Muhammad Rezaul Haider (A ). Date of Submission: Course No.: CEE 6440, Fall 2016.

Similar documents
Semester Project Final Report. Logan River Flood Plain Analysis Using ArcGIS, HEC-GeoRAS, and HEC-RAS

HEC & GIS Modeling of the Brushy Creek HEC & GIS Watershed Modeling of the

Floodplain Modeling and Mapping Using The Geographical Information Systems (GIS) and Hec-RAS/Hec-GeoRAS Applications. Case of Edirne, Turkey.

Vulnerability of Flood Hazard in Selected Ayeyarwady Delta Region, Myanmar

Determination of flood risks in the yeniçiftlik stream basin by using remote sensing and GIS techniques

ASFPM - Rapid Floodplain Mapping

FLOOD HAZARD MAPPING OF DHAKA-NARAYANGANJ-DEMRA (DND) PROJECT USING GEO-INFORMATICS TOOLS

A GIS-based Approach to Watershed Analysis in Texas Author: Allison Guettner

Designing a Dam for Blockhouse Ranch. Haley Born

Applying GIS to Hydraulic Analysis

Hydrologic and Hydraulic Analyses Using ArcGIS

Hydrologic Engineering Applications of Geographic Information Systems

FLOOD HAZARD AND RISK ASSESSMENT IN MID- EASTERN PART OF DHAKA, BANGLADESH

Grant 0299-NEP: Water Resources Project Preparatory Facility

River Inundation and Hazard Mapping a Case Study of North Zone Surat City

GRAPEVINE LAKE MODELING & WATERSHED CHARACTERISTICS

Automatic Watershed Delineation using ArcSWAT/Arc GIS

Dam Break Analysis Using HEC-RAS and HEC-GeoRAS A Case Study of Ajwa Reservoir

ISSUES AND APPROACHES TO COUPLING GIS TO AN IRRIGATION DISTRIBUTION NETWORK AND SEEPAGE LOSS MODELS ABSTRACT

Floodplain modeling. Ovidius University of Constanta (P4) Romania & Technological Educational Institute of Serres, Greece

Exercise 4. Watershed and Stream Network Delineation

CONVERTING A NEXRAD MAP TO A FLOODPLAIN MAP. Oscar Robayo, Tim Whiteaker, and David Maidment*

4. GIS Implementation of the TxDOT Hydrology Extensions

FLOODPLAIN MAPPING OF RIVER KRISHNANA USING HEC-RAS MODEL AT TWO STREACHES NAMELY KUDACHI AND UGAR VILLAGES OF BELAGAVI DISTRICT, KARNATAKA

HYDROLOGIC AND WATER RESOURCES EVALUATIONS FOR SG. LUI WATERSHED

Out with the Old, In with the New: Implementing the Results of the Iowa Rapid Floodplain Modeling Project

These modules are covered with a brief information and practical in ArcGIS Software and open source software also like QGIS, ILWIS.

ISSUES AND APPROACHES TO COUPLING GIS TO IRRIGATION DISTRIBUTION NETWORK AND SEEPAGE LOSS MODELS

Exercise 4. Watershed and Stream Network Delineation

Using ArcGIS for Hydrology and Watershed Analysis:

River Flood Modeling Using GIS, HEC-GeoRAS And HEC- RAS For Purna River, Navsari District, Gujarat, India

Management and Sharing of Hydrologic Information of Cache County

Handling Raster Data for Hydrologic Applications

Exercise 4. Watershed and Stream Network Delineation

REMOTE SENSING AND GEOSPATIAL APPLICATIONS FOR WATERSHED DELINEATION

Floodplain mapping using HEC-RAS and GIS in semi-arid regions of Iran

Flood zoning estimation and river management by using HEC-RAS and GIS model

FLOOD MODELLING OF MANGALAM RIVER USING GIS AND HEC-RAS

FLOOD INUNDATION MAPPING BY GIS AND A HYDRAULIC MODEL (HEC RAS): A CASE STUDY OF AKARCAY BOLVADIN SUBBASIN, IN TURKEY

YELLOWSTONE RIVER FLOOD STUDY REPORT TEXT

Flood Modeling using Gis and LiDAR of Padada River in Southeastern Philippines

BSEN 6220 GIS LAB #5

What s New in Topographic Information - USGS National Map

LOMR SUBMITTAL LOWER NESTUCCA RIVER TILLAMOOK COUNTY, OREGON

GeoWEPP Tutorial Appendix

Preparing a NFIE-Geo Database for Travis County

Science Arena Publications Specialty Journal of Agricultural Sciences Available online at , Vol, 2 (2): 27-36

4 th Joint Project Team Meeting for Sentinel Asia 2011

A SIMPLE GIS METHOD FOR OBTAINING FLOODED AREAS

Geo-spatial Analysis for Prediction of River Floods

Delineation of Watersheds

FLOOD RISK MAPPING AND ANALYSIS OF THE M ZAB VALLEY, ALGERIA

LOMR SUBMITTAL LOWER NEHALEM RIVER TILLAMOOK COUNTY, OREGON

ArcGIS Online Tools and Water-Related Web Services You Can Use Every Day of Your Life!

Determining the Location of the Simav Fault

THE HYDROLOGICAL MODELING OF THE USTUROI VALLEY - USING TWO MODELING PROGRAMS - WetSpa and HecRas

Modelling and Simulation of Floods in Barsa River near Pasakha, Bhutan. Kirtan Adhikari

Civil Engineering 394K: Topic 3 Geographic Information Systems (GIS) in Water Resources Engineering FALL 2014

Technical Memorandum No

GIS in Water Resources Midterm Exam Fall 2008 There are 4 questions on this exam. Please do all 4.

Flood Hazard Mapping in Dikrong Basin of Arunachal Pradesh (India)

Extreme Phenomena in Dobrogea - Floods and Droughts

Field Observations and One-Dimensional Flow Modeling of Summit Creek in Mack Park, Smithfield, Utah

Welcome to NR502 GIS Applications in Natural Resources. You can take this course for 1 or 2 credits. There is also an option for 3 credits.

A Cloud-Based Flood Warning System For Forecasting Impacts to Transportation Infrastructure Systems

NAVAJO NATION PROFILE

GIS Techniques for Floodplain Delineation. Dean Djokic

Volume 3, Issue 4: (2013) (Received: May 27, 2013; Accepted: July 03, 2013; Published: July 30, 2013) ISSN

San Antonio River Authority. San Antonio River Authority Floodworks implementation in the San Antonio River Basin. Nefi Garza, PE, CFM

Application of Geographical Information System (GIS) tools in watershed analysis

Application of high-resolution (10 m) DEM on Flood Disaster in 3D-GIS

Exercise 5 - Watershed and Stream Network Delineation from DEMs GIS in Water Resources Fall 2014

Watershed Analysis of the Blue Ridge Mountains in Northwestern Virginia

ARMSTRONG COUNTY, PA

Delineation of high landslide risk areas as a result of land cover, slope, and geology in San Mateo County, California

Base Level Engineering FEMA Region 6

Exercise 4. Watershed and Stream Network Delineation

HEC-RAS MODELING OF RAINBOW RIVER MFL TECHNICAL SUPPORT FRESHWATER STREAM FINAL REPORT SWFWMD TWA# 15TW

MODULE 7 LECTURE NOTES 5 DRAINAGE PATTERN AND CATCHMENT AREA DELINEATION

Using the Stock Hydrology Tools in ArcGIS

UPPER COSUMNES RIVER FLOOD MAPPING

Display data in a map-like format so that geographic patterns and interrelationships are visible

MAPPING THE FLASH FLOOD PRONE AREA IN THE TAITA WATERSHED (ROMANIA) USING TOPOGRAPHIC INDEXES AND HYDRAULIC MODEL

ISU GIS CENTER S ARCSDE USER'S GUIDE AND DATA CATALOG

Beaver Creek Corridor Design and Analysis. By: Alex Previte

Flood Inundation Mapping

Squaw Creek. General Information

Spatial Data Analysis with ArcGIS Desktop: From Basic to Advance

Exercise 4. Watershed and Stream Network Delineation

Second National Symposium on GIS in Saudi Arabia Al Khober, April 23-25, 2007

Use of Geospatial data for disaster managements

Floodplain and Flood Probability Mapping Using Geodatabases

13 Watershed Delineation & Modeling

Workshop: Build a Basic HEC-HMS Model from Scratch

Hydrologic Modelling of the Upper Malaprabha Catchment using ArcView SWAT

software, just as word processors or databases are. GIS was originally developed and cartographic capabilities have been augmented by analysis tools.

Watershed and Stream Network Delineation

Harrison 1. Identifying Wetlands by GIS Software Submitted July 30, ,470 words By Catherine Harrison University of Virginia

Determination of Urban Runoff Using ILLUDAS and GIS

Abstract: Contents. Literature review. 2 Methodology.. 2 Applications, results and discussion.. 2 Conclusions 12. Introduction

Transcription:

Use of ArcGIS to extract river geometry as an input to HECRAS model and inundation mapping for the Lower Colorado River (LCR), Texas from Highway 183 to Bastrop. Muhammad Rezaul Haider (A 02196036). Date of Submission: 12.03.2016. Email: rezaulwre@gmail.com Course No.: CEE 6440, Fall 2016. Submitted to: Dr. David G Tarboton, Professor, Utah State University. 1

Introduction: Floods are costly natural disasters causing fatalities, damages to life, property, communications, transportation, and critical infrastructures (Kalyanapu et al., 2010). Floodplain modeling is a relatively new and applied method in river engineering discipline and is essential for prediction of flood hazards, and the purpose of managing and performing all river training practices (Salimi et al. 2008). For this project I explored integrating of HEC-RAS (US Army Corps of Engineers, 2016) and ArcGIS to prepare inundation map (inundation extents and depths) within the floodplain of the Lower Colorado River (LCR), Texas for floods of different return periods. This report begins with a statement of the project objectives, an overview of the related works found in literature, a brief description of the study area, sources of the data used, and the methodology applied for the current analysis. Next, the results obtained from HEC GeoRAS (a GIS extension) (US Army Corps of Engineers, 2016), and HECRAS model are presented. Finally the inundation maps produced through post processing of model results and conclusion are presented. Objectives: The specific objectives of this project are to: Extract river cross section from high resolution DEM using ArcGIS. Prepare inundation map for floods of different return periods. Literature Review: Sanders B.F. (2007) developed flood inundation map using on-line digital elevation models (DEMs). They examined the sensitivity of flood model predictions to DEM type, resolution and accuracy. Merwade et al. (2008) explored GIS techniques for creating continuous river bathymetry from linear cross-sections, and integrating this bathymetry with surrounding topography to produce a coherent river terrain model. This terrain model was then used for hydrodynamic modeling and flood inundation mapping for three different types of river reaches in USA. Several studies also explored the prospects of the methodology of flood mapping based on satellite images and surface elevation data. For example, Sanyal and Lu, 2004 applied GIS and satellite images for flood risk management and concluded that the availability of remote sensing data for flood extent delineation could be more efficient in developing countries because of lacking observed data and cost involved to collect those data. Study area: The study area covers an approximately 90 km reach of the LCR, bounded upstream by the USGS gage # 08158000 below Hwy 183 (or just Hwy 183) and downstream by the USGS gage # 08159200 at Bastrop (or just Bastrop) (Figure 1). The land use distribution within the LCR catchment area consists mainly of agricultural, residential, and urban areas (Briody et al. 2016). The LCR is subject to frequent flooding. An example flood hydrograph for the LCR for the period of 2015 (Oct-Nov) is shown in Figure 2. 2

Figure 1: Map of the study reach along the Colorado River bounded by USGS gage # 08158000 at Hwy 183 and # 08159200 at Bastrop. Data Collection: Streamflow data for two gages at the upper and lower boundaries of the study area were collected form USGS website. USGS elevation data at a resolution of 1/3 arc-second (approximately 10 meters) covering the whole basin was downloaded from The National Map Viewer (USGS, 2016). Land cover data was downloaded by using the ESRI online service (URL: http://landscape2.arcgis.com/arcgis/). 3

Discharge, m3/s Lower Colorado River at Texas, Austin. 2000 1800 1600 1400 Hwy 183 1200 1000 800 Bastrop 600 400 200 0 10/20 10/22 10/24 10/26 10/28 10/30 11/1 11/3 11/5 Figure 2: USGS observed discharge for the LCR at the boundaries of the study area. Methodology: Catchment delineation and Digital Elevation Model (DEM): The LCR basin (Figure 1) with respect to USGS gage at Bastrop has been delineated by using online Watershed Delineation of ArcGIS Pro. A total of 30 tiles covering the basin were merged together by running the Mosaic to New Raster tool of ArcGIS Pro to from a single DEM for the whole basin. The USGS elevation data comes with the geographic coordinate system GCS North American 1983. A 1000 m buffer was created around the basin by using the Buffer tool. The DEM was extracted only for the basin (with buffer) area by using the Extract by Mask tool. The extracted DEM has then been projected to Albers Equal Area Conic Projection. Extraction of cross-sections using HEC-GeoRAS: HEC-GeoRAS 10.2 (the last version tested by USACE) toolbar was loaded into ArcGIS 10.2 (the latest version that HEC-GeoRAS is compatible with) by customizing the toolbars. The RAS Geometry menu contains functions for pre-processing of GIS data for input to HEC-RAS. The RAS Mapping menu contains functions for post-processing of HEC-RAS results to produce flood inundation map. In HEC-GeoRAS, each attribute is stored in a separate feature class called as RAS Layer. Empty GIS layers was created using the RAS Geometry menu on the HEC-GeoRAS toolbar. For convenience, all the layers was created by a single command (Create RAS Layers All) rather than creating them individually. Thus HEC-GeoRAS creates a geodatabase in the same folder where the map document is saved. Creating banklines, centerline and flowpaths: The edges of water in Google Earth image was digitized and saved as a KMZ files. These files was imported in ArcGIS using the KML to Layer tool. This created geodatabases with the water edges as polylines. These polylines was converted into features. The new shape files were merged into a single layer using the Merge tool. The centerline was created using the Collapse Dual Lines to Centerline tool. The flowpath lines were used to determine the downstream reach lengths between cross-sections in the main channel and over bank areas. The center line created by merging the river banks were assigned as the centerline in flowpaths layer. 2015 4

Figure 3: Geometry created in ArcMap using HEC-GeoRAS tools. Creating cross section cutlines (or XSCutlines): Creating adequate number of cross-sections to produce a good representation of channel bed and floodplain is important (Merwade, 2016). Crosssection cutlines (Figure 3), each of length 1 km, were created by starting editing in XSCutlines feature class. Once created, the XScutlines were assigned HydroIDs (Figure 4), which were really helpful for debugging before entering the geometry into HECRAS. All the layers were projected to NAD83 Albers Equal Area Conic Projection. Figure 4: Snap shot of XScutlines attribute table extracted from Arc GIS. Land cover data processing: Land cover data (USA-NLCD_2006) was added to the GIS map. Then Extract by Mask tool under the Spatial Analyst Tool was used to mask the land cover data 5

within the basin delineated earlier. Land cover map is shown on Figure 5. Majority of the land class on the flood plains in the study reach of the LCR include shrub, agriculture, forest, and a little developed area (Table 1). Hydraulic modeling in HECRAS and post-processing: The geometry was then imported into HECRAS model. Discharge and normal depth (producing an overall water surface slope of 0.0003) were put as the boundary conditions for the upstream and downstream boundaries of the study reach, respectively. Manning s n values were derived from NLCD 2006 Land Use database. LU Manning Table was created with HEC-GeoRAS and n values (Kalyanapu et al. 2010) were assigned to each land cover class. Manning n-values were assigned to each cross section by using Extract N-Values tool, referring to the class name attribute in land use dataset and LU Manning Table. Figure 5: NLCD Land Cover map. 6

Table 1: Land Cover types. Land cover type Areas (km 2 ) Percent Area Open Water 70.15 0.51 Development 672.10 4.91 SnowIceBarren 16.20 0.12 Forest 1069.26 7.81 ShrubScrubGrass 10242.55 74.85 Agriculture 1579.63 11.54 Wetland 34.84 0.25 NLCD 2011 data have been download very recently from USGS website (USGS, 2016). For better estimation of the roughness values in the floodplain, the tiles covering these relatively recent land cover data could be processed in a way similar to that I followed for processing DEM tiles (see DEM processing section above) for the basin. The historical yearly peak streamflow for USGS gage # 08158000 were calculated from the observed 15-minutes flow data. The flood magnitudes (Table 2) associated with different return periods (2.33, 5, 10, 25, 50, and 100 years) were calculated by putting these yearly peak values into the software package PeakFQ (USGS, 2014). The HEC-RAS model was then simulated for floods of the above return periods with an assumption of steady flow (flow with different return periods). Return Period (year) Table 2: Discharge associated with different return periods. Associated Profile (Plan) in HEC RAS Scenarios while postprocessing in HEC GeoRas (output in Figures 9 and 10) Discharge (m 3 /s) 2.33 Plan 1 inpf1 1580 5.00 Plan 2 inpf2 2568 10.00 Plan 3 inpf3 3641 25.00 Plan 4 inpf4 5413 50.00 Plan 5 inpf5 7092 100.00 Plan 6 inpf6 9125 Inundation mapping: The HEC-RAS output (RAS SDF file) was converted to a TIN file using the tool (RAS Mapping Inundation Mapping Water Surface Generation) of HEC Geo RAS. This TIN file forms a bounding polygon created by connecting the endpoints of XS Cut Lines and is the analysis extent for inundation mapping. The TIN file was then converted to Raster. Using Raster calculator of ArcGIS, the underlying DEM terrain layer was subtracted from the water surface raster. The cells with positive values were identified to be flooded and the values (positive ones) were the inundation depth for the respective flooding scenarios / Plan (see Table 2). 7

Results and Discussion: A total of 89 cross-sections (at 1 km spacing in 89 km of channel reach) were extracted from HEC- GeoRAS under first objective of this study. Figure 6 shows a cross-section at 15 km upstream of Bastrop. Figure 6: Cross section at 15 km upstream from Bastrop extracted from ArcGIS using HEC GeoRAS extensions. Figures 7a, 7b, and 7c show the water surface (2-D), 3-D view of water surface, and cross section for a normal flooding condition (return periods 2.33 years), respectively, whereas Figures 8a, 8b, and 8c represent those for a flood of 100 year return period, respectively. From the bed profile (Figure 7a) of the LCR, the overall longitudinal slope was calculated to be 0.0003. LCR Plan: St Plan 1 12/2/2016 140 LCR Lower Legend 130 EG PF 1 WS PF 1 Crit PF 1 Elev at ion ( m ) 120 110 Ground 100 90 0 20000 40000 60000 80000 100000 Main Channel Distance (m) Figure 7a: Water surface profile for a flood of 2.33 years return period as a result of steady flow analysis in HEC-RAS. 8

LCR Plan: St Plan 1 12/2/2016 89000 86000 78000 75008.51 83000 81000 71000 Legend WS PF 1 Ground 66000 62000 58000 Bank Sta 53000 Figure 7b: 3-D view of water surface profile for a flood of 2.33 years return period. 43000 45000 40000 36000 34000 21000 31000 26000 18000 14000 8000 11000 5000 1000 LCR Plan: St Plan 1 12/2/2016.4.045.325 Legend EG PF 1 WS PF 1 Ground 115 Bank Sta E le v a t io n ( m ) 110 105 100 0 200 400 600 800 1000 Station (m) Figure 7c: Cross Section at 15 km upstream of Bastrop for a flood of 2.33 years return period. LCR Plan: Steady Plan 6 12/2/2016 150 LCR Lower Legend 140 EG PF 1 WS PF 1 E le v a t io n ( m ) 130 120 110 Crit PF 1 Ground 100 90 0 20000 40000 60000 80000 100000 Main Channel Distance (m) Figure 8a: Water surface profile for a flood of 100 years return period as a result of steady flow analysis in HEC-RAS. 9

LCR Plan: Steady Plan 6 12/2/2016 89000 86000 78000 75008.51 83000 81000 71000 Legend WS PF 1 Ground 66000 62000 58000 Bank Sta 53000 Figure 8b: 3-D view of water surface profile for a flood of 100 years return period. 43000 45000 40000 36000 34000 21000 31000 26000 18000 14000 8000 11000 5000 1000 LCR Plan: Steady Plan 6 12/2/2016 130.4.045.325 Legend EG PF 1 125 WS PF 1 Ground Bank Sta 120 E le v a t io n ( m ) 115 110 105 100 0 200 400 600 800 1000 Station (m) Figure 8c: Cross Section at 15 km upstream of Bastrop for a flood of 100 years return period. As seen from Figures 7 and 8, the extent of flooding for a return period of 100 years substantially increases (in extent and depth) in compared to that for normal flooding condition. Figures 9 (a, b, and c) and 10 (a, b, and c) show inundation extents of the LCR for floods of different return periods. As is obvious from Figures 9 and 10, the inundation area (with different water depths) increases with floods of increasing return periods, which is also presented in Figure 11. The range of depths were chosen arbitrarily (at three meters interval) with a view to see how the inundation depths change with return periods. The inundation area extends beyond the XScutlines because Raster calculation (see Methodology section) was performed to calculate inundation in the whole floodplain area rather than using Floodplain Delineation using Raster tool. 10

(a) (b) (c) Figure 9: Inundation maps (a, b, and c represent flooding scenarios with return periods of 2.33, 5, and 10 years, respectively). 11

(a) (b) (c) Figure 10: Inundation maps (a, b, and c represent flooding scenarios with return periods of 25, 50, and 100 years, respectively). 12

Inundated Area (km2) 1.00 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.00 Inundated area for LCR 2.33 5.00 10.00 25.00 50.00 100.00 Return Period (Year) Figure 11: Inundation area for floods of different return periods. In a depth-wise study of the inundation area (Figure 12), it was found that the depth of flooding increased with return period except for the depth class of 0-3 meter. For 50 and 100 year return periods, the area under 0-3 meter depth decreased which might be due to the topographic variation further away from the river. 0.35 Inundated area for floods of different return periods Inundated area (km2) 0.30 0.25 0.20 0.15 0.10 0.05 0.00 2.33 5.00 10.00 25.00 50.00 100.00 0-3 3-6 6-9 9-12 12-15 15-18 18-21 Inundation depth (m) Figure 12: Depth-wise inundation area associated with flood of different return periods. Shortcomings of the model and further study: Ineffective flow areas and obstructions on the flood plain were not digitized and hence not included in the HEC RAS analysis. Only the main river of the LCR was included in the model. There are some tributaries to the river within the study reach which need to be digitized and included into the model. Satellite image of flooding for a particular flood event, if available could be reconciled to the inundation map for a comparable flood magnitude (of a return period) produced in this analysis. 13

Conclusion: The integration of HEC-RAS and GIS analysis was explored to prepare inundation map for the LCR, Texas for floods of different return periods. The inundation area increased with floods of increasing return periods. Availability of fine resolution DEM, land cover, gage discharge data, and the integration of hydraulic modeling and GIS techniques help prepare inundation maps for areas of interest. Such maps can be used to detect deficiencies in existing flood control measures and for arbitrating damage claims later. As an extension of this study, flood inundation mapping by HAND approach (Tarboton D.G., 2016) will be done and compared with the present study. Acknowledgment: Thanks to Dr. David G Tarboton, Professor, Utah State University and Dr. David R. Maidment, Professor, University of Texas at Austin for their nice lectures on ARCGIS which helped me to perform GIS analysis as a new user and time to time advice on how to proceed with the project. References: Briody, Alyse C., M. Bayani Cardenas, Pin Shuai, Peter S. K. Knappett, and Philip C. Bennett. (2016). Groundwater flow, nutrient, and stable isotope dynamics in the parafluvial-hyporheic zone of the regulated Lower Colorado River (Texas, USA) over the course of a small flood. Hydrogeology Journal 24 (4): 923 35. doi:10.1007/s10040-016-1365-3. Kalyanapu, Alfred J., Steven J. Burian, and Timothy N. McPherson. (2010). Effect of Land Use- Based Surface Roughness on Hydrologic Model Output. Journal of Spatial Hydrology 9 (2). http://www.spatialhydrology.net/index.php/josh/article/view/84. Merwade, Venkatesh, Aaron Cook, and Julie Coonrod. (2008). GIS Techniques for Creating River Terrain Models for Hydrodynamic Modeling and Flood Inundation Mapping. Environmental Modelling & Software 23 (10 11): 1300 1311. doi:10.1016/j.envsoft.2008.03.005. Merwade. (2016). "Tutorial on using HEC-GeoRAS with ArcGIS 10.x and HECRAS Modeling". http://web.ics.purdue.edu/~vmerwade/education/georastutorial.pdf Salimi, Shokoufeh, M. Reza Ghanbarpour, Karim Solaimani, and Mirkhalegh Z. Ahmadi. (2008). Floodplain Mapping Using Hydraulic Simulation Model in GIS. Journal of Applied Sciences 8: 660 65. Sanders, Brett F. (2007). Evaluation of on-line DEMs for Flood Inundation Modeling. Advances in Water Resources 30 (8): 1831 43. doi:10.1016/j.advwatres.2007.02.005. Sanyal, Joy, and X. X. Lu. (2004). Application of Remote Sensing in Flood Management with Special Reference to Monsoon Asia: A Review. Natural Hazards 33 (2): 283 301. doi:10.1023/b:nhaz.0000037035.65105.95. Tarboton D.G. (2016). HAND Flood Inundation. http://hydrology.usu.edu/dtarb/giswr/2016/ US Army Corps of Engineers. (2016). Software. http://www.hec.usace.army.mil/software/ USGS. 2014. PeakFQ: Flood Frequency Analysis. http://water.usgs.gov/software/peakfq/ USGS. 2016. The National Map Viewer. https://viewer.nationalmap.gov/viewer/. 14