Theoretische Festkörperphysik: Anwendungsbeispiel. (File Bsp_theofkp.pdf unter Vorlesung anklicken!

Similar documents
First-principles growth kinetics and morphological evolution of Cu nanoscale particles in Al

ELEMENTARY DIFFUSION PROCESSES IN AL-CU-ZN ALLOYS: AN AB INITIO STUDY

STRONG CONFIGURATIONAL DEPENDENCE OF ELASTIC PROPERTIES OF A CU-ZR BINARY MODEL METALLIC GLASS

First-principles calculations of bulk and interfacial thermodynamic properties for fcc-based Al-Sc alloys

Magnetism of Atoms and Nanostructures Adsorbed onto Surfaces

Calculation of the elastic energy of a solid solution

Cu-Au, Ag-Au, Cu-Ag and Ni-Au intermetallics: First-principles study of phase diagrams and structures

Diffusion in multicomponent solids. Anton Van der Ven Department of Materials Science and Engineering University of Michigan Ann Arbor, MI

An EAM potential for the dynamical simulation of Ni-Al alloys

Publications W. Dieterich (after 2000)

Available online at Physics Procedia 15 (2011) Stability and Rupture of Alloyed Atomic Terraces on Epitaxial Interfaces

Material Surfaces, Grain Boundaries and Interfaces: Structure-Property Relationship Predictions

T. Egami. Model System of Dense Random Packing (DRP)

Obtaining Ising-like expansions for binary alloys from first principles

Density Functional Theory of the Interface between Solid and Superfluid Helium 4

COMPUTATIONAL INVESTIGATION OF THE EFFECT OF CLUSTER IMPACT ENERGY ON THE MICROSTRUCTURE OF FILMS GROWN BY CLUSTER DEPOSITION

A theoretical study of stability, electronic, and optical properties of GeC and SnC

ATOMISTIC MODELING OF BORON ACTIVATION AND DIFFUSION IN STRAINED SIGE

Crystallographic Dependence of CO Activation on Cobalt Catalysts: HCP versus FCC

Recent activities in TP C6:

Tight-binding Hamiltonians from Solids to Molecules

First-principles based design of Pt- and Pd-based catalysts for benzene hydrogenation

Fitting of accurate interatomic pair potentials for bulk metallic alloys using unrelaxed LDA energies

SUPPLEMENTARY INFORMATION

Tight-binding molecular dynamics study of palladium

Molecular Dynamics Simulations of Fusion Materials: Challenges and Opportunities (Recent Developments)

Quantum Monte Carlo Simulations of Exciton Condensates

Monte Carlo simulations of alloy segregation in PtAg octahedral nanoparticles

SMARTMET project: Towards breaking the inverse ductility-strength relation

Upper Critical Dimension for Irreversible Cluster Nucleation and Growth. Abstract

Introduction of XPS Absolute binding energies of core states Applications to silicone Outlook

Supporting Information

Structure Refinements of II-VI Semiconductor Nanoparticles based on PDF Measurements

First principles computer simulations of Li 10 GeP 2 S 12 and related lithium superionic conductors

Ab initio Berechungen für Datenbanken

Structural and Optical Properties of ZnSe under Pressure

Surface Complexes in Catalysis

Supplementary Information

Kinetic Monte Carlo: from transition probabilities to transition rates

Lecture contents. Stress and strain Deformation potential. NNSE 618 Lecture #23

Les Houches School of Foam: Introduction to Coarsening

arxiv:cond-mat/ v1 17 Mar 1993

Prerequisites for reliable modeling with first-principles methods. P. Kratzer Fritz-Haber-Institut der MPG D Berlin-Dahlem, Germany

EFFECTS OF STOICHIOMETRY ON POINT DEFECTS AND IMPURITIES IN GALLIUM NITRIDE

Derivation of TTT diagrams with kinetic Monte-Carlo simulations

First principles computer simulations of Li 10 GeP 2 S 12 and related lithium superionic conductors*

Surface stress and relaxation in metals

Equilibrium state of a metal slab and surface stress

Document Version Publisher s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Bulk Structures of Crystals

First Principles Calculation of Defect and Magnetic Structures in FeCo

Defects and diffusion in metal oxides: Challenges for first-principles modelling

The Magnetic Properties of Superparamagnetic Particles by a Monte Carlo Method

Selectivity in the initial C-H bond cleavage of n-butane on PdO(101)

Composition-dependent structural properties in ScGaN alloy films: A combined experimental and theoretical study

On Dynamic and Elastic Stability of Lanthanum Carbide

Supplementary Information for. Universal elastic-hardening-driven mechanical instability in α-quartz and quartz. homeotypes under pressure

Properties of Individual Nanoparticles

ATOMISTIC MODELING OF DIFFUSION IN ALUMINUM

Modeling the sputter deposition of thin film photovoltaics using long time scale dynamics techniques

for investigating Lars Heinke Fritz-Haber-Institute of the Max-Planck-Society, Berlin Jörg Kärger University Leipzig

Oxidation of Germanium and Silicon surfaces (100): a comparative study through DFT methodology

KINETICS OF OXIDE GROWTH ON METAL SURFACES

IAP 2006: From nano to macro: Introduction to atomistic modeling techniques and application in a case study of modeling fracture of copper (1.

Structure of Surfaces

Surface composition of ordered alloys: An off-stoichiometric effect

Magnetic properties of spherical fcc clusters with radial surface anisotropy

Supporting information

LEAD-CHALCOGENIDES UNDER PRESSURE: AB-INITIO STUDY

Igor A. Abrikosov Department of Physics, Chemistry, and Biology (IFM), Linköping University, Sweden

Key concepts in Density Functional Theory (II)

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER

Non-empirical prediction of impurity segregation in α-fe from first principles. Abstract

Theoretical approach to the Poisson s ratio behaviour during structural changes in metallic glasses. Abstract

International Journal of Quantum Chemistry

Monte-Carlo simulations of spinodal ordering and decomposition in compositionally modulated alloys

Supplementary Information

Chemical reactions as network of rare events: Kinetic MonteCarlo

Site selectively excited luminescence and energy transfer of X 1 -Y 2 SiO 5 :Eu at nanometric scale

ALMA: All-scale predictive design of heat management material structures

High Temperature High Pressure Properties of Silica From Quantum Monte Carlo

Binding energy of 2D materials using Quantum Monte Carlo

6. Computational Design of Energy-related Materials

Field Method of Simulation of Phase Transformations in Materials. Alex Umantsev Fayetteville State University, Fayetteville, NC

Atomic Transport & Phase Transformations Lecture III-2

FEEDBACK CONTROL OF GROWTH RATE AND SURFACE ROUGHNESS IN THIN FILM GROWTH. Yiming Lou and Panagiotis D. Christofides

Research Projects. Dr Martin Paul Vaughan. Research Background

Surface effects in frustrated magnetic materials: phase transition and spin resistivity

Supporting Information

Cherry-Pit Structures in Binary Immiscible Alloy Under Ion Irradiation

Christian Ratsch, UCLA

Lecture 2: Magnetic Anisotropy Energy (MAE)

All-Electron Full-Potential Calculations at O(ASA) Speed A Fata Morgana?

Reconstruction and intermixing in thin Ge layers on Si 001

Structural Calculations phase stability, surfaces, interfaces etc

1D lattice model for binary growth and surface relaxation

Energy barriers for diffusion on stepped Pt(1 1 1) surface

Computational Materials Physics

Part 2: Basics of Cluster Expansions and Getting a Optimal Cluster Expansion. What is the coarse-graining Cluster Expansion concept?

Kinetics and Functionality of Cu-coordinated Pyridyl-porphyrin Supramolecular Self-assembly on a Au(111) Surface

Transcription:

Theoretische Festkörperphysik: Anwendungsbeispiel (File Bsp_theofkp.pdf unter http://www.theorie2.physik.uni-erlangen.de Vorlesung anklicken!) Vorlesung, Erlangen. WS 2008/2009

First-principles calculations in materials science??? Formation enthalpy H f of the B2 Phase for CoAl, NiAl, FeAl Jaguar XJ with Al-based car frame System H f [ev/atom] FeAl,B2 FeAl,B2 CoAl,B2 CoAl,B2 NiAl,B2 NiAl,B2 Exp. DFT Exp. DFT Exp. DFT -0,26-0.30-0,56-0,57-0.64-0,66 Exp.: P. Villars and M. Calvert, Experimental Handbook of Crystallographic Data (Materials Park, Ohio, 1991) Theo.: S. Müller. J. Phys.: Condens. Matter 15 (2003) R1429. mass reduced by ~ 200 kg (thanks to FORD Motor Company, Michigan, USA)

Modelling materials properties demands the consideration of huge configuration spaces TEM huge model systems Al-rich Al-Li: precursor δ T. Sato and A. Kamino, Mat. Sci. Eng. A 146 (1991) 161 T Prediction S. Müller, R. Podloucky, and W. Wolf, submitted temperature time!!! impossible to handle directly via DFT!!!

Electronic structure of materials (band structure, density of states ) Crystallographic atomic structure (relaxation, reconstruction, buckling ) Energetics (stability ) Activation barriers Density Functional Theory Nudge Elastic Band Method, Molecular Dynamics, Transition State Theory Vibronic properties (phonon spectra ) Dynamics (diffusion ) Ground state search in huge configuration spaces Multi-scale modeling (from atomic to mesoscopic scale) Short-range order Cluster Expansion Monte-Carlo Methods (UNCLE) Multi-site adsorption Segregation Nucleation Diffusion Precipitation

Precipitation in Al-rich Al-Zn alloys Quenching a solid solution into the two-phase region Formation of coherent Zn-precipitates: Coherent phase boundary calculated** experimental* 1000 Å Al x Zn (R. Ramlau and H. Löffler, phys. stat. sol. (a), 79, p.141 (1983)) * J. L. Murray, Bulletin of Alloy Phase Diagrams 4, 55 (1983). ** S. Müller et al., Europhys. Lett. 55, 33 (2001).

Treating long-range interactions: The mixed-space presentation Problem: Real-space CE fails to predict the energy of long-periodic coherent structures! Intrinsic fault of any finite Cluster Expansion: A n B n -Superlattice Ansatz: Range of interactions: H f = 0 for n Transform portion of interactions to reciprocal space Easiest to do for pair interactions Mixed-space form: H(σ) = Σ J(k) S(k,σ) 2 + Σ D f J f Π f k 3,4 body

Treating long-range interactions: The mixed-space presentation Solving the problem : J(k) = J CS (k) + J SR (k) Constituent Strain (CS): Contains the correct longperiodic superlattice limit Short-Ranged (SR) interactions that are ignored by J CS ( chemical part ) can be constructed from the equilibrium constituent strain

Coherency strain energy Epitaxial softening qal 0,6 Epitaxial Strain Energy : fcc-al Film (A) Epitaxial Strain Energy : Deform 0,5 (111) to the substrate lattice Deform toathe substrate lattice Film (A) EAepi (G,a) parameter and relax along G. epi (100) 0,4 (G,a) E q(a,g) = G A parameter a and relax along G. Coherency strain of q(a,g) = EAhydro (a) 0,3 EAhydro(a) GPdx-superlattices Cu1-x (201) Hydrostatic Deformation Energy : aal 0,2 Hydrostatic Deformation Energy : (110) Deform hydrostatically to the Substrate Deform hydrostatically to the 0,1 substrate lattice parameter a. Substrate 6,6 6,8 7,0 parameter 7,2 7,4 7,6 substrate lattice a. Elasticity theory: a Lattice parameter a [a.u.] Elasticity theory: a BB However: qharm q(a,g) (G) = 1 B qharm (G) = 1 - CC1111++ γγ(a,g) harm (G) Pd Cu C11 + γharm (G) B = 1/3 (C11 + 2C12 ): Bulk Modulus B = 1/3 11 + 2C12 ): Bulk Modulus = C(C 44 ½ (C11 C12): Elastic anisotropy parameter =γ C44 (G): ½ (C x12pd ): function Elastic anisotropy parameter 11 C Geometric of spherical angles harm γharm (G): Geometric function of spherical angles with l bl (a) Kl (G) = l Al (x) Kl (G) ECSeq (a,g) γ (a,g) = γharm (G) + ECSeq (x,g)

Treating long-range interactions: The mixed-space presentation E CS (σ) for any arbitrary structure σ can be calculated via This ansatz solves long-periodic superlattice problem! Mixed-Space Cluster Expansion (MSCE): Σ Σ k 3,4 body H(σ) = J(k) S(k,σ) 2 + D f J f Π f + E CS (σ) A. Zunger, NATO ASI on Statics and Dynamics of Alloy Phase Transformations (Plenum Press, New York, 1994), 361.

Size-shape-relation of precipitates Separate MSCE-Hamiltonians into two parts: Σ Σ k 3,4 body H(σ) = J(k) S(k,σ) 2 + D f J f Π f + E CS (σ) H = E chem + E CS (T 0) (N Zn = 2175) (S. Müller et al., Acta Mater. 48 (2000) 4007) Chemical part: compact shape Strain part: flat (111) layer: Softest direction in fcc-zn* * S. Müller et al., Phys. Rev. B 60, 16448 (1999).

fcc-zn precipitate: flattening along [111] 4248 Zn atoms (r p sphere = 25 Å)

Flattening along [111]: Instability von fcc-zn fcc-zn Density Of States 60 100 DOS [a.u.] Energy [mev/atom] 40 20 0 111 (c/a) [%] = 0-20 0,8 0,9 1,0 1,1 1,2-20 -10 0 10 20 a c (c/a) [%] hcp-zn E F -1.0-0.5 0.5 1.0 DOS [a.u.] (c/a) [%] = 15 E(eV) G (S. Müller, L.-W. Wang, A. Zunger, C. Wolverton, Phys. Rev. B 60, 16448 (1999) ) E F -1.0-0.5 0.5 1.0 E(eV)

Calculated coherent fcc-zn precipitates in Al-Zn as function of precipitate size and temperature 300K Temp. [K] 200K 30K a c 918 2175 4248 Number of Zn-atoms

How do to kinetics in real time???

Bridging time scales Idea: Force selected atoms to exchange process Calculate corresponding simulation time afterwards Prerequisite: Calculation of energy change δe(i) for all possible atomic exchanges i (restriction to NN) From DFT calculations or experiment Energy B A δe(i) from MSCE (S. Müller, J. Phys.: Condens. Matter 15 (2003) R1429.)

Configuration-dependent activation barriers* L1 2 (Al 3 Li) (In collaboration with R. Podloucky, Univ. Wien, Austria, and W. Wolf, Materials Design, Le Mans, France) 0,8 Activation barrier [ev] 0,6 0,4 0,2 0,0 Al at Li-site Al at Al-site calc. of phonon spectra Diffusion coefficients as function of structure and temperature Trafo to real time 0,5 Activation barrier [ev] 0,4 0,3 0,2 0,1 +: no exp. parameters -: no transformation to real time because E = E(T) 0,0 Li at Li-site Li at Al-site (* calculated by the Nudge Elastic Band Method; R. Podloucky, Vienna)

Phonon spectra:al 31 Li Li migration (Walter Wolf, Materials Science, France) Relaxed Structure Al-vacancy Formation Li migration Al 31 Li Al 30 Li Al 30 Li

Configuration-dependent activation barriers* L1 2 (Al 3 Li) (In collaboration with R. Podloucky, Univ. Wien, Austria, and W. Wolf, Materials Design, Le Mans, France) Diffusion coefficient [m 2 /sec] 1e-11 1e-12 1e-13 1e-14 1e-15 Temperature [K] 1000 500 calc. of phonon spectra calculated Diffusion coefficients Bakker et al., 1990 Wen et al., 1980 as function of structure Costas, 1963 and temperature Verlinden and Gijbels, 1980 Trafo to real time T melt = 933K 1e-16 1.0 1.2 1.4 1.6 1.8 2.0 +: no exp. parameters -: no transformation to real time because E = E(T) 1000/T [K -1 ] (* calculated by the Nudge Elastic Band Method; R. Podloucky, Vienna)

Al-rich Size-shape relation of precipitates (no Al atoms are shown) Al-Li Al-Cu Al-Zn Percentage of energy parts 100 80 60 40 20 5 nm 2 nm (T = 473K, t = 86.4 ks) (T = 373K, t=1.6*10 5 ks) S. Müller, W. Wolf, R. Podloucky, subm. J. Wang et al., Acta Mat. 53 (2005) 2759 E chem 0 0 0 1 2 3 4 5 0 1 2 3 4 5 10 nm mean precipitate diameter [nm] mean precipitate diameter [nm] 100 80 60 40 20 E chem E CS 100 80 60 40 20 0 250 Å (T = 250K, t = 1.2 ks) S. Müller, J. Phys.: Condens. Matter 15 (2003) R1429 E chem E CS 0 1 2 3 4 5 mean precipitate diameter [nm] (S. T. Müller, Sato and Advances A. Kamino, in Solid State Physics, T. J. Konno, ed. B. K. Kramer Hiraga, and (Springer, Berlin), R. Ramlau Vol. 44, and 415 H. Löffler, (2004).) Mat. Sci. Eng. A 146 (1991) 161 M. Kawasaki, Scripta Met. 44 (2001) 2303 phys. stat. sol. (a), 79, p.141 (1983))

Size vs. shape of precipitates in Al-Zn: Comparison between experiment and prediction a c Axial c/a ratio 1,0 0,8 0,6 0,4 0,2 T = 300K T = 200K (x = 0.068) (x = 0.138) exp.1 (T = 200K) exp.2 (T = 300K) exp.3 (T = 300K) exp.4 (T = 300K) exp.5 (T = 300K) theory (T = 300K) theory (T = 200K) Ref.1: J. Deguercy et al., Acta Metall. 30, 1921 (1982). Ref.2: G. Laslaz and P. Guyot, Acta Metall. 25, 277 (1977). Ref.3: E. Bubeck et al., Cryst. Res. Tech. 20, 97 (1985). Ref.4: V. Gerold, W. Siebke, and G. Tempus, Phys. Stat Sol. A 104, 141 (1987). Ref.5: M. Fumeron et al., Scripta Metall. 14, 189 (1980). 0 1 2 3 4 5 6 7 Mean precipitate radius r m [nm] (S. Müller et al., Europhys. Lett. 55 (2001) 33)

Al-6.8% Zn: Simulation of aging process T = 373 K Aging time: 0.02 sec.

Reduce Temperature to T = 300K... T = 373 K Aging time: 20.0 sec.

END OF REAL TIME -SIMULATION T = 300 K Aging time: 40.0 sec.

Qualitative comparison with typical TEM-picture T = 300 K Aging time: 40.0 sec.

ZOOM: [111]-planes T = 300 K Aging time: 40.0 sec.

Al-Zn: Average diameter of Zn-precipitates as function of aging time (T = 250K) Time t [sec] 1.8 10 40 100 250 log(d m ) [Å] 1.6 1.4 1.2 1.0 our calc. slope = +1/3 40 25 10 Mean precipitate diameter d m [Å] Power law: d m t α MSCE: α = 0.31 Ostwald-ripening: α = 1/3 0.8 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 log(t) [sec] (S. Müller, L.-W. Wang, and A. Zunger, Model. Sim. Mater. Sci. Eng. 10 (2002) 131; http://select.iop.org)

T = 200 K T = 300 K t = 30 sec t = 1 min

fcc-zn precipitates: A multi-scale example (c/a) [%] = 15-1.0-0.5 E F 0.5 1.0 E(eV) 60 Energy [mev/atom] 40 20 0 111 fcc-zn 100-20 hcp-zn 0,8 0,9 1,0 1,1 1,2-20 -10 0 10 20 (c/a) [%]