves, Journal of Computational Physics, 99, (): 85. [] A. Taflove and S. C. Hagness, Computational electrodynamics, Boston, London: Artech house, :.