HST Observations of LyC Radiation from Galaxies & weak AGN at 2.3 < z < 5: (How) Did they Reionize the Universe?

Similar documents
The James Webb Space Telescope and First Light: Project Update, What to Expect & How to Prepare.

Observing SMBH growth with HST and JWST: When during galaxy assembly did AGN growth take place?

Project ALCATRAZ-2: Archival Lyman-Continuum and Theoretical Reionization Analysis vs. z: Where, When, & How Much Does LyC Escape from Galaxies & AGN?

HUBBLE SPACE TELESCOPE WIDE FIELD CAMERA 3 OBSERVATIONS OF ESCAPING LYMAN CONTINUUM RADIATION FROM GALAXIES AND WEAK AGN AT REDSHIFTS z

Synergy between the Thirty Meter Telescope and the James Webb Space Telescope: When > 2.

How HST/WFC3 and JWST can measure Galaxy Assembly and AGN growth

Investigating the connection between LyC and Lyα emission and other indirect indicators

How can JWST measure First Light, Galaxy Assembly & Supermassive Blackhole Growth: Science and Project update

The First Galaxies: Evolution drivers via luminosity functions and spectroscopy through a magnifying GLASS

How will JWST measure First Light, Reionization, and Galaxy Assembly in the post WMAP-7 and WFC3 era?

Calibration of ACS Prism Slitless Spectroscopy Modes

High-Redshift Galaxies: A brief summary

The First Billion Year of History - Galaxies in the Early Universe. Stephen Wilkins, Silvio Lorenzoni, Joseph Caruana, Holly Elbert, Matt Jarvis

How can the James Webb Space Telescope Measure First Light, Reionization, & Galaxy Assembly?

9. Evolution with redshift - z > 1.5. Selection in the rest-frame UV

Dust properties of galaxies at redshift z 5-6

Measuring the evolution of the star formation rate efficiency of neutral atomic hydrogen gas from z ~1 4

The in-orbit wavelength calibration of the WFC G800L grism

The Impact of x-cte in the WFC3/UVIS detector on Astrometry

High-Redshift Galaxies at the Epoch of Cosmic Reionization

The shapes of faint galaxies: A window unto mass in the universe

Galaxy Build-up in the First 2 Gyrs

APLUS: A Data Reduction Pipeline for HST/ACS and WFC3 Images

Observational Studies of Galaxy Formation: Reaching back to ~500 Myr after the Big Bang. Rychard Bouwens (UC Santa Cruz / Leiden)

Galaxy Assembly and SMBH/AGN-growth from Cosmic Dawn to the End of Reionization

arxiv: v1 [astro-ph] 15 Dec 2007

Near-IR Background Fluctuation Results from the Cosmic Infrared Background Experiment

High resolution science with high redshift galaxies

Illuminating the Dark Ages: Luminous Quasars in the Epoch of Reionisation. Bram Venemans MPIA Heidelberg

Jens Melinder. With financial support from CNES/CNRS convention #

arxiv: v4 [astro-ph.ga] 26 Jan 2016

High Redshift Universe

Exploiting Cosmic Telescopes with RAVEN

JWST Extragalactic Mock Catalog Documentation

Atomic Physics and the Kramers-Heisenberg Formula for Ly Alpha. Hee-Won Lee Department of Physics and Astrnomy Sejong University January 24, 2019

Galaxies 626. Lecture 9 Metals (2) and the history of star formation from optical/uv observations

Lecture 27 The Intergalactic Medium

Wagg ea. [CII] in ALMA SV 20min, 16 ants. 334GHz. SMA 20hrs

Faint Lyman Alpha Emission at z~3

Results from the Chandra Deep Field North

Exploring the Depths of the Universe

Galaxies Across Cosmic Time

The Probes and Sources of Cosmic Reionization Francesco Haardt University of Como INFN, Milano-Bicocca

The key future observations for understanding reionization: Using the James Webb Space Telescope and Other Facilities

Cross-Talk in the ACS WFC Detectors. I: Description of the Effect

Galaxy Formation/Evolution and Cosmic Reionization Probed with Multi-wavelength Observations of Distant Galaxies. Kazuaki Ota

Million Element Integral Field Unit Design Study

The Effective Spectral Resolution of the WFC and HRC Grism

Lyman alpha Emitters and Typical Galaxies at High Redshift

THE HUBBLE SPACE TELESCOPE WIDE FIELD CAMERA 3 EARLY RELEASE SCIENCE DATA: PANCHROMATIC FAINT OBJECT COUNTS FOR 0.

Mapping the z 2 Large-Scale Structure with 3D Lyα Forest Tomography

The Hubble Legacy Fields (HLF-GOODS-S) v1.5 Data Products: Combining 2442 Orbits of GOODS-S/CDF-S Region ACS and WFC3/IR Images.

The Great Observatories Origins Deep Survey: Constraints on the Lyman Continuum Escape Fraction Distribution of Lyman--Break Galaxies at 3.

Galaxy Formation and Evolution at z>6: New Results From HST WFC3/IR

Lyα-Emitting Galaxies at z=3.1: L* Progenitors Experiencing Rapid Star Formation

ACS CCDs UV and narrowband filters red leak check

The Cosmic History of Star Formation. James Dunlop Institute for Astronomy, University of Edinburgh

The Epoch of Reionization: Observational & Theoretical Topics

A Search for High Redshift Galaxies behind Gravitationally Lensing Clusters

NICMOS Status and Plans

The WFC3 IR Blobs Monitoring

SUPPLEMENTARY INFORMATION

Cosmic Web, IGM tomography and Clamato

Search for the FIRST GALAXIES

arxiv: v1 [astro-ph.ga] 5 Jun 2018

Wide Field Camera 3: The SOC Science Program Proposal

Overview. Metals in the Intergalactic Medium at z 6: Pop III Stars or Normal Star-Forming Galaxies? p.2/26

High-Redshift Galaxies - Exploring Galaxy Evolution - Populations - Current Redshift Frontier

Seeing Through the Trough: Detecting Lyman Alpha from Early Generations of Galaxies

Observations of First Light

Spectroscopic Identification of Galaxies in the HUDF using MUSE

Emission lines in star-forming galaxies

Keck Observations of 150 GRB Host Galaxies Daniel Perley

arxiv: v2 [astro-ph.ga] 15 Nov 2015

How JWST can measure First Light, Reionization and Galaxy Assembly

MApping the Most Massive Overdensity Through Hydrogen (MAMMOTH) Zheng Cai (UCSC)

On The Detection Of Ionizing Radiation Arising From Star-Forming Galaxies At Redshift z ~ 3-4 : Looking For Analogs Of "Stellar Reionizers"

Goals of the meeting. Catch up with JWST news and developments: ERS and GO call for proposals are coming!!

QSO ABSORPTION LINE STUDIES with the HUBBLE SPACE TELESCOPE

WFC3 IR Blobs, IR Sky Flats and the measured IR background levels

An Algorithm for Correcting CTE Loss in Spectrophotometry of Point Sources with the STIS CCD

- Motivation - New measurements of IGM Lyα Opacity & - Implications for Reionization & High-z Galaxies with Jamie Bolton (Nottingham)

Science with the Intermediate Layer

GALEX GR1 Instrument Performance and Calibration Review

FLAT FIELDS FROM THE MOONLIT EARTH

Outline: Part II. The end of the dark ages. Structure formation. Merging cold dark matter halos. First stars z t Univ Myr.

Overview of JWST GTO Programmes

Lecture 11: SDSS Sources at Other Wavelengths: From X rays to radio. Astr 598: Astronomy with SDSS

Lower Redshift Analogues of the Sources of Reionization

On the Effects of Extended-Source Morphology on Emission-Line Redshift Accuracy

Lyman-alpha intensity mapping during the Epoch of Reionization

SURVEYS: THE MASS ASSEMBLY AND STAR FORMATION HISTORY

A study of extended Lyman alpha halos around galaxies

SUPPLEMENTARY INFORMATION

Escaping the Zodi Light! Harvey Moseley! NASA/GSFC! The View from 5 AU! March 26, 2010!

The evolution of bright galaxies at z > 6

Study of the evolution of the ACS/WFC sensitivity loss

The Making of the Hubble Ultra Deep Field

arxiv:astro-ph/ v1 23 Sep 2003

Ca II Absorbers in the Sloan Digital Sky Survey Data Release 9

Transcription:

HST Observations of LyC Radiation from Galaxies & weak AGN at 2.3 < z < 5: (How) Did they Reionize the Universe? Rogier Windhorst (ASU) JWST Interdisciplinary Scientist Brent Smith, S. Cohen, R. Jansen, L. Jiang, M. Dijkstra, A. Inoue, A. Koekemoer, R. Bielby, J. MacKenty, R. O Connell, & J. Silk Talk at Tel Aviv University, Monday May 25, 2015 (Tel Aviv, Israel) All presented materials are ITAR-cleared.

Outline (1) HST Wide Field Camera 3 Data & Spectroscopic Sample Selection (2) WFC3 & ACS Lyman Continuum Stacking, Systematics, & Fluxes (3) Stacked UV and Lyman Continuum Light-Profiles (4) SED-fitting & Dust (A V )-distribution (5) LyC Escape Fractions vs. z for Faint Galaxies & Weak AGN (6) Summary and Conclusions Sponsored by NASA/HST & JWST Talk is on: http://www.asu.edu/clas/hst/www/jwst/jwsttalks/irael15tau_hstlyc.pdf

Cosmic Reionization (Loeb & Barkana (2001 Ann. Rev. A&A 39, 19): [LEFT]: Universe reionized when HII-regions from first star-forming galaxies overlap: WMAP9/Planck15: This may have happened at z < 8.8±1.5. [RIGHT]: Below a certain redshift (z < 5.5?), IGM is then transparent enough that reionizing Lyman-Continuum (LyC) radiation can reach us.

(1a) Hubble Wide Field Camera 3 (WFC3) Data HST WFC3 and its IR channel: a critical pathfinder for JWST science.

WFC3/UVIS channel unprecedented UV blue throughput & areal coverage: QE > 70%, 4k 4k array of 0.04 pixel, FOV 2.67 2.67. WFC3/IR channel unprecedented near IR throughput & areal coverage: QE > 70%, 1k 1k array of 0.13 pixel, FOV 2.25 2.25. WFC3 filters designed for star-formation and galaxy assembly at z 1 8. Early Release Science (ERS) field covers 40 arcm 2, 0.2-2µm in 10 filters.

(1a) Hubble Wide Field Camera 3 (WFC3) Data 10 filters with HST/WFC3 & ACS reaching AB=26.5-27.0 mag (10-σ) over 40 arcmin 2 at 0.07 0.15 FWHM from 0.2 1.7µm (UVUBVizYJH). (JWST adds 0.05 0.2 FWHM imaging to AB 31.5 mag (1 njy) at 1 5µm+ 0.2 1.2 FWHM at 5 29µm, tracing young+old SEDs & dust)

[LEFT] Composite rest-frame far-uv spectra of: SDSS QSOs at z 1.3 (van den Berk etal. 2001); LBGs at z 2 4 (Bielby etal. 2013, Lyα emitters, & absorbers), and LBGs at z 3 (Shapley etal. 2003). WFC3/UVIS F225W, F275W, F336W, and ACS/WFC F435W filters can capture LyC (λ<912å) at z 2.26, z 2.47, z 3.08, and z 4.35. Lower z-bounds chosen such that no λ>912å light is sampled below the filter s red edge (defined at 0.5% of peak transmission). [RIGHT] Total observed throughput curves, designed to maximize throughput and minimize red-leak, which is < 0.6% of LyC signal. Filter red-leak wing (λ > 3648Å) is < 3 10 5 of peak transmission.

[LEFT] Cen & Kimm (2015): PDFs of mean f esc over N stack objects: high-mass (top) & low-mass (bottom) at z=4 (left) & z=6 (right). Mean f esc from weighted number of photons mimics SED stacking of galaxy LyC data with true mean f esc listed. ERS has N stack =11 37. [RIGHT] Inoue et al. (2014, MNRAS 442, 1805): IGM transmission models for f esc calculations: Red is the median and grey the 68% range, based on MC simulations of IGM attenuation vs. z. Uses updated absorber function + available data on Lyα forest, Damped Lyman Alpha (DLA) & Lyman Limit Systems (LLS) mean-free paths.

F225W F275W F336W The first, hardest part was to get the WFC3 astrometry right: Pre-flight 2009 ERS geo-distortion had < 0.45 offsets at image borders compared to GOODS v2.0 (Windhorst etal. 2011 ApJS, 193, 27). In-flight 2013 geo-distortion correction yielded excellent registration of all WFC3/UVIS tiles to the ACS F435W mosaics (Kozhurina etal. 2013). Compared to GOODS, all offsets are now < 0.02 ±0.06 (rms) in all LyC filters (Smith etal. 2015) this no longer blurs any LyC signal! Any LyC signal can now be measured and stacked, including removal of all foreground interlopers (AB < 27.5), and measurement of LyC light-profiles.

Residual sky-background levels in the drizzled WFC3/UVIS ERS mosaics: Black lines: best fit to the 2009 ERS v0.7 mosaics of Windhorst etal. (2011), which used pre-flight thermal vacuum flat-fields. Red lines: current mosaics (ERS v2.0; Smith et al. 2015), using best available on-orbit calibrations. Global residual sky-background levels (in ADU/sec) remaining after drizzling the ERS mosaics are 30.29, 29.99, and 28.15 mag arcsec 2. These are removed in three stages: globally during drizzling (Zodi 25.5 mag arcsec 2 ), locally before stacking, and again locally after stacking (to do the photometry). This is absolutely critical for optimal LyC stacking. Final 71 71 pix (6.39 6.39) LyC stacks allow residual local skysubtraction to < 32.3 mag arcsec 2.

(1b) Hubble WFC3 ERS Spectroscopic Sample Selection Comparison of redshift reliability (spectrum quality) assessments, from best (0.0) to poorest (2.0), by five co-authors [BS, RAW, SHC, RAJ, and LJ]: Measuring LyC escape fractions of f esc 6.0% at > 3σ requires low interloper fraction (Siana + 2015; Vanzella + 2015). Mask-out all interlopers from 10-band ERS mosaics to AB < 27.5 mag. Use all VLT, Keck, & HST grism spectra to get most reliable samples: Gold sample: highest fidelity (grades=0 0.63): spec-z s very likely correct. Silver sample: next highest fidelity (0.64 1.33), with z s likely correct.

Absolute and apparent WFC3/IR F125W (J-band) magnitude distributions of the Gold and combined Gold + Silver samples: The F125W filter samples rest-frame near-uv emission at 2.26 < z < 5. It serves as a proxy for restframe M AB (1650Å) for flat spectrum objects. The blue dotted curve indicates the faint-end power-law slope of 0.16 dex/mag of the galaxy number counts of W11. Sample incompleteness for AB > 24, or M AB (1650) > 21 mag. Any LyC AB-fluxes & f esc -values are only valid for these luminosities!

(2) WFC3 & ACS Lyman Continuum Stacking, Systematics, & Fluxes stack1 avg tot =9.39e-06 med tot =8.91e-06 mode tot =-5.73e-05 σ avg =5.02e-06 stack2 avg tot =6.00e-06 med tot =6.50e-06 mode tot =-7.58e-05 σ avg =7.15e-06 stack1uv avg tot =3.18e-03 med tot =3.17e-03 mode tot =1.17e-03 σ avg =1.04e-04 stack2uv avg tot =3.16e-03 med tot =3.14e-03 mode tot =9.47e-04 σ avg =8.55e-05 med=1.59e-05 avg=1.69e-05 mod=-4.87e-05 med=3.64e-06 avg=4.47e-06 mod=-6.34e-05 med=6.47e-06 avg=6.00e-06 mod=-6.09e-05 med=1.66e-05 avg=1.61e-05 mod=-6.35e-05 med=1.79e-05 avg=1.85e-05 mod=-6.08e-05 med=5.17e-06 avg=4.54e-06 mod=-6.87e-05 med=3.19e-03 avg=3.15e-03 mod=1.08e-03 med=3.22e-03 avg=3.18e-03 mod=1.06e-03 med=3.26e-03 avg=3.33e-03 mod=1.65e-03 med=3.06e-03 avg=3.00e-03 mod=6.83e-04 med=3.10e-03 avg=3.12e-03 mod=9.85e-04 med=3.19e-03 avg=3.19e-03 mod=9.68e-04 med=1.24e-05 avg=1.60e-05 med=1.25e-05 mod=-1.54e-04 med=2.20e-06 avg=1.39e-05 avg=3.52e-06 mod=-4.19e-05 mod=-6.90e-05 med=2.00e-05 avg=2.27e-05 med=3.64e-06 mod=-1.65e-04 med=3.91e-06 avg=4.32e-06 avg=2.58e-06 mod=-8.02e-05 mod=-8.96e-05 med=4.44e-03 med=3.23e-03 avg=4.60e-03 avg=3.21e-03 mod=1.81e-03 med=3.02e-03 avg=3.05e-03 mod=1.31e-03 mod=1.01e-03 med=4.44e-03 med=3.17e-03 avg=4.49e-03 avg=3.24e-03 mod=2.26e-03 med=3.09e-03 avg=3.10e-03 mod=1.07e-03 mod=9.06e-04 med=1.17e-05 avg=1.26e-05 mod=-6.00e-05 med=1.27e-05 avg=1.37e-05 mod=-5.37e-05 med=4.42e-06 avg=4.25e-06 mod=-5.51e-05 med=2.53e-07 avg=-2.95e-07 mod=-8.27e-05 med=5.51e-06 avg=4.76e-06 mod=-7.43e-05 med=-3.68e-06 avg=-3.67e-06 mod=-8.95e-05 med=3.13e-03 avg=3.19e-03 mod=1.06e-03 med=3.33e-03 avg=3.30e-03 mod=1.34e-03 med=3.02e-03 avg=3.00e-03 mod=1.10e-03 med=3.13e-03 avg=3.10e-03 mod=1.08e-03 med=3.09e-03 avg=3.09e-03 mod=7.97e-04 med=3.19e-03 avg=3.27e-03 mod=1.06e-03 stack3 avg tot =4.20e-05 med tot =4.12e-05 mode tot =-8.69e-05 σ avg =6.70e-06 stack4 avg tot =1.61e-03 med tot =1.61e-03 mode tot =-4.04e-05 σ avg =6.97e-05 stack3uv avg tot =3.35e-03 med tot =3.35e-03 mode tot =1.73e-03 σ avg =1.18e-04 stack4uv avg tot =2.76e-03 med tot =2.76e-03 mode tot =1.29e-03 σ avg =1.26e-04 med=4.57e-05 avg=4.59e-05 mod=-8.40e-05 med=3.53e-05 avg=3.45e-05 mod=-9.33e-05 med=4.70e-05 avg=4.97e-05 mod=-8.60e-05 med=1.70e-03 avg=1.69e-03 mod=3.71e-06 med=1.58e-03 avg=1.62e-03 mod=-1.89e-04 med=1.51e-03 avg=1.50e-03 mod=-1.25e-04 med=3.25e-03 avg=3.24e-03 mod=1.44e-03 med=3.41e-03 avg=3.39e-03 mod=1.67e-03 med=3.61e-03 avg=3.56e-03 mod=2.19e-03 med=2.85e-03 avg=2.84e-03 mod=1.44e-03 med=2.85e-03 avg=2.81e-03 mod=1.15e-03 med=2.91e-03 avg=2.87e-03 mod=1.27e-03 med=5.36e-05 avg=5.67e-05 med=4.11e-05 mod=-2.57e-04 med=4.41e-05 avg=3.70e-05 avg=4.66e-05 mod=-1.14e-04 mod=-8.54e-05 med=1.69e-03 avg=1.71e-03 mod=1.71e-04 med=1.62e-03 avg=1.63e-03 mod=-1.99e-03 med=1.66e-03 avg=1.60e-03 mod=5.36e-05 med=4.06e-03 med=3.25e-03 avg=4.06e-03 avg=3.26e-03 mod=2.44e-03 med=3.35e-03 avg=3.29e-03 mod=1.66e-03 mod=1.70e-03 med=3.04e-03 med=2.69e-03 avg=3.01e-03 avg=2.70e-03 mod=1.38e-03 med=2.70e-03 avg=2.67e-03 mod=1.58e-03 mod=1.03e-03 med=3.12e-05 avg=3.36e-05 mod=-1.06e-04 med=3.35e-05 avg=3.20e-05 mod=-1.12e-04 med=4.23e-05 avg=4.53e-05 mod=-5.35e-05 med=1.52e-03 avg=1.51e-03 mod=-1.78e-04 med=1.59e-03 avg=1.60e-03 mod=2.62e-05 med=1.59e-03 avg=1.61e-03 mod=-1.02e-04 med=3.25e-03 avg=3.19e-03 mod=1.61e-03 med=3.33e-03 avg=3.36e-03 mod=1.60e-03 med=3.48e-03 avg=3.49e-03 mod=1.88e-03 med=2.87e-03 avg=2.87e-03 mod=1.52e-03 med=2.69e-03 avg=2.73e-03 mod=1.26e-03 med=2.46e-03 avg=2.47e-03 mod=9.84e-04 Tic-tac-toe sky-background analysis of 71 71 pixel (6.39 6.39) stacks: LyC [left 4 panels] and UVC [right 4 panels]. Large-scale gradients in residual sky-background left in drizzled images are 5 40 fainter than the global remaining sky residuals in previous Fig. Residual sky-gradients on 71 71 pixel scales are fainter than 32.3 mag arcsec 2 across the tic-tac-toe apertures. This is fainter than the LyC SB-signal where this can be measured, but does constitute a (fundamental?) limit to how many images can be stacked.

a) F225W Galaxies without AGN, 2.3 < < ~ z ~ 6 RAJ b) F275W c) F336W d) F435W e) Gold N=51 f) Gold (smoothed) N=51 g) LyC F225W h) F275W i) F336W j) F435W k) Gold+Silver N=118 l) LyC Gold+Silver (smoothed) N=118 LyC LyC z=2.26 2.47 z=2.47 3.08 z=3.08 4.35 z=4.35-6 WEIGHTED ALL: z=2.26 6. [Top Row]: All galaxies in combined Gold Galaxy sample: N=51; [Bottom Row]: All galaxies in combined Gold+Silver sample: N=118. [Right 2 2 panels]: Weighted stack-of-stacks over all 4 LyC filters: best visualizes LyC of galaxies at z 2.3 5.5. Formal detection S/N-ratios: > 6.8σ ( 51 1.0σ above sky), and > 13σ ( 118 1.2σ). Equivalent to 22 236 orbit stacks with HST, respectively! Circles: r=8 (0.72), 13 pix (1.17), centered on the UVC emission.

Galaxies without AGN, Gold sample a) F225W LyC b) F275W LyC c) F336W LyC d) F435W LyC RAJ e) F606W UVC f) F606W UVC g) F775W UVC h) F850LP UVC z=2.26 2.47 z=2.47 3.08 z=3.08 4.35 z=4.35-6. Galaxies without AGN in Gold sample. Top row: Ly-Continuum stacks, Bottom Row: UV-Continuum stacks. Blue: SExtractor LyC apertures, > 1σ in > 4 connected pixels. Green: SExtractor MAG AUTO apertures using UVC centroids+apertures.

Galaxies without AGN, Gold+Silver sample a) F225W LyC b) F275W LyC c) F336W LyC d) F435W LyC RAJ e) F606W UVC f) F606W UVC g) F775W UVC h) F850LP UVC z=2.26 2.47 z=2.47 3.08 z=3.08 4.35 z=4.35-6. Galaxies without AGN in combined Gold + Silver sample.

Galaxies with AGN, Gold sample a) F225W LyC b) F275W LyC c) F336W LyC d) F435W RAJ LyC e) F606W UVC f) F606W UVC g) F775W UVC h) F850LP UVC z=2.26 2.47 z=2.47 3.08 z=3.08 4.35 z=4.35-6. Galaxies hosting weak AGN in Gold sample. [Lower Left]: N=1 AGN with background objects shown before masking-out.

All galaxies, Gold sample a) F225W LyC b) F275W LyC c) F336W LyC d) F435W LyC RAJ e) F606W UVC f) F606W UVC g) F775W UVC h) F850LP UVC z=2.26 2.47 z=2.47 3.08 z=3.08 4.35 z=4.35-6. All Objects (Galaxies + Weak AGN) in Gold sample.

All Galaxies, Gold+Silver sample a) F225W LyC b) F275W LyC c) F336W LyC d) F435W LyC RAJ e) F606W UVC f) F606W UVC g) F775W UVC h) F850LP UVC z=2.26 2.47 z=2.47 3.08 z=3.08 4.35 z=4.35-6. All Objects (Galaxies + Weak AGN) in Gold+Silver sample.

(3) Stacked UV and Lyman Continuum Light-Profiles Galaxies without AGN, 2.3 < < ~ z ~ 6 RAJ a) F225W b) F275W c) F336W d) F435W e) Gold N=51 f) Gold (smoothed) N=51 g) LyC F225W h) F275W i) F336W j) F435W k) Gold+Silver N=118 l) LyC Gold+Silver (smoothed) N=118 LyC LyC z=2.26 2.47 z=2.47 3.08 z=3.08 4.35 z=4.35-6 WEIGHTED ALL: z=2.26 6. [Top Row]: All galaxies in combined Gold Galaxy sample: N=51; [Bottom Row]: All galaxies in combined Gold+Silver sample: N=118. The faint LyC emission has a very flat SB-distribution with radius: On average escapes along few random sight-lines through a porous ISM? Not centrally concentrated with few clear sight-lines per galaxy. Likeliest escape paths may be somewhat offset from galaxy center.

Surface Brightness (mag AB arcsec 2 ) 22 24 26 28 30 Model (z=2.65) F225W (<z>=2.38) F275W (<z>=2.68) F336W (<z>=3.47) F435W (<z>=5.02) 32 F435W PSF F275W PSF 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Isophotal Semi-Major Axis (arcsec) [Top Curves]: Radial SB-profiles of non-ionizing UVC (solid). [Bottom Curves]: Radial SB-profiles of LyC signal (dashed): All LyC SB-profiles are extended compared to the PSFs (dotted). Horizontal black dashed line is the 1σ SB-limit of 32 mag arcsec 2. Light-blue dot-dashes is z=2.68 UVC-scattering model with ISM porosity and escaping LyC increasing as: f cov (r)=n exp{ (r/10 kpc) x }.

(4) Spectral Energy Distribution (SED)-fitting & Dust (A V )-distribution 3 2 1 0 1 2 3 4 5 6 7 8 9 10 [LEFT]: Best-fit A V from 10-band SEDs for all ERS galaxies (black dots). Circles: galaxies; Asterisks: AGN at: z=2.37, z=2.68, z=3.45, z=5.1. [RIGHT]: Adopted distributions N(A V ) for total Gold + Silver LyC sample (top), and for each of the four redshift bins: Median A V increases from 0.2 at z=5.1 3.5 to 0.6 at z=2.67 2.37.

3 missing for most SMGs 2 1 0 1 2 3 4 5 6 7 8 9 10 Best-fit A V from 10-band SEDs for all ERS galaxies (black dots). Galaxies+AGN with z spec =2.37 2.68 represent N(A V ) distribution. Spectroscopically selected galaxies + AGN at z=3.45 5.1 miss 45% of dusty (A V > 1 mag) objects at z > 3. Our f esc -value calculations vs. redshift will correct for this.

(5) LyC Escape Fractions vs. z for Faint Galaxies & Weak AGN PDFs of absolute & relative f esc -values (Inoue + 2014 MC), folding LyC fluxes±1σ errors through 10 9 random LOS of IGM transmission. Filled triangles indicate the resulting modal and circles the average f esc -values in each PDF. Tick-marks show the ±1σ-range.

Other work (see text) Other work (see text) T=tanh[(log(1+z)-0.53)/0.07] T=tanh[(log(1+z)-0.59)/0.07] T=tanh[(log(1+z)-0.59)/0.07] [Left]: Relative f esc -z: Published + ERS Gold & Gold+Silver samples. Shaded bounded by: f esc (0.02±0.01) (1+z) 1.0±0.5 does not fit well. Simple tanh[log(1+z)] captures more sudden f esc -increase at z > 2.5 3. [Dashed: Same, corrected for 45% missing SMGs(A V >1) at z > 3.1]. [Right]: Same for 12 AGN in ERS (+Bridge + 2010) available thus far. Object-weighted ratio of tanh-curves suggests f esc (galaxies) high enough to dominate reionization at z > 3, while AGN may dominate at z < 2.5.

WFC3 ERS 10-band redshift estimates accurate to < 4% with small systematic errors (Hathi et al. 2010, 2013), resulting in a reliable N(z). Measure masses of faint galaxies to AB=26.5 mag, tracing the process of galaxy assembly: downsizing, merging, (& weak AGN growth?). Median redshift in (medium-)deep fields is zmed 1.5 2. HUDF shows WFC3 z 7 9 capabilities (Bouwens+ 2014; Yan+ 2010). JWST will trace mass assembly and dust content z 1 12, with nanojy sensitivity from 0.7 5µm. < 5 mag deeper from

(5b) Can JWST see most of the Reionizing sources?? 1.6µm counts (Windhorst + 2011). [F150W, F225W, F275W, F336W, F435W, F606W, F775W, F850LP, F105W, F125W, F140W not shown]. Faint-end near-ir count-slope 0.16±0.02 dex/mag Faint-end LF-slope α(z med 1.6) 1.4 reach M AB 14 mag. 800-hr WUDF can see AB < 32 objects: M AB 15 (LMCs) at z 11! Lensing will change the landscape for JWST observing strategies (WUDFF).

-1-2 -3 Hierarchical pred. (z>10) JWST needed -1-2 -3-2 1 2 3 4 5 6 7 8 9 10 20-2 -3-4 JWST needed +lensing -3-4 -22-21 -20-19 -18-17 -16-15 1 2 3 4 5 6 7 8 9 10 20 1 2 3 4 5 6 7 8 9 10 20 (1+z) JWST needed +lensing -22-21 -20-19 -18-17 -16-15 Evolution of Schechter UV-LF: faint-end LF-slope α(z), Φ (z) & M (z): For JWST z > 8, expect α < 2.0; Φ < 10 3 (Mpc 3 ) (Bouwens + 14). HUDF: Characteristic M may drop below 18 or 17.5 mag at z > 10. Will have significant consequences for JWST survey strategy.

(Mpc ) Gxy LF (z=6-20): p=0.16 WMAP9/Planck13: Reion z=11+/-1 Schechter LF (6 < z < 20) with best-fit α(z), Φ (z), M (z) & µ=0.50. Area/Sensitivity for: HUDF/XDF, 10 WMDFs, 2 WDFs, & 1 WUDF. Will need lensing targets for WMDF WUDFF to see z 12 15 objects.

(6) Summary and Conclusions (1) HST can measure LyC for galaxies + weak AGN at z 2.26 5.5. WFC3 and ACS filters designed with low-enough redleak to enable this. Samples of sufficient size (N=11 118) need to be stacked to see LyC signal. Astrometry/registration and sky-background subtraction must be carefully done in various stages. Subtle residual sky-gradients and other systematics ultimate limitation to LyC stacking (at > 32.3 mag arcsec 2 ). Deepest 10-band images at HST resolution critical to mask-out all foreground interlopers to AB < 27.5 mag. Careful spectroscopic redshift selection critical for reliable samples. Must correct results for M AB and A V -biases that result from the necessary spectroscopic selection.

(2) LyC signal detected in sub-samples of N=11 37 objects at z=2.26 5.5. Detections of AB(LyC) generally better than > 3 4σ (AB 29.5 31 mag). Weak AGN have 1 mag brighter AB(LyC), but are 4 10 less numerous than galaxies. Stacked LyC SB-profiles are on average much flatter than the UVcontinuum Sersic-profile. LyC may escape along few random sight-lines, offset from the average galaxy center. Non-Sersic LyC SB-profiles may indicate that the ISM porosity increases with r.

(3) Resulting f esc -values show rapid tanh[log(1+z)] increase at z > 2.5. Dust-corrected SED-fits and MC simulations are essential to interpret this sudden drop in f esc (z). Best-fit 10-band ERS SEDs suggests A V increases from z 6 to z 2.3. Spectroscopic selection at z=2.37 2.68 follows field galaxy A V, but at z=3.45 5.1 misses 45% of dusty objects. This explains part, but not all, of the sudden f esc -increase at z > 2.5: Accumulating A V (t) may shut down f esc (z < 3). Object-weighted ratio of tanh-curves suggests f esc (galaxies) high enough to dominate reionization at z > 3, while AGN may take over at z < 2.5.

SPARE CHARTS

References and other sources of material shown: http://www.asu.edu/clas/hst/www/jwst/ [Talk, Movie, Java-tool] http://www.asu.edu/clas/hst/www/ahah/ http://www.asu.edu/clas/hst/www/jwst/clickonhudf/ [Hubble at Hyperspeed Java tool] [Clickable HUDF map] http://www.jwst.nasa.gov/ & http://www.stsci.edu/jwst/ http://ircamera.as.arizona.edu/nircam/ http://ircamera.as.arizona.edu/miri/ http://www.stsci.edu/jwst/instruments/nirspec/ http://www.stsci.edu/jwst/instruments/fgs Gardner, J. P., et al. 2006, Space Science Reviews, 123, 485 606 Mather, J., & Stockman, H. 2000, Proc. SPIE Vol. 4013, 2 Windhorst, R., et al. 2008, Advances in Space Research, 41, 1965 Windhorst, R., et al., 2011, ApJS, 193, 27 (astro-ph/1005.2776).

Stacking Tests, Gold sample a) original F225W b) F275W c) F336W d) F435W RAJ z=2.37, z=2.68, z=3.45, z=5.1 Gold stacks; e) rotation tests f) g) h) Same Gold stacks after random 90 rotation; i) split halves subset 1 j) k) l) First independent data halves Gold stacks; m) split halves subset 2 n) o) p) Second independent data halves Gold stacks; q) blank sky tests r) s) t) Random sky-stacks to verify null-signal.

Stacking Tests, Gold+Silver sample a) original F225W b) F275W c) F336W d) F435W RAJ z=2.37, z=2.68, z=3.45, z=5.1 Silver stacks; e) rotation tests f) g) h) Same Silver stacks after random 90 rotation; i) split halves subset 1 j) k) l) First independent data halves Silver stacks; m) split halves subset 2 n) o) p) Second independent data halves Silver stacks; q) blank sky tests r) s) t) Random sky-stacks to verify null-signal.

a) b) Detector location of high-cte and low-cte sub-samples: [LEFT]: WFC3/UVIS F225W, F275W, F336W. [RIGHT]: ACS/WFC F435W. Green regions are closest to parallel read-out amplifier. Red regions are furthest from amplifiers, and may suffer more from CTE-degradation. Filled circles show marginal LyC signal in individual objects: These are fairly uniformly distributed across individual CCDs. Average stacked LyC diff: (Lower-CTE High-CTE) 0.5±0.35 mag. = Less than four months after WFC3 s launch, CTE-induced systematics are not yet larger than the random errors in the LyC signal.