MOLECULAR SPINTRONICS. Eugenio Coronado

Similar documents
Supplementary Information

Martes cuántico Zaragoza, 8 th October Atomic and molecular spin qubits. Fernando LUIS Instituto de Ciencia de Materiales de Aragón

Herre van der Zant. interplay between molecular spin and electron transport (molecular spintronics) Gate

Molecular prototypes for spin-based CNOT and SWAP quantum logic gates

Quantum Information Processing with Semiconductor Quantum Dots

Quantum Information Processing with Semiconductor Quantum Dots. slides courtesy of Lieven Vandersypen, TU Delft

Non-linear driving and Entanglement of a quantum bit with a quantum readout

First- principles studies of spin-crossover molecules

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1

Spin electric coupling and coherent quantum control of molecular nanomagnets

Synthesizing arbitrary photon states in a superconducting resonator

Organic Conductors and Superconductors: signatures of electronic correlations Martin Dressel 1. Physikalisches Institut der Universität Stuttgart

Giant Negative Magnetization in a Layered Molecular-Based Magnet

Beyond the Giant Spin Approximation: The view from EPR

New example of Jahn-Teller isomerism in [Mn 12 O 12 (O 2 CR) 16 (H 2 O) 4 ] complexes

Multifunctionality and Nanostructuration in Spin Crossover Materials. A. B. Gaspar ICMOL, University of Valencia

Supporting Information

Room Temperature Quantum Coherence and Rabi Oscillations in Vanadyl Phthalocyanine: Toward Multifunctional Molecular Spin Qubits

Spins Dynamics in Nanomagnets. Andrew D. Kent

Seminars in Nanosystems - I

Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System

Interaction between a single-molecule

Spin switching in electronic devices based on 2D assemblies of spin-crossover

COOPERATIVE ELASTIC SWITCHING IN VOLUME-CHANGING MAGNETIC MATERIALS TRIGGERED BY FEMTOSECOND MOLECULAR PHOTOSWITCHING.

Lecture 2, March 1, 2018

Magnetic Resonance in Quantum Information

Carbon Nanotubes for Photovoltaic Applications. Fernando Langa. Univ. of Castilla-La Mancha Toledo, Spain

M.C. Escher. Angels and devils (detail), 1941

From manipulation of the charge state to imaging of individual molecular orbitals and bond formation

Monte Carlo - Metropolis Investigations of Shape and Matrix Effects in 2D and 3D Spin-Crossover Nanoparticles

Magnetic semiconductors. (Dilute) Magnetic semiconductors

Superconductivity in Cu x Bi 2 Se 3 and its Implications for Pairing in the Undoped Topological Insulator

MolNanoSpin: Spintronique moléculaire avec des molécules-aimants

Shallow Donors in Silicon as Electron and Nuclear Spin Qubits Johan van Tol National High Magnetic Field Lab Florida State University

Superconductivity at nanoscale

Strong tunable coupling between a charge and a phase qubit

Cotunneling and Kondo effect in quantum dots. Part I/II

5 questions, 3 points each, 15 points total possible. 26 Fe Cu Ni Co Pd Ag Ru 101.

3.23 Electrical, Optical, and Magnetic Properties of Materials

Superconducting qubits (Phase qubit) Quantum informatics (FKA 172)

Experimental Quantum Computing: A technology overview

News from NBIA. Condensed Matter Physics: from new materials to quantum technology. time. Mark Rudner

Quantum Coherent Properties of Spins - III

Nitrogen-Vacancy Centers in Diamond A solid-state defect with applications from nanoscale-mri to quantum computing

Solvent-Included Ternary Charge-Transfer Salt (BEDT- TTF) 2 GaCl 4 (C 6 H 5 Cl) 0.5, (BEDT-TTF = Bis(ethyelenedithio)- tetrathiafulvalene)

Saroj P. Dash. Chalmers University of Technology. Göteborg, Sweden. Microtechnology and Nanoscience-MC2

Molecular spintronics with spin crossover compounds

Magnetic Resonance in Quantum

Photo-magnetic transitions: Spin crossover molecules

QUANTUM SPIN DYNAMICS OF RARE-EARTHS IONS

29: Nanotechnology. What is Nanotechnology? Properties Control and Understanding. Nanomaterials

Scanning Tunneling Microscopy Local probes at high magnetic fields?

Quantum Dot Spin QuBits

Lecture 2, March 2, 2017

Devil s staircase and multi-step transitions

Final exam. Introduction to Nanotechnology. Name: Student number:

Circuit Quantum Electrodynamics. Mark David Jenkins Martes cúantico, February 25th, 2014

I. Molecular magnetism and single-molecule magnets

Lecture 26: Nanosystems Superconducting, Magnetic,. What is nano? Size

Chapter 1 Basic Concepts: Atoms

Presented by: Göteborg University, Sweden

Concepts in Spin Electronics

High Frequency Electron Paramagnetic Resonance Studies of Mn 12 Wheels

Superconducting quantum bits. Péter Makk

Quantum Tunneling of Magnetization in Molecular Magnets. Department of Physics, New York University. Tutorial T2: Molecular Magnets, March 12, 2006

Interference: from quantum mechanics to nanotechnology

Fundamental concepts of spintronics

The First Cobalt Single-Molecule Magnet

P 3/2 P 1/2 F = -1.5 F S 1/2. n=3. n=3. n=0. optical dipole force is state dependent. n=0

Magnetic polyoxometalates: from molecular magnetism to molecular spintronics and quantum computingw

phys4.20 Page 1 - the ac Josephson effect relates the voltage V across a Junction to the temporal change of the phase difference

Measurement theory for phase qubits

Protection of excited spin states by a superconducting energy gap

Spin-crossover molecules: puzzling systems for electronic structure methods. Andrea Droghetti School of Physics and CRANN, Trinity College Dublin

Detecting and using Majorana fermions in superconductors

Highly efficient hybrid perovskite solar cells by interface engineering

Photoelectric readout of electron spin qubits in diamond at room temperature

MRAM: Device Basics and Emerging Technologies

Modeling Schottky barrier SINIS junctions

Lecture 8, April 12, 2017

PI 2 -ICMA. Título del proyecto: Understanding the magnetic anisotropy in Single- Molecule-Magnets for future molecular spintronic applications

QUANTUM COMPUTING. Part II. Jean V. Bellissard. Georgia Institute of Technology & Institut Universitaire de France

Quantum computation and quantum information

Enhanced spin orbit torques by oxygen incorporation in tungsten films

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1

Challenges for Materials to Support Emerging Research Devices

Intermolecular interactions (dipolar and exchange)

Single-Molecule Junctions: Vibrational and Magnetic Degrees of Freedom, and Novel Experimental Techniques

Cryogenic memory element based on a single Abrikosov vortex

High-Temperature Criticality in Strongly Constrained Quantum Systems

Chapter 5 Nanomanipulation. Chapter 5 Nanomanipulation. 5.1: With a nanotube. Cutting a nanotube. Moving a nanotube

Magnetic Molecules are tomorrows bits synthetic?

Solutions and Ions. Pure Substances

Chapter 1 Electronic and Photonic Materials - DMS. Diluted Magnetic Semiconductor (DMS)

Ion crystallisation. computing

X-Ray Spectro-Microscopy Joachim Stöhr Stanford Synchrotron Radiation Laboratory

Short Course in Quantum Information Lecture 8 Physical Implementations

Single Spin Qubits, Qubit Gates and Qubit Transfer with Quantum Dots

Spintronics in Nanoscale Devices. Edited by Eric R. Hedin Yong S. Joe

To Quantum Dots and Qubits with electrons on helium

Transcription:

MOLECULAR SPITROICS Eugenio Coronado

Spintronics Manipulation of the spin by electrical means (current, electric field) optical means (light) mechanical means (pressure). At the nanoscale

Molecular Spintronics Multifunctional Materials anospintronics

Molecular Spintronics Multifunctional Materials anospintronics

EXAMPLE 1 Hybrid magnetic conductors Magnetic conductors FERROMAGETIC LAYER + ORGAIC DOOR MOLECULE [M II M III (ox) 3 ] -

Hybrid magnetic conductors EXAMPLE 1 Magnetic conductors [BEDT-TTF] 2.6 [MnCr(ox) 3 ].CH 2 Cl 2 0.4 nm Ferromagnetic 1.2 nm 16.6 Å Metallic 0.4 nm Ferromagnetic E. Coronado et al. ature 2000, 408, 447 JR Galán, E. Coronado et al. JACS 2010, 132, 9271 (Chiral Magnetic Conductor)

EXAMPLE 2 Hybrid magnetic conductors Magnetic superconductors ife Ferromagnetic cation layer T c = 4 K T c = 18 K Superconducting anion layer T c = 4.5-5 K E. Coronado et al. ature Chem. 2010, 2, 1031

Hybrid magnetic conductors EXAMPLE 2 Magnetic superconductors [TaS2]-0.3 : -0.022/Å2 0.4 nm 0.5 nm [ial]+0.3 : +0.021/Å2 Matching in the charge density of the sheets

Hybrid magnetic conductors Magnetic Superconductor (with ferromagnetic i-fe layers) PURE i-fe layer HYBRID i-fe / TaS2

Hybrid magnetic conductors Magnetic Superconductor (with ferromagnetic i-fe layers) PURE i-fe layer HYBRID i-fe / TaS2

Magnetic Insertion of magnetic Single Superconductors: Molecule Magnets in superconductor molecules (single-molecule magnets, spin-crossover ) Structure Mn4 2+ G. Christou, D.. Hendrickson et al. Inorg. Chem. 2000, 39, 3615 [Mn4][TaS2]6 Adv. Mat. 2011, in press

Magnetic Mn 4 intercalated Superconductors: in a layered Insertion superconductor of magnetic molecules (single-molecule magnets) Magnetic Characterization [Mn 4 ][TaS 2 ] 6 Hysteresis Superconductivity is maintained The energy barrier of the SMM is reduced by 1/2 (from 24 to 12 K)

Molecular Spintronics Multifunctional Materials anospintronics

From Spintronics to anospintronics Electron transport across molecular magnets Molecular transistor Molecular spin valve Molecular spin qubits

Molecular Spintronics Multifunctional Materials anospintronics Switching nanoparticles Single-molecule magnets bits qubits

Switching Magnetic nanoparticles Fe(II)(LS) Fe(II) (HS) Spin crossover complexes Low Spin High Spin T, hν, P S = 0 Fe- = 1.8 Å S = 2 Fe- = 2.0 Å

Switching Magnetic nanoparticles Fe Fe Fe BISTABLE MAGETIC AOPARTICLES ( 10 nm) prepared by the reverse micelles technique E. Coronado, J. R. Galán et al. Adv. Mater. 2007, 19, 1359 Inorg. Chem. 2010, 49, 5706

Optical and Magnetic measurements MAGETIC BISTABILITY HS LS LS HS Suspension in octane

Transport measurements Transport measurements on Au nanogaps ( 5 nm) (H. Van der Zant, F. Prins) 6 before deposition after deposition 5 nm 100 nm I (na) 3 0 At RT -3-6 -0.4-0.2 0.0 V (V) 0.2 0.4

Transport measurements Transport measurements vs. T 0.4 V I (A) 2.00E-011 1.50E-011 1.00E-011 5.00E-012 0.00E+000 295 310 320 325 HS LS -5.00E-012-1.00E-011-0.6-0.4-0.2 0.0 0.2 0.4 0.6 V (V) H. Van der Zant, E. Coronado et al. Adv. Mater. 2011, 23, 1545. Spin-dependent conductivity

Transport measurements Bias voltage induced spin-crossover? 0.3 10 K I (na) 0.2 0.1 H. Van der Zant, E. Coronado et al. Adv. Mater. 2011, 23, 1545. 0.0 0.0 0.5 1.0 V (V)

SIGLE-MOLECULE MAGETS SPI QUBITS

SMMs based on POMs AlDamen et al., HoW 10-1 ) Energy (cm 350 300 250 200 150 100 50 0 Ground state: m J = ±4-50 -8-6 -4-2 0 2 4 6 8 J projection m J U eff = 2.5 cm -1

POMs as SPI-QUBITS Ho 0.25 Y 0.75 W 10 Pulsed EPR (X-band) Rabi oscillations in a concentrated sample T 1 = 1 µs T 2 = 180 ns very robust spin qubit

POMs as SPI-QUBITS Pulsed EPR (X-band) Ho x Y 1-x W 10 concentration dependence Very long quantum coherence time From T 2 = 180 ns to 1.2 µs and could be improved!!! (by deuteration) V 15 (S=1/2) T 2 800 ns B. Barbara et al. ature 453, 203 (2008)

Univ. Valencia (ICMol) - Efren avarro-moratalla - María Monrabal - Elena Pinilla-Cienfuegos - Gonzalo Abellán - Carlos Martí Gastaldo (Liverpool) - Sergio Tatay (Thales, Paris) - José Ramón Galán (ICIQ) - Antonio Ribera Acknowledgment ICMA-CSIC - Fernando Luis Univ. Oxford - Steve Blundell - Peter Baker TU Delft -Ferry Prins - Herre van der Zant

European Union: MolSpinQIP HITS ELFOS Spanish Ministry of Science and Innovation Generalitat Valenciana Support COSOLIDER-IGEIO on Molecular anoscience PROMETEO Program SPIMol