Lower and Upper thermosphere wind variations during magnetically quiet

Similar documents
Thermosphere wind variation during a magnetically quiet period

Upper mesosphere and lower thermospheric wind response to a severe storm in the equatorial latitudes

Thermosperic wind response to geomagnetic activity in the low latitudes during the 2004 Equinox seasons

Variations of Ion Drifts in the Ionosphere at Low- and Mid- Latitudes

Thermospheric Winds. Astrid Maute. High Altitude Observatory (HAO) National Center for Atmospheric Science (NCAR) Boulder CO, USA

Joule heating and nitric oxide in the thermosphere, 2

Dynamics of the Thermosphere

Numerical simulation of the equatorial wind jet in the thermosphere

Neutral Winds in the Upper Atmosphere. Qian Wu National Center for Atmospheric Research

Heliophysics in Atmospheres

Simulated equinoctial asymmetry of the ionospheric vertical plasma drifts

Comparison of CHAMP and TIME-GCM nonmigrating tidal signals in the thermospheric zonal wind

Sun synchronous thermal tides in exosphere temperature from CHAMP and GRACE accelerometer measurements

Climatology of upward propagating diurnal and semidiurnal tides in the thermosphere

Medium- to large-scale density variability as observed by CHAMP

Recurrent Geomagnetic Activity Driving a Multi-Day Response in the Thermosphere and Ionosphere

Global Observations of Earth s Ionosphere/Thermosphere. John Sigwarth NASA/GSFC Geoff Crowley SWRI

Strong thermospheric cooling during the 2009 major stratosphere warming

Climatology and storm time dependence ofnighttime thermospheric neutral winds over Millstone Hill

EFFECT OF GEOMAGNETIC STORMS ON VHF SCINTILLATIONS OVER NEAR EQUATORIAL STATION ANANTAPUR

Enhanced gravity wave activity over the equatorial MLT region during counter electrojet events

Annales Geophysicae. Annales Geophysicae (2002) 20: c European Geosciences Union 2002

How changes in the tilt angle of the geomagnetic dipole affect the coupled magnetosphere-ionosphere-thermosphere system

Yearly variations in the low-latitude topside ionosphere

Characteristics of the storm-induced big bubbles (SIBBs)

The influence of hemispheric asymmetries on field-aligned ion drifts at the geomagnetic equator

The Earth s thermosphere and coupling to the Sun:

Electrodynamics of the Low-latitude Thermosphere by Comparison of Zonal Neutral Winds and Equatorial Plasma Bubble Velocity

SOLAR ACTIVITY DEPENDENCE OF EFFECTIVE WINDS DERIVED FROM IONOSPHERIC DATAAT WUHAN

630 nm nightglow observations from 17 N latitude

Wind and temperature effects on thermosphere mass density response to the November 2004 geomagnetic storm

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111, A11309, doi: /2006ja011746, 2006

Universal time effect in the response of the thermosphere to electric field changes

Climatology and latitudinal gradients of quiettimethermospheric

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115, A05308, doi: /2009ja014894, 2010

On Forecasting Thermospheric and Ionospheric Disturbances in Space Weather Events

An investigation of ionospheric responses, and disturbance thermospheric winds, during magnetic storms over South American sector

Annual and seasonal variations in the low-latitude topside ionosphere

First detection of wave interactions in the middle atmosphere of Mars

Intra-annual variation of wave number 4 structure of vertical E B drifts in the equatorial ionosphere seen from ROCSAT-1

Wavenumber-4 patterns of the total electron content over the low latitude ionosphere

Global-scale Observations of the Limb and Disk

Space Weather Effects of Coronal Mass Ejection

Solar-terrestrial coupling evidenced by periodic behavior in geomagnetic indexes and the infrared energy budget of the thermosphere

Magnetospheric Currents at Quiet Times

Middle and upper thermosphere density structures due to nonmigrating tides

RESPONSE OF POST-SUNSET VERTICAL PLASMA DRIFT TO MAGNETIC DISTURBANCES

Characteristics of F region dynamo currents deduced from CHAMP magnetic field measurements

Understanding Solar Indices

Investigating the Weddell Sea Anomaly using TIE- GCM

Variations in lower thermosphere dynamics at midlatitudes during intense geomagnetic storms

Andrew Keen, Inari, Finland 18 Feb º C spaceweather.com

The CAWSES Program and Indian Perspective

Magnetic declination and zonal wind effects on longitudinal differences of ionospheric electron density at midlatitudes

EQUATORIAL ELECTROJET STRENGTH IN THE AFRICAN SECTOR DURING HIGH AND LOW SOLAR ACTIVITY YEARS

An analysis of thermospheric density response to solar flares during

Dynamical coupling between the middle atmosphere and lower thermosphere

Ionosphere Variability at Mid Latitudes during Sudden Stratosphere Warmings

Ionospheric Tomography II: Ionospheric Tomography II: Applications to space weather and the high-latitude ionosphere

Planetary Atmospheres: Earth and the Other Terrestrial Worlds Pearson Education, Inc.

Thermospheric temperature and density variations

Seasonal and longitudinal dependence of equatorialdisturbance vertical plasma drifts

Effect of the altitudinal variation of the gravitational acceleration on the thermosphere simulation

Dayside Red Auroras at Very High latitudes: The Importance of Thermal Excitation

Solar cycle variations of the thermospheric meridional wind over Japan derived from measurements of hmf

Large variations in the thermosphere and ionosphere during minor geomagnetic disturbances in April 2002 and their association with IMF B y

Case study of the 15 July 2000 magnetic storm effects on the ionosphere-driver of the positive ionospheric storm in the winter hemisphere

A numerical study of the response of ionospheric electron temperature to geomagnetic activity

What can I do with the TIEGCM?

Lecture #1 Tidal Models. Charles McLandress (Banff Summer School 7-13 May 2005)

Chapter 8 Geospace 1

Tides in the Polar Mesosphere Derived from Two MF Radar Measurements at Poker Flat and Tromsø

Long-term trends in the relation between daytime and nighttime values of fof2

Comparison Of Atmospheric Density Models in the Thermospheric Region: MSIS-86 and DTM-78

Variations of time derivatives of the horizontal geomagnetic field and horizontal geomagnetic field along 96-degree magnetic meridian

Improved horizontal wind model HWM07 enables estimation of equatorial ionospheric electric fields from satellite magnetic measurements

The Equatorial Ionosphere: A Tutorial

Recent Advances in Chinese Meridian Project

Latitude and local time variations of topside magnetic field aligned ion drifts at solar minimum

STUDY ON RELATIONSHIP OF MAGNETOSPHERIC SUBSTORM AND MAGNETIC STORM

Which Earth latitude receives the greatest intensity of insolation when Earth is at the position shown in the diagram? A) 0 B) 23 N C) 55 N D) 90 N

Signatures of Geomagnetic Storms and Coronal Mass Ejections on Electron and Ion Temperatures At Low Latitude Upper Ionosphere

Solar cycle variation of ion densities measured by SROSS C2 and FORMOSAT 1 over Indian low and equatorial latitudes

2 Preliminary Results Achieved by the Meridian Project

Preface Climatology of thermosphere-ionosphere and plasmasphere

Upper atmosphere response to stratosphere sudden warming: Local time and height dependence simulated by GAIA model

Day-to-day variations of migrating semidiurnal tide in the mesosphere and thermosphere

SCIENCE CHINA Technological Sciences

Impact of the altitudinal Joule heating distribution on the thermosphere

Practice Questions: Seasons #1

On the height variation of the equatorial F-region vertical plasmadrifts

Coordinated observations of the dynamics and coupling processes of mesosphere and lower thermosphere winds with MF radars at the middle-high latitude

Imaging the Earth from the Moon FUV Imaging of the Earth s Space Weather. Dr. Larry J. Paxton (office)

Observing SAIDs with the Wallops Radar

TIMED Doppler Interferometer (TIDI) Observations of Migrating Diurnal and Semi-diurnal Tides

Dependence of equatorial Fregion vertical drifts on season and solar cycle

Global characteristics of occurrence of an additional layer in the ionosphere observed by COSMIC/FORMOSAT 3

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds Pearson Education, Inc.

Analysis of the Day Side Equatorial Anomaly

Calculated and observed climate change in the thermosphere, and a prediction for solar cycle 24

Transcription:

Lower and Upper thermosphere wind variations during magnetically quiet days. W.T. Sivla and H. McCreadie School of Chemistry and Physics, University of Kwazulu-Natal, P/Bag X54001, Abstract. Durban 4000, South Africa. The mesosphere/lower thermosphere and thermospheric F-regions are dynamically coupled through thermospheric winds, tides and waves. The regular fluctuations in the earth s magnetic field on quiet days are caused by dynamo-induced currents which flow in the ionosphere/thermosphere system. This paper presents simultaneous mesosphere/lower thermosphere and upper thermospheric region wind observations during a quiet magnetic period using data from TIMED and CHAMP satellites. The upper thermospheric winds from two time local sectors are observed to be faster than the lower thermospheric winds. 1. Introduction Based on thermal considerations the thermosphere is the layer located above the mesosphere. The thermosphere lies above the mesopause at above an approximate height of 90 km. The thermosphere ends at the boundary with the exosphere, approximately 500-700 km, where atoms can escape freely from the atmosphere (Kane, 2005). Unlike the mesosphere, temperature increases with height in the thermosphere. The thermosphere is often considered in a first approximation as a linear stable dissipative oscillatory system, which suppresses the small-scale and short- term structures more effectively than the large-scale and long-term ones (Kazimirovsky,2005). Much of the sun s X-rays and UV radiations are absorbed in the thermosphere. These radiations, in addition to ionizing radiations from outer space, ionize neutral species in the mesosphere and thermosphere forming the ionosphere. The ionosphere extends from about 60 to 800 km, and using electron density is subdivided into; the D region (70-90 km), E-region (90-150 km) and F-region (150-700 km). The terrestrial thermosphere and ionosphere form the most variable part of the Earth s atmosphere (Kazimirovsky and Vergasova, 2009). Pressure gradients resulting from diurnal and latitudinal variations of neutral gas heating together with Coriolis effect, generate meridional and zonal winds in the earth s upper atmosphere. Ion drag resulting from collisions between ions and the neutral particles contributes in establishing the general pattern of the winds especially in the F-region

thermosphere. The effect of molecular diffusion in the thermosphere becomes important at heights above about 110 km. Above this height there is rapid decrease in the densities of heavier molecular species. The general heating for the Thermosphere-Ionosphere system comes from the interaction of the solar UV photons and energetic particles. Ion drag which brings about differential motion between the neutrals and ionized species is also an energy source for the thermosphere. Frictional heating of the neutrals and ions in the high latitudes caused by electric field driven currents is a major source of heat at the high latitudes. Figure 1 below shows the energy changes that take place between the thermosphere/ionosphere system and the surroundings. Ions and atoms which are likely products from photoionisation and dissociation, and electron impact and ionization may be converted to different species in the thermosphere. These species may eventually recombine in reactions which are exothermic. Figure 1. Energy input, conversion and transport processes in the Ionosphere-Thermosphere system (Forbes, 2007). The aim of this paper is an attempt to compare wind variation in the lower and upper thermospheric regions during a quiet period using satellite data. Wind data for the month of September, 2003 from the TIMED and CHAMP satellites has been used for this study. The month of September, 2003 was a relatively quiet month. Quiet time disturbances (Q-

disturbances) can either be positive or negative. Positive Q-disturbances occur under slightly enhanced auroral activity when high latitude heating increases and damps the solar driven poleward thermospheric circulation (Mikhailov et al., 2009). Negative Q-disturbances occur under so called ground state of the thermosphere which corresponds to very low geomagnetic activity with an unconstrained solar-driven thermospheric circulation characterized relatively strong daytime poleward wind and relatively low atomic oxygen concentrations at middle and sub-auroral latitudes (Mikhailov et al., 2007a). The lower and upper thermospheres with the embedded ionosphere form a coupled system. Influences that originate at one height have influences elsewhere in the system. Ionospheric dynamo is driven by neutral winds, but operations of these winds in the E and F-layers are different. The E-layer and F-layer dynamos are linked by geomagnetic field lines, which act as highly conducting wires because electrons can move freely along them to neutralize parallel electric field (Rishbeth, 1997). 2. Data Sources The TIMED Doppler Interferometer (TIDI) is a wind measuring instrument on board the TIMED satellite. It measures horizontal wind vector winds in the mesosphere and lower thermosphere from an altitude of 70 km to 120 km. The TIDI telescopes perform limb scan simultaneously in four orthogonal directions: two at 45 0 forward but on either side of the spacecraft s velocity vector and two at 45 0 rearward of the spacecraft (Talaat et al., 2003). An image of the TIDI geometry is shown in figure 2 below. The TIMED satellite orbits an altitude of 625 km and the total inclination is 74.1 0 ; TIDI measures the horizontal vector wind field with an accuracy of 3 m/s and a vertical resolution of 2 km (Killeen et al., 2006). TIDI measures wind by measuring the Doppler shift of the atmospheric emission features. Thermospheric wind is obtained from the Spatial Tri-axial Accelerometer for Research (STAR) on board the Challenging Mini-Payload Satellite (CHAMP). The STAR accelerometer measures the non-gravitational accelerations acting on the satellite. Figure 3 shows the STAR and spacecraft reference frames. The orbital plane of the low Earth orbiting (LEO) spacecraft precesses by 1h of local time (LT) in 11 days, thus after 131 days all local times are covered (Ritter et al., 2010). Sutton et al. (2007) adapted the method used by Liu et al. (2006) to process the accelerometer dataset into density and wind datasets. During the month of September, 2003 the CHAMP satellite altitude varied between 390 km and 425 km. This range falls within the F-region of the embedded ionosphere.

Figure 2. Illustration of TIDI viewing geometry (Killeen, 2002). Figure 3. The STAR reference frame with respect to the fixed Spacecraft frame (Bruinsma et al., 2003). 3. Results and Discussion The solar and geophysical conditions that prevalied during the period of study, the month of September, are shown in figure 2. The Dst index represents the axially symmetric disturbance magnetic field from large-scale magnetospheric current systems observed at the dipole equator on the Earth s surface (Ritter et al.,2004). The Dst index varied between 35nT and -67nT. The global Kp index is the mean value of the disturbance levels observed at 13 selected mid-latitude stations during three-hour time intervals. According to a quasi-logarithmic scale it covers the range from 0 to 9. The highest Kp index values are recorded between 15 th and 20 th. The highest Ap value is observed within these days.

The solar flux varied with minimum values of about 90 s.f.u and maximun values going up to about 140 s.f.u recorded towards month end. Figure 5 shows the latitudinal variation of the zonal and meridional winds with local time. (a),(b) and(c) represent zonal wind distributions at 90 km, 100 km and 110 km respectively while (d), (e) and (f) represent meridional wind distributions at 90 km,100 km and 110 km respectively. Figure 6 shows the zonal wind distribution in the upper thermospheric during the early morning sector and late afternoon sector. Figure 4. Solar (F10.7) and geomagnetic activity (Dst, Kp and Ap) conditions during the month of September 2003. The meridional wind illustrates clear latitudinal structures. The winds are generally equatorwards for most of the day. Polewards winds are observed for the most of the evening to morning hours. At high latitudes in the northern hemisphere strong equatorward winds are experienced with speeds going above 150 m/s. Speeds up to 250 m/s are experienced at 90 km altitude. The zonal winds do not show any clearly defined structure at 90 and 100 km altitudes.

Figure 5. Zonal wind distribution at (a) 90 km (b) 100 km (c) 110 km and meridional wind distribution at (d) 90 km (e) 100 km (f) 110 km Figure 6. Latitude/longitude distribution of zonal wind from CHAMP at two hours local time sectors. (a) 1500-1900, (b) 0300-0700.

At high latitudes in the northern hemisphere evening winds are eastwards with speeds going above 150 m/s. At 90 km altitude pre-dawn winds are westwards (towards west) with speeds in excess of 200 km experienced in some locations. The CHAMP zonal winds are westward during the morning hours as shown in the local time sector (0300-09000) figure in 6b. Early morning winds in this local time sector within the longitude band (-50 to -150 degrees) in the southern hemisphere high latitude are eastward (towards east) with speeds less than 50 m/s. Also within this longitude band in the North Pole winds with speeds up to 350 m/s are observed in the west direction. Wind direction in the afternoon to early evening local time sector (1500-1900) is generally westwards. Under magnetically quiet conditions at mid-latitudes, meridional winds in the lower thermosphere are generally equatorward (towards equator) during daytime and poleward (towards poles) at night (Balan et al., 2004). From the distribution in figure 5, there is some agreement as the meridional winds presented in the lower thermosphere seem to follow this pattern. The F-region zonal winds in the mid-latitudes are generally westward before local noon and eastward in the afternoon, with a nighttime transition that occurs during the early morning hours in local winter and near midnight in local summer (Roble, 1983). Our winds in the presented sectors agree with this variation. The E-layer and F-layer wind systems are very different, the F-layer winds being generally faster and having less vertical structure than E-layer winds, because of the greater molecular viscosity (Rishbeth, 1997). From our distributions in figures 5 and 6 zonal winds in the upper thermosphere as observed in the two local time sectors are faster than the E-region winds observed by the TIMED satellite. The lower thermosphere dynamics at quiet times is different from what is observed at the F- region. In addition to the difference with optical depth, the lower thermosphere is strongly influenced by tides, gravity waves and planetary waves from the lower atmosphere. In the F- region circulation is primarily governed by solar EUV heating at low and middle latitudes, at high latitudes it is strongly controlled by ion drifts associated with magnetospheric convection (Roble, 1983). Under very quiet geomagnetic conditions, clear thermospheric and ionospheric signatures of magnetospheric processes are only seen at high geomagnetic latitudes (Rees, 1995). 4. Summary and Conclusion During magnetically quiet times, meridional wind in the lower thermosphere is generally equatorward during daytime and poleward at night. The zonal winds in the lower thermosphere are generally westward. Early morning local time sector upper thermospheric zonal winds are westward, while the late afternoon local time winds are eastwards.

The upper thermosphere winds in the early morning and late afternoon local time sectors are faster than zonal winds in the lower thermosphere. The datasets used may not reveal a good comparison as data is obtained from the two satellites by two different methods. Upper themospheric winds from CHAMP are derived from the accelerometer readings while Lower thermospheric winds are obtained from the Doppler interferometer. There is need to consider the plasma effect and the field line structure. Simultaneous measurements need to be carried out at several points in the thermosphere to overcome the uncertainty associated with single satellite measurements. Acknowledgements The authors are indebted to Professor J.M. Forbes and Dr. E. Sutton of the Department of Aerospace Engineering sciences, university of Colorado for the CHAMP wind dataset (version 2.0) and TIMED team for the TIDI wind dataset. References Balan, N., kawamura, S., Nakamura, T., Yamamoto, M., Fukao, S., Igarashi, K., Maruyama, T., Shiokawa, K.,Otsuka, Y.,Ogawa T., Alleyne H., Watanabe, S., and Murayama,Y.(2004), Simultaneous mesosphere/lower thermosphere and thermospheric F-region observations during magnetic storms, J. Geopys. Res., 109(A04308), doi: 10.1029/2003JA009982. Bruinsma, S.,Tamagnan, D., Biancale, R.(2003); Atmospheric densities derived from CHAMP/STAR accelerometer observations, Planet. Space sci., 52, 297-312. Forbes, J.M.(2007):Dynamics of the Thermosphere. J. Meteorol. Soc. of Jpn.,85B, 193-213. Kane,R.P., Sun-Earth relation: Historical development and present status-a brief review, Advances in Space research,35,866-881. Kazimirovsky,E.S.,Kokourov,V.D.,Vergasova,G.V.(2006),Dynamical climatology of the upper mesosphere, lower thermosphere and ionosphere. Surveys in Geophysics, 27, 211-255. Kazimirovsky,E.S. and Vergasova,G,V.(2009), Mesospheric, lower thermospheric dynamics and external forcing effects: A review, Indian Journal of Radio and Space Science,38,7-36.

Killeen, T.L., Wu, Q., Solomon S.C., Ortland, D.A., Skinner, W.R., Niciejewski, N.J., and Gell, D.A.(2006), TIMED Doppler Interferometer: Overview and recent results, J. Geophys. Res., 111, A10S01, doi: 10.1029/2005JA011484. Killeen, T.L. (2002), Timed Doppler Interferometer, (http://download.hao.ucar.edu/archive/tidi/docs/overview.pdf). Liu, H., Luhr, H.,Watanabe, S.,Kohler,W.,Henize,V.,and Visser, P.(2006): Zonal Winds in the equatorial Upper Atmosphere: Decomposing the solar flux, geomagnetic activity, and seasonal dependencies, J. Geophys. Res., A07307, doi: 10.1029/2005JA011415. Mikhailov, A.,Depueva, A.H.,Depuev, V.H.(2009),Quiet time F2-layer disturbances: seasonal variations of the occurrence in the daytime sector, Ann. Geophys.,27,329-337. Mikhailov,A. H., Depuev, V.H. and Depuev,A.H.(2007a): Synchronous NMF2 and NmE daytime variations as a key to the mechanism of quiet-time F2-layer disturbances, Ann. Geophys.,25,483-493. Rishbeth,H.(1997), The ionospheric E-layer and F-layer dynamos-a tutorial review, J. atmos. Sol. Terr. Phys.,59,1873-1880. Ritter, p., Luhr, H., and Doornbos, E. (2010),Substorm-related thermospheric density and wind disturbances derived from CHAMP observations, Ann. Geophys.,28,1207-1220. Ritter,P.,Luhr,H.,Maus,S. and Viljanen, A.(2004),High-latitude ionospheric currents during very quiet times: their characteristics and predictability, Ann. Geophys.,22,2001-2014. Roble, R.G.,(1983), Dynamics of earth s thermosphere, Rev. Geophys. Space phys., Vol. 21, No.2, 217-233. Sutton,E.K., Nerem,R.S. and Forbes, J.M.(2007), Density and winds in the thermosphere deduced from accelerometer data, presented as paper6170 at the AIAA/AAS Astrodynamics specialist conference and Exhibit,Keystone,CO,21-24 August,2006. Talaat, E.R., Yee,J.,Christensen A.B., Killeen, T.L.,Russell III,J.M.,and Woods, T.N.(2003),TIMED science: First light: John Hopkins APL Technical Digest, Vol.24,No.2.