Models of Infectious Disease Formal Demography Stanford Spring Workshop in Formal Demography May 2008

Similar documents
Models of Infectious Disease Formal Demography Stanford Summer Short Course James Holland Jones, Instructor. August 15, 2005

Introduction to SEIR Models

Thursday. Threshold and Sensitivity Analysis

Mathematical Analysis of Epidemiological Models: Introduction

Notes On R 0. James Holland Jones Department of Anthropological Sciences Stanford University. October 17, 2013

The death of an epidemic

Mathematical Epidemiology Lecture 1. Matylda Jabłońska-Sabuka

Mathematical Modeling and Analysis of Infectious Disease Dynamics

Non-Linear Models Cont d: Infectious Diseases. Non-Linear Models Cont d: Infectious Diseases

Applications in Biology

A Mathematical Analysis on the Transmission Dynamics of Neisseria gonorrhoeae. Yk j N k j

Electronic appendices are refereed with the text. However, no attempt has been made to impose a uniform editorial style on the electronic appendices.

Mathematical Analysis of Epidemiological Models III

Dynamical models of HIV-AIDS e ect on population growth

Stability of SEIR Model of Infectious Diseases with Human Immunity

Epidemics in Networks Part 2 Compartmental Disease Models

PARAMETER ESTIMATION IN EPIDEMIC MODELS: SIMPLIFIED FORMULAS

Three Disguises of 1 x = e λx

MATHEMATICAL MODELS Vol. III - Mathematical Models in Epidemiology - M. G. Roberts, J. A. P. Heesterbeek

Linearization of Differential Equation Models

Modelling of the Hand-Foot-Mouth-Disease with the Carrier Population

Dynamic pair formation models

Mathematical modelling and controlling the dynamics of infectious diseases

Transmission in finite populations

Behavior Stability in two SIR-Style. Models for HIV

A comparison of delayed SIR and SEIR epidemic models

Stochastic modelling of epidemic spread

An Improved Computer Multi-Virus Propagation Model with User Awareness

Australian Journal of Basic and Applied Sciences

(mathematical epidemiology)

Biological Models With Time Delay

HETEROGENEOUS MIXING IN EPIDEMIC MODELS

STABILITY ANALYSIS OF A GENERAL SIR EPIDEMIC MODEL

Introduction to Epidemic Modeling

GLOBAL DYNAMICS OF A MATHEMATICAL MODEL OF TUBERCULOSIS

Kasetsart University Workshop. Mathematical modeling using calculus & differential equations concepts

Global Analysis of an SEIRS Model with Saturating Contact Rate 1

Control of Epidemics by Vaccination

A Note on the Spread of Infectious Diseases. in a Large Susceptible Population

GLOBAL STABILITY OF SIR MODELS WITH NONLINEAR INCIDENCE AND DISCONTINUOUS TREATMENT

EPIDEMIC MODELS I REPRODUCTION NUMBERS AND FINAL SIZE RELATIONS FRED BRAUER

Network Models in Epidemiology

University of Leeds. Project in Statistics. Math5004M. Epidemic Modelling. Supervisor: Dr Andrew J Baczkowski. Student: Ross Breckon

arxiv: v2 [q-bio.pe] 7 Nov 2015

Introduction To Simple Epidemic Models

Age-dependent branching processes with incubation

Australian Journal of Basic and Applied Sciences. Effect of Education Campaign on Transmission Model of Conjunctivitis

Discrete versus continuous-time models of malaria infections

Introduction: What one must do to analyze any model Prove the positivity and boundedness of the solutions Determine the disease free equilibrium

A Time Since Recovery Model with Varying Rates of Loss of Immunity

Available online at J. Math. Comput. Sci. 2 (2012), No. 6, ISSN:

Global Stability of a Computer Virus Model with Cure and Vertical Transmission

Fractional Calculus Model for Childhood Diseases and Vaccines

The Effect of Stochastic Migration on an SIR Model for the Transmission of HIV. Jan P. Medlock

Figure The Threshold Theorem of epidemiology

Understanding the contribution of space on the spread of Influenza using an Individual-based model approach

Australian Journal of Basic and Applied Sciences. Effect of Personal Hygiene Campaign on the Transmission Model of Hepatitis A

Threshold Conditions in SIR STD Models

Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and

Fixed Point Analysis of Kermack Mckendrick SIR Model

Backward bifurcation underlies rich dynamics in simple disease models

Mathematical Modeling, Simulation, and Time Series Analysis of Seasonal Epidemics.

Estimating the Exponential Growth Rate and R 0

Simulating stochastic epidemics

Infectious Disease Modeling with Interpersonal Contact Patterns as a Heterogeneous Network

MCMC 2: Lecture 3 SIR models - more topics. Phil O Neill Theo Kypraios School of Mathematical Sciences University of Nottingham

MODELING THE SPREAD OF DENGUE FEVER BY USING SIR MODEL. Hor Ming An, PM. Dr. Yudariah Mohammad Yusof

A comparison of existing measles models

A New Mathematical Approach for. Rabies Endemy

SIR Epidemic Model with total Population size

Name Student ID. Good luck and impress us with your toolkit of ecological knowledge and concepts!

Epidemiology, Equilibria, and Ebola: A Dynamical Analysis

Mathematical Model of Tuberculosis Spread within Two Groups of Infected Population

Multistate Modelling Vertical Transmission and Determination of R 0 Using Transition Intensities

A survey of mathematical models of Dengue fever

Qualitative Analysis of a Discrete SIR Epidemic Model

The SIRS Model Approach to Host/Parasite Relationships

Impact of Heterosexuality and Homosexuality on the transmission and dynamics of HIV/AIDS

Supplement to TB in Canadian First Nations at the turn-of-the twentieth century

On the Spread of Epidemics in a Closed Heterogeneous Population

Keywords and phrases: Syphilis, Heterogeneous, Complications Mathematics Subject Classification: 92B05; 92D25; 92D30; 93D05; 34K20; 34K25

Epidemics in Complex Networks and Phase Transitions

MODELING AND ANALYSIS OF THE SPREAD OF CARRIER DEPENDENT INFECTIOUS DISEASES WITH ENVIRONMENTAL EFFECTS

Epidemic Modeling with Contact Heterogeneity and Multiple Routes of Transmission

Approximation of epidemic models by diffusion processes and their statistical inferencedes

New results on the existences of solutions of the Dirichlet problem with respect to the Schrödinger-prey operator and their applications

Statistical challenges in Disease Ecology

Available online at Commun. Math. Biol. Neurosci. 2015, 2015:29 ISSN:

Department of Mathematics. Mathematical study of competition between Staphylococcus strains within the host and at the host population level

Stochastic modelling of epidemic spread

Network Modelling for Sexually. Transmitted Diseases

Mathematical Analysis of HIV/AIDS Prophylaxis Treatment Model

Global analysis of multi-strains SIS, SIR and MSIR epidemic models

GLOBAL STABILITY OF A VACCINATION MODEL WITH IMMIGRATION

Determining Important Parameters in the Spread of Malaria Through the Sensitivity Analysis of a Mathematical Model

AARMS Homework Exercises

chalkdust Your article begins on a le hand page so we have inserted a blank page here.

Mathematical models on Malaria with multiple strains of pathogens

Princeton University Press, all rights reserved. Chapter 10: Dynamics of Class-Structured Populations

Applications of Optimal Control Theory to Infectious Disease Modeling

Transcription:

Models of Infectious Disease Formal Demography Stanford Spring Workshop in Formal Demography May 2008 James Holland Jones Department of Anthropology Stanford University May 3, 2008 1

Outline 1. Compartmental Thinking 2. Simple Epidemic (a) Epidemic Curve 1: Cumulative Prevalence (b) Epidemic Curve 2: Incidence (c) Reality Check: Real Epidemic Curves Are Messy 3. General Epidemic (a) Epidemic Threshold (b) Final Size of the Epidemic (c) Analyzing the Effective Contact Rate (d) Theory in Public Health 4. Why Do We Care So Much About R 0? 5. Equilibria and Stability 6. R 0 in Structured Epidemic Models Formal Demography Workshop: Epidemic Models 2

Compartments: State Diagram M S E I R M: maternal protection S: susceptible E: exposed I: infected R: removed Formal Demography Workshop: Epidemic Models 3

A Simple Model of An Infectious Disease Consider a closed population population of N individuals There are two states: Susceptible Infected Initially I 0 are infected N I 0 are therefore susceptible We assume the population is well mixed The probability that a susceptible and infectious individual meet is proportional to their abundances, with effective transmission rate β Formal Demography Workshop: Epidemic Models 4

Simple Epidemic Continued Write s = S/N and i = I/N di dt = βi(1 i). (1) To calculate the number infected at time t, i(t), integrate this equation from time zero to time t, yielding: i(t) = 1 1 + 1 i (2) 0 i 0 e βt This equation yields what is known as the epidemic curve Formal Demography Workshop: Epidemic Models 5

Cumulative Fraction Infected 0.0 0.2 0.4 0.6 0.8 1.0 0 20 40 60 80 100 Time epi.curve <- expression(1/(1+ (exp(-beta*t)*(1-a0)/a0))) a0 <-.01 beta <- 0.1 t <- seq(0,100,1) plot(t,eval(epi.curve),type="l",col="blue", xlab="time", ylab="cumulative Fraction Infected") Formal Demography Workshop: Epidemic Models 6

Interpreting the Epidemic Curve This figure plots the cumulative prevalence of the infection We might also want to know about the shape of the incidence of infection, that is, the number of new cases per unit time a <- eval(epi.curve) b <- diff(a) plot(1:100,b,type="l",col="blue", xlab="time", ylab="incident Fraction Infected") Formal Demography Workshop: Epidemic Models 7

Incident Fraction Infected 0.000 0.005 0.010 0.015 0.020 0.025 0 20 40 60 80 100 Time Formal Demography Workshop: Epidemic Models 8

More Interpretations of the Epidemic Curve This is the classic epidemic curve The epidemic curve is bell-shaped, but not completely symmetric There is a greater force of infection early on Note that in the limit t, everyone in the population becomes infected Formal Demography Workshop: Epidemic Models 9

Real Curves Are a Bit More Messy Formal Demography Workshop: Epidemic Models 10

General Epidemic: The Basic SIR Model A population is comprised of three compartments: Susceptible Segment not yet infected, disease-free (S) Infected Segment infected and infectious (I) Removed Recovered (usually) with lifelong immunity (R) Model Assumptions: 1. Constant (closed) population size 2. Constant rates (e.g., transmission, removal rates) 3. No demography (i.e., births and deaths) 4. Well-mixed population Formal Demography Workshop: Epidemic Models 11

SIR Continued Write s = S/N, i = I/N, r = R/N ds dt di dt dr dt = βsi (3) = βsi νi (4) = νi (5) where, β effective contact rate ν removal rate Formal Demography Workshop: Epidemic Models 12

Numerical Solution of the SIR Model Use R library odesolve write a function that we will call sir function takes three arguments y, t, and p, for the initial conditions, time scope, and parameter values respectively Create list of parameters pars, which contains the two parameters of the model β and ν library(odesolve) pars <- c("beta"=0.05,"nu"=0.075) times <- seq(0,10,0.1) y0 <- c(100,1,0) sir <- function(t,y,p) { yd1 <- -p["beta"] * y[1]*y[2] yd2 <- p["beta"] * y[1]* y[2] - p["nu"]*y[2] yd3 <- p["nu"]*y[2] list(c(yd1,yd2,yd3),c(n=sum(y))) } Formal Demography Workshop: Epidemic Models 13

sir.out <- lsoda(y0,times,sir,pars) sir.out time 1 2 3 N [1,] 0.0 1.000000e+02 1.000000 0.000000000 101 [2,] 0.1 9.935633e+01 1.633984 0.009686266 101 [3,] 0.2 9.831563e+01 2.658889 0.025480797 101 [4,] 0.3 9.665093e+01 4.297969 0.051096592 101 [5,] 0.4 9.403313e+01 6.874588 0.092284864 101 [6,] 0.5 9.002495e+01 10.817430 0.157625403 101... plot the results of this solution plot(sir.out[,1],sir.out[,2],type="l",col="blue",xlab="time", ylab="compartment Size") lines(sir.out[,1],sir.out[,3],col="green") lines(sir.out[,1],sir.out[,4],col="red") legend(8,90,c("s","i","r"),col=c("blue","green","red"),lty=c(1,1,1)) Formal Demography Workshop: Epidemic Models 14

Compartment Size 0 20 40 60 80 100 S I R 0 2 4 6 8 10 Time Formal Demography Workshop: Epidemic Models 15

Conditions for an Epidemic An epidemic occurs if the number of infecteds increases, i.e., di/dt > 0 βsi νi > 0 βsi ν > i At the outset of an epidemic, s 1 β ν = R 0 > 1 Formal Demography Workshop: Epidemic Models 16

Basic Reproduction Number R 0 is the basic reproduction number of the epidemic Basic Reproduction Number (R 0 ): the expected number of secondary infections generated by a single, typical infection in a completely susceptible population Note that Hethcote (2000) refers to the quantity β/ν as σ, the contact rate In general R 0 σ R where R is the reproduction number at some time other than the outset of the epidemic When we model fractions of infected individuals in a closed population (i.e., i = I/N instead of I) R 0 = σ When we model I, R 0 = βn ν Formal Demography Workshop: Epidemic Models 17

Simplifying the System (a bit) Anderson & May (1991) note that the above system of equations can be re-written in terms of the force of infection Since S + I + R = N, the equation 5 is again redundant Anderson & May (1991) also note that it is frequently convenient to think about epidemics in terms of proportions of the population susceptible, infected, etc. Write x = S/N and y = I/N Now, A&M show that we can re-write equations 4 and 5 as: dx = µ (µ + λ(t)) x(t) dt (6) dλ dt = (ν + µ) λ(t) (R 0x(t) 1) (7) Formal Demography Workshop: Epidemic Models 18

where we write the combination of parameters βn ν + µ = R 0 This, of course, is the basic reproduction number again and N = 1 in our system Formal Demography Workshop: Epidemic Models 19

Deriving the Anderson & May Parameterization We start out with the initial parameterization, just scaled to represent fractions of the population susceptible and infectious (x = S/N and y = I/N) dx = µ βxy µx dt (8) dy = βxy (ν + µ)y dt (9) Now replace λ = βy, noting again that R 0 = β/(µ + ν) While it is important to note that x and the force of infection will definitely be functions of time (i.e., x(t), λ(t)), we drop the the t s for notational simplicity dx dt = µ x(λ µ) (10) Formal Demography Workshop: Epidemic Models 20

dy dt = λ(x 1 R 0 ) (11) Need to note that λ = βẏ, so we need to multiply through by β Therefore, multiply by R 0 (ν + µ) = β (since we are trying to get rid of β and put all the equations in terms of λ, the force of infection) After a little bit of algebra, we find that this recovers the equation 7 Formal Demography Workshop: Epidemic Models 21

Early Growth of the Epidemic We d like to know what happens to an epidemic following the introduction of a pathogen We assume that the innoculum for the epidemic was very small (usually a single infected individual) therefore, x(t) 1 for small t In addition, it is almost always the case that ν µ for the early part of the epidemic, we can assume µ 0 Substitute these values into the dynamical equation for the force of infection, λ dλ dt ν(r 0 1)λ Formal Demography Workshop: Epidemic Models 22

This is (once again) an equation for exponential growth, the solution of which is: λ(t) = λ(0)e Λt where Λ = ν(r 0 1), and the λ(0) is the initial seed value of the force of infection λ(0) = βi(0) Formal Demography Workshop: Epidemic Models 23

Endemic Equilibria Since we now care about longer time scales, we can consider things like equilibria of the model To find the equilibria, set our dynamical equations equal to zero First, we ll do x vice-versa) (Note that to get x, we solve the equation for λ and dλ dt = (ν + µ) λ(t) (R 0x(t) 1) = 0 λ R 0 x λ = 0 x = 1 R 0 Formal Demography Workshop: Epidemic Models 24

Solving for λ is only slightly trickier µ (µ + λ(t))x(t) = 0 λ = µ( 1 x 1) Since we already solved for the equilibrium value for x, we substitute this back in λ = µ(r 0 1) Formal Demography Workshop: Epidemic Models 25

Will the Epidemic Infect Everyone? Re-write the SIR equations: ds dt di dt dr dt = βsi (12) = βsi νi = νi Divide equation 5 by equation 4 di ds = 1 + ν βs Formal Demography Workshop: Epidemic Models 26

Final Size of the Epidemic Multiply both sides by ds di = ( 1 + ν βs )ds Integrating this (and doing a little algebra) yields log(s ) = R 0 (s 1) (13) This is the final size of the epidemic which is an implicit equation for s, the number of susceptibles at the end of the epidemic When R 0 > 1, this equation has exactly two roots, only one of which lies in the interval (0, 1) Formal Demography Workshop: Epidemic Models 27

R 0 > 1 y 0.4 0.2 0.0 0.2 0.0 0.2 0.4 0.6 0.8 1.0 Fraction Susceptible Formal Demography Workshop: Epidemic Models 28

R 0 1 y 0.4 0.2 0.0 0.2 0.0 0.2 0.4 0.6 0.8 1.0 Fraction Susceptible Formal Demography Workshop: Epidemic Models 29

Analyzing the Effective Contact Rate, β Effective contact rate is the per capita rate of infection given contact This is like a rate constant in a thermodynamic equation Mechanistically, this will involve The transmissibility of the pathogen (τ) The frequency of contact ( c) We assumed removal rate was constant Exponentially distributed Expected time to removal (δ) is therefore 1/ν R 0 = τ cδ (14) R 0 is simply the product of the transmissibility, mean contact rate, and the duration of infection Formal Demography Workshop: Epidemic Models 30

Interpretation: Expected number of secondary infections in a rarefied population produced by a single typical infection This is a very important result because it tells us how to control epidemics Reduce Transmissibility, τ: Develop vaccines, get people to use barrier contraceptives, use anti-retrovirals (e.g., acyclovir for HSV-2, or HAART for HIV) Decrease Mean Contact, c: Isolation/Quarantine, health education programs Reduce Length of Infectious Period, δ: therapeutics, antibiotic treatment of bacterial infections, care of ulcerations, boost innate immune response This is essentially the entire theoretical basis of public health interventions for infectious diseases! Formal Demography Workshop: Epidemic Models 31

How Many People Should We Vaccinate? Say that we can successfully immunize a fraction 0 < p 1 of the population How big does p need to be? Define R to be the reproduction number of the immunized population R R 0 (1 p) Since our threshold criterion is for R < 1, we can easily solve this inequality for p Denote the critical fraction successfully immunized as p c p c = 1 (1/R 0 ) Not surprisingly, as R 0 increases, so does the critical vaccination fraction Formal Demography Workshop: Epidemic Models 32

Critical Values of p for Selected Infections Infection R 0 p Ref Measles 18.8 0.95 (Anderson & May 1991) Pertusis 3.8-5.6 0.74-0.82 (Anderson & May 1991) Smallpox 4-10 0.75-0.90 (Anderson & May 1991) Chancroid 1.1 0.10 (Anderson & May 1991) Influenza (1918) 1.8 0.44 (Mills et al. 2004) SARS 2.7-3.6 0.63-0.72 (Wallinga & Teunis 2005) Malaria (Africa) 3.9-31.6 0.74-0.97 (Smith et al. 2007) interquartile range for 121 populations Formal Demography Workshop: Epidemic Models 33

Why Do We Care So Much About R 0 Anyway? R 0 Provides five fundamental insights into the dynamics of an infectious disease: 1. R 0 is the threshold parameter, determining whether or not there will be an epidemic 2. R 0 determines the initial rate of increase of an epidemic (i.e., during its exponential growth phase) 3. R 0 determines the final size of the epidemic (i.e., what fraction of susceptibles will ultimately be infected over the course of the outbreak) 4. R 0 determines the endemic equilibrium fraction of susceptibles in the population (= 1/R 0 ) 5. R 0 determines the critical vaccination threshold (= 1/R 0 ) Formal Demography Workshop: Epidemic Models 34

An Example of an Endemic/Epidemic Model Plot of a hypothetical (and unlikely!) disease s dynamics reproduced from Anderson & May (1991) The parameters are µ = 1/70, ν = 1, and R 0 = 5, Here is some R code to reproduce Anderson & May s plot lambda.dyn <- function(t,y,p){ yd1 <- p["mu"] - (p["mu"]+y[2])*y[1] yd2 <- (p["mu"] + p["nu"]) * y[2] * (p["r0"]*y[1] - 1) list(c(yd1,yd2)) } pars <- c("r0"=5,"nu"=1.0,"mu"=0.014) times <- seq(0,100,.1) y0 <- c(.999,1e-4) lambda.out <- lsoda(y0,times,lambda.dyn,pars) plot(lambda.out[,1],lambda.out[,2],type="l",col="blue", xlab="time",ylab="fraction Susceptible, x(t)") abline(h=.2,lty=2,col="red") Formal Demography Workshop: Epidemic Models 35

Approach to Equilibrium Fraction Susceptible, x(t) 0.0 0.2 0.4 0.6 0.8 1.0 0 20 40 60 80 100 Time Formal Demography Workshop: Epidemic Models 36

Is the Equilibrium Stable? How do we calculate the stability of a model that has more than one dimension? For the one-dimensional models (e.g., the density-dependent population growth models), the process was: Calculate the equilibria Linearize the model around the equilibrium using a Taylor series approximation If the solution to the linearized equilibrium was less than zero, the equilibrium was stable There is a straightforward extension of this procedure to the multivariate case A model with multiple variables is stable if and only if the real part of the eigenvalues of the model s Jacobian Matrix are less than zero Great. What s a Jacobian matrix? write Formal Demography Workshop: Epidemic Models 37

F (x, λ) = dx dt = µ (µ + λ(t))x(t), and G(x, λ) = dλ dt = (ν + µ) λ(t) (R 0x(t) 1) The Jacobian is: J = ( F/ x ) F/ λ G/ x G/ λ For the SIR model variant of equations 6 and 7, the Jacobian is: J = ( λ µ x ) R 0 λ (µ + ν) ( 1 + R 0 x) (µ + ν) (15) Formal Demography Workshop: Epidemic Models 38

Using the equilibrium values of x and λ x = 1/R 0, and λ = µ(r 0 1) along with the parameter values given before (µ = 1/70, ν = 1, and R 0 = 5) The Jacobian is J = ( 0.07142857 0.2 0.28979592 0 ) And the eigenvalues of this matrix are { 0.0357143 0.238083 i, 0.0357143 + 0.238083 i} Formal Demography Workshop: Epidemic Models 39

The real parts of both eigenvalues are negative so the equilibrium {x, λ } is asymptotically stable plot(lambda.out[,3],lambda.out[,2],type="l",col="blue", xlab="force of Infection", ylab="fraction Susceptible") We can see this graphically by plotting the phase plane of the model Formal Demography Workshop: Epidemic Models 40

Fraction Susceptible 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.5 1.0 1.5 2.0 2.5 Force of Infection Formal Demography Workshop: Epidemic Models 41

Structured Epidemic Models How do you define R 0 when you have a structured epidemic model? Consider malaria transmission: Mosquito Human Formal Demography Workshop: Epidemic Models 42

R 0 for Multi-Host Epidemics R 0 is defined as the expected number of secondary cases generated by a single typical index case in a completely susceptible population What if you have different types of susceptible hosts? What is typical? Malaria: Mosquitoes and humans HIV: Women and Men Chagas: Bugs and Humans (& Dogs) Lyme: Ticks, Mice, Deer, Humans R 0 generalizes very easily to these cases Formal Demography Workshop: Epidemic Models 43

Next Generation Matrix Define a square matrix G where the ijth element is the expected number of type i cases caused by infectious individuals of type j (again, in a completely susceptible population) Call the ijth element of G, g ij Essentially, each element of the matrix is a mini reproduction number that counts just those infections to type i caused by type j Call these the within- and between-type reproduction numbers For a two-host model, we have G = [ ] g11 g 12 g 21 g 22 For notational convenience replace these subscripted g s with the letters a, b, c, d (these have nothing to do with the a, b, c, d of a two-way epidemiological table) Formal Demography Workshop: Epidemic Models 44

[ a b G = c d ] where a is the number of type 1 cases caused by infectious individuals of type 1; b is the type 1 caused by type 2; c is type 2 caused by type 1; and d is type 2 caused by type 2 We assume that approximately every individual in each of the types is susceptible R 0 is the larger of the two roots of the so-called characteristic equation: λ ± = a + d 2 ± (a ) 2 + d ad + bc 2 R 0 can be easily calculated numerically for models with more types of susceptibles/infecteds Formal Demography Workshop: Epidemic Models 45

Example: A Sexually Transmitted Infection Assume a population in which all transmission is heterosexual Note that men are frequently far more efficient transmitters than women Say that the typical infectious woman will, on average, infect half a man in a completely susceptible male population and that a typical infectious man will infect 5 women in a completely susceptible female population What is R 0? G = [ 0 0.5 5 0 ] R 0 = 0 + 0 2 + (0 ) 2 + 0 (0 0) + (0.5 5) = 2.5 = 1.58 2 Formal Demography Workshop: Epidemic Models 46

Bad news... Formal Demography Workshop: Epidemic Models 47

Calculating the Next Generation Matrix Consider the next generation matrix G. It is comprised of two parts: F and V 1, where F = V = [ ] Fi (x 0 ) x j [ ] Vi (x 0 ) x j (16) (17) The F i are the new infections The V i transfers of infections from one compartment to another x 0 is the disease-free equilibrium state R 0 is the dominant eigenvalue of the matrix G = F V 1. Formal Demography Workshop: Epidemic Models 48

Example: SEIR Epidemic Consider a Susceptible-Exposed-Infected-Removed (SEIR) Epidemic This is an appropriate model for a disease where there is a considerable post-infection incubation period in which the exposed person is not yet infectious µ µ µ µ βi k γ S E I R λ Formal Demography Workshop: Epidemic Models 49

The SEIR Model Consists of Four Differential Equations Ṡ = βsi + λ µs (18) Ė = βsi (µ + k)e (19) I = ke (γ + µ)i (20) Ṙ = γi µr (21) β is the effective contact rate λ is the birth rate of susceptibles µ is the mortality rate k is the progression rate from exposed (latent) to infected γ is the removal rate Formal Demography Workshop: Epidemic Models 50

Next Generation Matrix for SEIR Model There are two disease states but only one way to create new infections: V = ( βλ µ 0 0 0 ) (22) In contrast, there are various ways to move between the states: V = ( 0 k + µ γ + µ k ) (23) R 0 is the leading eigenvalue of the matrix F V 1, which is R 0 = kβλ µ(k + µ)(γ + µ) Formal Demography Workshop: Epidemic Models 51

What is a Generation? In demography, R 0 is the ratio of total population size from the start to the end of a generation, (roughly) the mean age of childbearing R 0 = e rt Generations in epidemic models are the waves of secondary infection that flow from each previous infection If R i denotes the reproduction number of the ith generation, then R 0 is simply the number of infections generated by the index case, i.e., generation zero Formal Demography Workshop: Epidemic Models 52

Generations Generation 0 Generation 1 Generation 2 Generation 3 Index Case Formal Demography Workshop: Epidemic Models 53

Virulence: Trade-Offs Assume that virulence is proportional to parasitemia, the number of circulating copies of the pathogen in the host Sustained transmission of the pathogen requires that R 0 > 1 We can easily imagine trade-offs between the components of R 0 Higher virulence means that given contact between a susceptible and infectious individual, transmission is more likely (more parasite copies means a greater chance of successful colonization) Higher virulence means that contact is less likely because infected hosts are sick (or dead!) We can build this reasoning into a model of R 0 Formal Demography Workshop: Epidemic Models 54

Evolution of Optimal Virulence Assume an infection with no recovery Assume two forms of mortality: background (µ) and disease-induced (δ) Denote virulence x Assume that both transmissibility and disease-induced mortality are functions of x Our value of R 0 is the ratio of the rate of new infections to the rate of removal (in this case, only by death) R 0 = β(x) µ + δ(x) We find the optimal value of x by differentiating with respect to x and setting equal to zero Formal Demography Workshop: Epidemic Models 55

Use the quotient rule and do a little algebra to reveal that dβ(x) dδ(x) = β(x ) µ + δ(x ) where x indicates the optimum value This has a straightforward geometrical interpretation The trade-off between transmissibility and disease-induced mortality is satisfied where a line, rooted at the origin, is tangent to the curve that relates transmissibility to total mortality Consider an example in which an anscestral pathogen gives rise to a descendant in which transmissibility is less efficient (a common case for emerging infectious diseases) What happens to virulence? Formal Demography Workshop: Epidemic Models 56

Graphical Interpretation of Optimal Virulence Transmission Efficiency Ancestral β (x*) A B Derived b (x**) µ δ (x*) d (x**) Mortality Formal Demography Workshop: Epidemic Models 57

Graphical Interpretation of Optimal Virulence Transmission Efficiency Ancestral β (x*) β (x**) A B Derived µ δ (x*) δ (x**) Mortality Formal Demography Workshop: Epidemic Models 58