QCD Studies With CMS Data for Measurements of the Top-Quark Mass and the Strong Coupling Constant

Similar documents
arxiv: v1 [hep-ex] 8 Jan 2018

arxiv: v1 [hep-ex] 12 Sep 2014

Top Quark Production at the LHC. Masato Aoki (Nagoya University, Japan) For the ATLAS, CMS Collaborations

Overview of PDF-sensitive measurements from Run I in ATLAS

The Top Quark Mass in the Muon+Jets Final State at s = 13 TeV in 2015 Data

W/Z + jets and W/Z + heavy flavor production at the LHC

Proton PDFs constraints from measurements using the ATLAS experiment

Measurement of the jet production properties at the LHC with the ATLAS Detector

Electroweak results. Luca Lista. INFN - Napoli. LHC Physics

Recent Results on Top Physics at CMS

Physics at Hadron Colliders

Measurements of the Vector boson production with the ATLAS Detector

Tests of QCD Using Jets at CMS. Salim CERCI Adiyaman University On behalf of the CMS Collaboration IPM /10/2017

Top quark mass at ATLAS and CMS

arxiv: v1 [hep-ex] 18 Jul 2016

PDF Studies at LHCb! Simone Bifani. On behalf of the LHCb collaboration. University of Birmingham (UK)

from Klaus Rabbertz, KIT Proton Structure (PDF) Proton Structure (PDF) Klaus Rabbertz Status of αs Determinations Mainz, Germany,

New results from CMS for PDF studies

Combination of top quark physics results at the LHC

Top production at the Tevatron

Inclusive. W & Z measurements in CMS. Georgios Daskalakis. on behalf of CMS Collaboration. .C.S.R. Demokritos

Measurement of jet production in association with a Z boson at the LHC & Jet energy correction & calibration at HLT in CMS

Differential Top Cross-section Measurements

arxiv: v1 [hep-ex] 15 Jan 2019

Highlights of top quark measurements in hadronic final states at ATLAS

Top and Electroweak Physics at. the Tevatron

Top production measurements using the ATLAS detector at the LHC

Measurement of t-channel single top quark production in pp collisions

Precision QCD at the Tevatron. Markus Wobisch, Fermilab for the CDF and DØ Collaborations

Inclusive top pair production at Tevatron and LHC in electron/muon final states

PoS(EPS-HEP2015)309. Electroweak Physics at LHCb

High p T physics at the LHC Lecture III Standard Model Physics

Recent QCD results from ATLAS

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

Multi-differential jet cross sections in CMS

PoS(EPS-HEP 2013)215. WW, WZ, and ZZ production at CMS. Jordi DUARTE CAMPDERROS (on behalf of CMS collaboration)

Electroweak Measurements at LHCb!

Physics at Tevatron. Koji Sato KEK Theory Meeting 2005 Particle Physics Phenomenology March 3, Contents

PoS(ICHEP2012)300. Electroweak boson production at LHCb

Moriond QCD. Latest Jets Results from the LHC. Klaus Rabbertz, KIT. Proton Structure (PDF) Proton Structure (PDF) Klaus Rabbertz

W/Z inclusive measurements in ATLAS

W/Z+jet results from the Tevatron

Electroweak Physics at the Tevatron

QCD at CDF. Régis Lefèvre IFAE Barcelona On behalf of the CDF Collaboration

Measurements of the W Boson Mass and Trilinear Gauge Boson Couplings at the Tevatron

Proton anti proton collisions at 1.96 TeV currently highest centre of mass energy

Measurement of W-boson Mass in ATLAS

Results on the proton structure from HERA

First 13 TeV results from CMS

Top Quark Physics at LHC

arxiv: v1 [hep-ex] 27 Nov 2017

Transverse Energy-Energy Correlation on Hadron Collider. Deutsches Elektronen-Synchrotron

Direct measurement of the W boson production charge asymmetry at CDF

Precise measurements of the W mass at the Tevatron and indirect constraints on the Higgs mass. Rencontres de Moriond QCD and High Energy Interactions

Results on top physics by CMS

Higgs-related SM Measurements at ATLAS

W, Z and top production measurements at LHCb

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

W. Fedorko for the ATLAS collaboration

Physics at Hadron Colliders Part II

Miguel Villaplana Università degli Studi e INFN Milano. on behalf of the ATLAS Collaboration. September 11, 2017

Results from D0: dijet angular distributions, dijet mass cross section and dijet azimuthal decorrelations

ATLAS Measurements of Boosted Objects

CDF top quark " $ )(! # % & '

Measurements of the production of a vector boson in association with jets in the ATLAS and CMS detectors

top quark mass measurements

Top, electroweak and recent results from CDF and combinations from the Tevatron

Introduction. The LHC environment. What do we expect to do first? W/Z production (L 1-10 pb -1 ). W/Z + jets, multi-boson production. Top production.

Dimitris Iliadis AUTh, LAPP. On behalf of the ATLAS collaboration. XIIth Quark Confinement and the Hadron Spectrum 29 August 2016, Thessaloniki

arxiv: v1 [hep-ex] 28 Aug 2017

QCD Studies at the Tevatron

PANIC August 28, Katharina Müller on behalf of the LHCb collaboration

QCD at the Tevatron: The Production of Jets & Photons plus Jets

QCD Jets at the LHC. Leonard Apanasevich University of Illinois at Chicago. on behalf of the ATLAS and CMS collaborations

PoS(HQL 2016)039. Top quark properties. Javier Cuevas Maestro U de Oviedo

Latest results on the SM Higgs boson in the WW decay channel using the ATLAS detector

Measurements of the vector boson production with the ATLAS detector

Standard Model Physics at the LHC: QCD, Top, Electroweak

Hard And Soft QCD Physics In ATLAS

Top-quark mass determination

Recent Results from the Tevatron

Inclusive and differential vector boson (W, Z) measurements from CMS Kadir Ocalan (Necmettin Erbakan University) On behalf of the CMS Collaboration

First V+jets results with CMS. Vitaliano Ciulli (Univ. & INFN Firenze) V+jets workshop, 8-10 Sep 2010, Durham

Search for SUSY at CMS in lepton or photon final states. PANIC 2011 K. Theofilatos (on behalf of CMS)

QCD and jets physics at the LHC with CMS during the first year of data taking. Pavel Demin UCL/FYNU Louvain-la-Neuve

Electroweak Physics and Searches for New Physics at HERA

Measurements of event properties and multi-differential jet cross sections and impact of CMS measurements on Proton Structure and QCD parameters

Top quark pole mass measurements in ATLAS

The W-mass Measurement at CDF

arxiv: v1 [hep-ex] 2 Nov 2017

Latest results on top production from the CMS and ATLAS collaborations: inclusive and differential measurements

Recent Results on Jet Physics and α s

Azimuthal Correlations for Inclusive 2-jet, 3-jet and 4-jet events in pp collisions at s = 13 TeV with CMS

EW Physics at LHC. phi= mu_4: pt=7.9 GeV, eta=-1.13, phi=0.94. Toni Baroncelli:

Overview of QCD measurements at high pt

Colorful Physics for the Tevatron and LHC

CT14 Intrinsic Charm Parton Distribution Functions from CTEQ-TEA Global Analysis

EW theoretical uncertainties on the W mass measurement

ECFA Meeting March 9 10, Prague. Alexander Kupčo. Institute of Physics, Center for Particle Physics, Prague

WZ di-boson production at CMS

Transcription:

QCD Studies With CMS Data for Measurements of the Top-Quark Mass and the Strong Coupling Constant Sebastian Naumann-Emme DESY DPG-Frühjahrstagung, Mainz, 2014-03-25

The Compact Muon Solenoid & Quantum Chromodynamics Candidate for a t t event with b J/ψ + X There is QCD in all these hadron collisions CMS 2011 / 2012 5 / 20 fb 1 of pp data at s = 7 / 8 TeV Thorough understanding and accurate modeling of QCD needed: for SM precision and for BSM searches see K. Lipka s talk this morning 2014-03-25, Mainz S. Naumann-Emme: QCD Studies With CMS Data 2 / 25

Outline In the following, will discuss two topics: 1. The top-quark mass QCD modeling Pole mass via the t t cross section 2. The strong coupling constant From the t t cross section From differential jet cross sections Results are labeled with CMS publication IDs: SMP2-028 TOP3-007 etc. Further details on the web: 1/α S 15 14 13 12 11 9 8 2 n f =5 CMS trijet/dijet CMS inclusive jets 2m top n f =6 3 Q [GeV] n f =12 (MSSM) 4 https://twiki.cern.ch/twiki/bin/view/cmspublic/physicsresults 2014-03-25, Mainz S. Naumann-Emme: QCD Studies With CMS Data 3 / 25

17 1 CDF RunII, l+jets L int L int L int D0 RunII, l+jets L int D0 RunII, di-lepton L int ATLAS 2011, l+jets L int ATLAS 2011, di-lepton L int CMS 2011, l+jets L int CMS 2011, di-lepton L int CMS 2011, all jets L int = 8.7 fb CDF RunII, di-lepton = 5.6 fb CDF RunII, all jets L int = 5.8 fb miss CDF RunII, E +jets T = 8.7 fb = 3.6 fb = 5.3 fb = 4.7 fb = 4.7 fb = 4.9 fb = 4.9 fb = 3.5 fb The Top-Quark Mass Tevatron+LHC m top combination - March 2014, L = 3.5 fb - 8.7 fb int ATLAS + CDF + CMS + D0 Preliminary 172.85 ± 1.12 (0.52 ± 0.49 ± 0.86) 170.28 ± 3.69 (1.95 172.47 ± 2.01(1.43 ± 0.95 ± 1.04) 173.93 ± 1.85 (1.26 ± 1.05 ± 0.86) 174.94 ± 1.50 (0.83 ± 0.47 ± 1.16) 174.00 ± 2.79 (2.36 ± 0.55 ± 1.38) 172.31 ± 1.55 (0.23 ± 0.72 ± 1.35) 173.09 ± 1.63 (0.64 173.49 ± 1.06 (0.27 ± 0.33 ± 0.97) 172.50 ± 1.52 (0.43 173.49 ± 1.41(0.69 ± 3.13) ± 1.50) ± 1.46) ± 1.23) χ / ndf =4.3/ World comb. 2014 2 173.34 ± 0.76 (0.27 ± 0.24 ± 0.67) χ 2 prob.=93% Tevatron March 2013 (Run I+II) 173.20 ± 0.87 (0.51 ± 0.36 ± 0.61) Previous Comb. LHC September 2013 173.29 ± 0.95 (0.23 ± 0.26 ± 0.88) total (stat. ijes syst.) TOP3-014 165 170 175 180 185 m top [GeV] As G. Cortiana pointed out few minutes ago, a yet more precise knowledge and understanding of m t is needed for EW precision fits, the fate of the universe... 2014-03-25, Mainz S. Naumann-Emme: QCD Studies With CMS Data 4 / 25

The Top-Quark Mass World average: m t = 173.34 ± 0.36 (stat+jes) ± 0.67 (syst) GeV CMS latest measurement, presented at Moriond this morning: m t = 172.04 ± 0.19 (stat+jes) ± 0.75 (syst) GeV 25000 Lepton+jets channel, kinematic fittt correct and 2D ideogram method using mw rec tt wrong and mfit 20000 t JSF 1.012 1.01 1.008 1.006 1.004 1.002 1 CMS Preliminary, 19.7 fb, Permutations / 5 GeV s = 8 TeV, l+jets 15000 Data/MC contour 171.5 172 172.5 m t [GeV] JSF = 1.007 ± 0.002 (stat) ± 0.012 (syst) 1σ 000 2σ 3σ 5000 1.5 1 CMS Preliminary, 19.7 fb contour contour tt unmatched 1, Permutations / 5 GeV Data/MC s = 8 TeV, l+jets Z+Jets W+Jets 25000 single top Data 20000 15000 000 5000 1.5 1 CMS Preliminary, 19.7 fb correct TOP4-001 0.5 0.5 0 0 50 0 150 200 250 300 50 0 150 2006000 250 300 tt tt tt wrong reco m W [GeV] unmatched 1, Permutations / 5 GeV Data/MC s = 8 TeV, l+jets Z+Jets W+Jets single top Data 000 8000 reco m W [GeV] 4000 2000 1.5 1 0.5 CMS Preliminary, 19.7 fb 12000 tt correct tt tt wrong unmatched TOP3-014 1, s = 8 TeV, l+jets Z+Jets W+Jets single top Data 0 200 300 400 fit m t [GeV] 2014-03-25, Mainz S. Naumann-Emme: QCD Studies With CMS Data 5 / 25

The Top-Quark Mass World average: m t = 173.34 ± 0.36 (stat+jes) ± 0.67 (syst) GeV CMS latest measurement, presented at Moriond this morning: m t = 172.04 ± 0.19 (stat+jes) ± 0.75 (syst) GeV Lepton+jets channel, kinematic fit and 2D ideogram method using mw rec and mfit t JSF 1.012 1.01 1.008 1.006 1.004 1.002 1 CMS Preliminary, 19.7 fb, 171.5 172 172.5 m t [GeV] JSF = 1.007 ± 0.002 (stat) ± 0.012 (syst) s = 8 TeV, l+jets 1σ 2σ 3σ contour contour contour TOP4-001 TOP3-014 δm t (GeV) Fit calibration 0. p T - and η-dependent JES 0.18 Jet energy resolution 0.26 Missing transverse momentum 0.09 Lepton energy scale 0.03 b-tagging 0.02 Pileup 0.27 Non-t t background 0.11 Flavor-dependent JES 0.41 b fragmentation 0.06 Semileptonic B-hadron decays 0.16 Parton distribution functions 0.09 QCD scales (µ R, µ F ) 0.13 ME-PS matching threshold 0.15 ME generator 0.23 Underlying event 0.17 Color reconnection effects 0.15 2014-03-25, Mainz S. Naumann-Emme: QCD Studies With CMS Data 6 / 25

Modeling a t t Event Hard-scattering matrix element (ME): MadGraph, Powheg, MC@NLO... 2014-03-25, Mainz S. Naumann-Emme: QCD Studies With CMS Data 7 / 25

Modeling a t t Event Decay (with spin correlations) Parton distribution functions (PDFs): CTEQ, MSTW, NNPDF... 2014-03-25, Mainz S. Naumann-Emme: QCD Studies With CMS Data 8 / 25

Modeling a t t Event Multi-parton interactions (MPI) Initial-state radiation (ISR) Parton shower (PS) and hadronization: Pythia (Lund string fragmentation) or Herwig (cluster fragmentation) 2014-03-25, Mainz S. Naumann-Emme: QCD Studies With CMS Data 9 / 25

Modeling a t t Event Color reconnections (CR) 2014-03-25, Mainz S. Naumann-Emme: QCD Studies With CMS Data / 25

Differential Top-Mass Studies Check dependence of m t measurement on event kinematics, comparing to different ME generators, hadronization models, UE tunes probing in particular variables that could be sensitive to color-reconnection effects = 8 TeV, l+jets contour 1σ JSF contour 2σ 1.012 contour s 1 CMS Preliminary, 19.7 fb, 3σ 1.01 1.008 1.006 1.004 TOP4-001 1.002 171.5 172 172.5 m [GeV] t 2D > [GeV] <m t 2D m t [GeV] data MG Z2* 3 Data 2 1 0 1 1 0 1 Difference to our standard MC: MadGraph+Pythia6 with Z2* tune 1 CMS Preliminary, 19.7 fb, MG, Pythia Z2* Powheg, Pythia Z2* s = 8 TeV, l+jets MG, Pythia P11 MG, Pythia P11noCR MC@NLO, Herwig 6 0 0.5 1 1.5 2 η b,had 2014-03-25, Mainz S. Naumann-Emme: QCD Studies With CMS Data 11 / 25

Differential Top-Mass Studies (cont.) TOP4-001 2D <m t > [GeV] data MG Z2* [GeV] m 2D t CMS Preliminary, 19.7 fb 6 4 2 0 Data MG, Pythia Z2* Powheg, Pythia Z2* 1, s = 8 TeV, l+jets MG, Pythia P11 MG, Pythia P11noCR MC@NLO, Herwig 6 0 2 0 0 200 300 400 p [GeV] T,t,had 2D > [GeV] <m t 2D m t [GeV] data MG Z2* CMS Preliminary, 19.7 fb 15 5 0 Data MG, Pythia Z2* Powheg, Pythia Z2* 1, s = 8 TeV, l+jets MG, Pythia P11 MG, Pythia P11noCR MC@NLO, Herwig 6 5 2 4 2 5 2 4 6 0 5 2 4 6 R qq Studied 14 variables summed χ 2 /Ndf = 37/47 (prob. = 85%) with MadGraph+Pythia6 and Z2* tune Within current statistics: data overall well modeled by MC With more data: Will be able to constrain model uncertainties further 2014-03-25, Mainz S. Naumann-Emme: QCD Studies With CMS Data 12 / 25

<p > T Κ data/sim Underlying Event and Color Reconnection UE study, using high-purity t t sample in the dilepton channel: <p > T Κ data/sim <p <p > > T T Κ data/sim Κ <p > T Κ data/sim 1.2 1.1 1 0.9 0.8 0.7 0.6 TOP3-007 Event-by-event axis: p T (t t) p T (b 1 ) + p T (b 2 ) + p T (l) + p T ( l) + p miss 1.4 1.3 Subtract b 1,b 2,l, l to characterize the soft, underlying activity 1.2 1.1 1Look at data/mc ratios, e.g. for the average p T of charged particles 0.9 as a function of p T (t t) 0.8 0.7 CMS preliminary, 19.7 fb, s=8 TeV 0.6 1.4 [ =0 extra jets ] P11 MPI hi TEV No CR 1.3 1.4 1.2 1.3 [ 2 jets ] 1.2 1.1 1.11 0.91 0.9 0.8 0.8 0.7 0.7 0.6 1.4 1.3 [ =1 extra jet ] 2 2 5 6 7 8 9 20 30 40 50 2 [ =1 extra jet ] tt transverse momentum [GeV] Default MC: MadGraph+Pythia6 with tune Z2* Here: comparison to different Perugia 11 tunes 1.2 Description 1.1 of data 20% worse when switching off color reconnections 1 0.9 2014-03-25, 0.8 Mainz S. Naumann-Emme: QCD Studies With CMS Data 13 / 25 T

) (GeV dn/dm µ + µ - 2000 1800 1600 1400 1200 00 800 600 400 200 B Fragmentation and Exclusive Decays CMS data preliminary, 19.69.8 fb, J/ψ ψ' s=8 TeV l+jets channel dilepton channel 0 0 1 2 3 4 5 6 7 8 9 [GeV] M µ + - µ TOP3-007 3.0 GeV<m(µµ)< 3.2 GeV Clear signal of b J/ψ + X in t t events Overall rate and kinematic distributions reasonably well modeled Future measurement: m t via m(l, J/ψ) Will require more precise fragmentation studies with LHC data Events / 0.25 Events / 0.05 250 Data 200 150 0 50 CMS preliminary, 19.8 fb, (PY6)+BG 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 min R (J/ψ - jet) CMS preliminary, 19.8 fb, 60 50 40 30 20 s = 8 TeV s = 8 TeV tt tt tt l + jets channel (MG) others (MG) Single top Dibosons Z/γ* ll W lν Data (PY6)+BG 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 p (J/ψ)/p (nearest jet) T T tt tt tt l + jets channel (MG) others (MG) 2014-03-25, Mainz S. Naumann-Emme: QCD Studies With CMS Data 14 / 25 Single top Dibosons Z/γ* ll W lν

Conceptional Limitations of m t Measurements 1. Aren t you just measuring a parameter of your MC event generators? Practically all m t measurements need calibration to MC However, according to implementation: close to pole mass in the sense of Breit-Wigner mass peak m MC t In 2011, A. Buckley et al.: shift could be O(1 GeV) Discussion at TOP2013: m MC t = mt pole within 250 500 MeV, uncertainty being mainly from: 2. Isn t the pole mass ill-defined for a quark (colored object) anyway? Intrinsic renormalon ambiguity: 270 GeV for mt Motivated to bring m t measurements to uncertainties of 0.5 GeV also at a hadron collider But: proper modeling of non-perturb. effects required... especially when reconstructing invariant mass of decay products 2014-03-25, Mainz S. Naumann-Emme: QCD Studies With CMS Data 15 / 25

Mass Dependence of t t Cross Section Since last year: σ(pp t t + X ) calculated at NNLO+NNLL QCD Uncertainties from higher orders (µ R, µ F ), PDF, α S, and m t now 3% each Compare to CMS most precise result for σ t t: s = 7 TeV, dileptons, 4% uncertainty (pb) tt σ 220 200 180 160 140 s = 7 TeV; α S (m Z ) = 0.1184 Tevatron 2012 CMS, L = 2.3 fb Top++ 2.0, ABM11 Top++ 2.0, CT Top++ 2.0, HERAPDF1.5 Top++ 2.0, MSTW2008 Top++ 2.0, NNPDF2.3 120 165 170 175 180 185 190 (GeV) pole m t TOP2-022 Due to acceptance corrections, meas. σ t t also depends on m t For blue curve assume: = mt pole ± 1 GeV m MC t Full α S -PDF correlations taken into account Only minor differences between 4 of 5 PDF sets; ABM has smaller gluon density 2014-03-25, Mainz S. Naumann-Emme: QCD Studies With CMS Data 16 / 25

Top Mass Resulting from t t Cross Section Obtain most probable mass value from marginalized joint posterior with Bayesian confidence interval First NNLO determination of the top mass Results compatible with average from direct m t measurements But approach not competitive in precision ABM11 CT MSTW2008 With α S (m ) = 0.1184 ± Z With α S (m ) of PDF set Z HERAPDF1.5 NNPDF2.3 CMS, mt pole = 176.7 +3.8 3.4 GeV with NNPDF2.3 s = 7 TeV, L = 2.3 fb ; NNLO+NNLL for σ tt 0.0007 Tevatron 2012 TOP2-022 160 165 170 175 180 185 (GeV) pole m t 176.7 +3.1 2.8 (σmeas ) ±1.4 (PDF) ±0.9 (µ t t R,F ) ±0.7 (α S ) ±0.9 (E LHC ) ±0.5 (mt MC ) GeV 2014-03-25, Mainz S. Naumann-Emme: QCD Studies With CMS Data 17 / 25

The Strong Coupling Constant Besides quark masses, α S is the only free parameter of QCD Lagrangian Renormalization Group Equation predicts its energy dependence Measured in variety of processes and at different energies, evolved to Q = m Z for comparison 2013 world average: α S (m Z ) = 0.1185 ± 0.0006 (based on NNLO and N 3 LO) 0.5% uncertainty, but still significant for precise calculations Tension between and within different categories (especially DIS structure funcs, but also e + e ) Precision driven by low-q data and lattice QCD τ-decays Lattice DIS e + e - annihilation Z pole fits 0.11 0.12 0.13 α s (Μ Ζ) 2014-03-25, Mainz S. Naumann-Emme: QCD Studies With CMS Data 18 / 25

(pb) tt σ 220 200 180 160 140 pole s = 7 TeV; mt = 173.2 GeV CMS, L = 2.3 fb Top++ 2.0, ABM11 Top++ 2.0, CT Top++ 2.0, HERAPDF1.5 Top++ 2.0, MSTW2008 Top++ 2.0, NNPDF2.3 α S from the t t Cross Section 120 0.8 0.11 0.112 0.114 0.116 0.118 0.12 0.122 α S (m ) Z pole CMS, s = 7 TeV, L = 2.3 fb ; NNLO+NNLL for σ tt ; m t = 173.2 ± 1.4 GeV Default α S (m ) of respective PDF set Z PDG PDG 2012 2012 TOP2-022 Same approach as for the m t extraction, but now leave α S free Need external m t constraint: take Tevatron average, adding ± 1 GeV for mt MC? = mt pole First determination of α S at NNLO from a hadron collider ABM11 CT α S (m Z ) = 0.1151 +0.0033 0.0032 with NNPDF2.3 HERAPDF1.5 MSTW2008 NNPDF2.3 0.8 0.11 0.112 0.114 0.116 0.118 0.12 0.122 α S (m ) Z Competitive precision (similar to results using LEP2 data) 2014-03-25, Mainz S. Naumann-Emme: QCD Studies With CMS Data 19 / 25

Three different measurements: α S from Jets SMP2-028 Double-diff. inclusive jet cross section: d 2 σ dp T dy QCD1-003 Ratio of inclusive trijet/dijet cross sections: R 32 ( p T 1,2 ) SMP2-027 Double-diff. trijet cross section: d 2 σ dm 3 dy max d y (pb/gev) T σ/dp 2 d 13 4 y < 0.5 ( ) CMS 11 0.5 < y < 1.0 ( s = 7 TeV 1.0 < y < 1.5 ( L = 5.0 fb 7 3-5 anti-k T µ = µ = p R F T R = 0.7 NNPDF2.1 NP Corr. 1.5 < y < 2.0 ( 2.0 < y < 2.5 ( 3 2 1 0 200 300 00 2000 Jet p (GeV) T ) ) ) ) R 32 Data/Theory 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 1.2 1.1 1 0.9 0.8 CMS s = 7 TeV anti-k T R = 0.7 Data (Int. Lumi. = 5.0 fb ) NLO NPC NNPDF2.1-NNLO α s (M ) = 0.119 Z Scale uncertainty PDF uncertainty 200 400 600 800 00 1200 1400 p (GeV) T1,2 200 400 600 800 00 1200 1400 p (GeV) T1,2 d 2 σ/dm3dymax [pb / GeV] 1 0 1 2 3 4 CMS preliminary L = 5.0 fb 1 s = 7 TeV Theory y max 1 1 < y max 2 5 6 Anti-kT R = 0.7 MSTW2008 - NLO 7 5 2 3 2 3 m3 [GeV] 2014-03-25, Mainz S. Naumann-Emme: QCD Studies With CMS Data 20 / 25

α S from Jets: Method All three analyses using the 7 TeV data and same methodology for α S : 1. Compare measured cross section to QCD prediction at NLO Using NLOJet++; adding MC-based non-perturbative corrections; for the inclusive jets additionally EW corrections 2. Use PDF sets provided for series of α S (m Z ) values to determine α S dependence preserves PDF-α S correlations Ratio to NLO(CT-NLO) NPC 1.6 1.4 1.2 1 0.8 0.6 y <0.5 Data (Int. Lumi. = 5.0 fb ) CT α s (M ) = 0.112 - Min. Value Z CT α s (M ) = 0.118 Z CT α s (M ) = 0.126 - Max. Value Z 2 2 2 3 CMS Preliminary s = 7 TeV anti-k T R = 0.7 3 Jet p T 3 2 (GeV) χ 2 112 111 1 9 8 7 6 5 4 CMS Preliminary CT-NLO y <2.5 Polynomial Fit 0.112 0.114 0.116 0.118 0.12 0.122 0.124 0.126 0.128 α S (M ) Z 3. Obtain best α S (m Z ) and uncertainty via χ 2 summed over bins 2014-03-25, Mainz S. Naumann-Emme: QCD Studies With CMS Data 21 / 25

α S from Jets: Results α S (m Z ) δrel max (scale/total) probed Q TOP2-022 t t (NNLO) 0.1151 +0.0033 0.0032 0.8% / 2.9% m t = 173 GeV SMP2-028 incl. jets (NLO) 0.1185 +0.0065 0.0041 4.6% / 5.5% p T = 0.1 2.1 TeV QCD1-003 trijet/dijet (NLO) 0.1148 +0.0055 0.0055 4.4% / 4.8% p T 1,2 = 0.4 1.4 TeV SMP2-027 trijet mass (NLO) 0.1160 +0.0072 0.0031 5.9% / 6.2% m 3 /2 = 0.3 1.4 TeV α S (Q) 0.24 CMS Preliminary CMS Incl. Jets : α )=0.1185 0.22 S (M Z CMS R 32 0.2 CMS tt cross section CMS 3-Jet mass 0.18 CMS Incl. Jets 0.16 0.14 0.12 0.1 0.08 0.06 D0 inclusive jets D0 angular correlation H1 ZEUS 2 3 +0.0065-0.0041 Q (GeV) 2014-03-25, Mainz S. Naumann-Emme: QCD Studies With CMS Data 22 / 25

R 32 0.2 CMS s = 7 TeV anti-k T R = 0.7 0.18 0.16 0.14 0.12 0.1 0.08 0.06 Probing the Running of α S Data (Int. Lumi. = 5.0 fb ) NNPDF2.1 α s (M ) = 0.6 - Min. Value Z NNPDF2.1 α s (M ) = 0.119 Z QCD1-003 NNPDF2.1 α s (M ) = 0.124 - Max. Value Z 0.04 200 400 600 800 00 1200 1400 p (GeV) T1,2 p T 1,2 420 600 GeV 600 800 GeV 800390 GeV Q 474 GeV 664 GeV 896 GeV data points 6 5 α S (m Z ) 0.1147 ± 0.0061 0.1132 ± 0.0050 0.1170 ± 0.0058 prob(χ 2 ) 49% 21% 77% α S (Q) 0.0936 ± 0.0041 0.0894 ± 0.0031 0.0889 ± 0.0034 By construction, we obtain for any Q bin directly α S (m Z ) If assumed evolution not valid: α S (m Z ) shifted For illustration of running, can later evolve back: α S (Q) Note: RGE validity also assumed in employed PDFs Strength of R 32 ratio: reduction of exp. and theor. uncertainties and of dependence on PDF evolution 2014-03-25, Mainz S. Naumann-Emme: QCD Studies With CMS Data 23 / 25

Running of α S at High Energies α S (Q) depends on number of active flavors at Q 15 ( ) 1-loop approximation: 1 α S (Q 2 ) = 1 α S (µ 2 ) + β 0 ln Q 2 µ 2 with β 0 = 33 2n f 12π 14 CMS trijet/dijet CMS inclusive jets 1/α S 13 12 11 9 8 2 inner error bars: exp. uncertainty n f =5 2m top n f =6 3 Q [GeV] n f =12 (MSSM) 4 gauge-coupling unification at 16 GeV? Seeing / not seeing change of slope: evidence for / against new colored particles 2014-03-25, Mainz S. Naumann-Emme: QCD Studies With CMS Data 24 / 25

Conclusions & Outlook Measuring m t requires excellent understanding of QCD effects and the LHC data already allow us to study these t t cross section enabled first α S at NNLO from a hadron collider Jets probing α S up to TeV scale already, but higher precision requires NNLO prediction Probing the running of α S at highest energies will require considerable work by theory and experiment Will we be able to measure the running of m t? Maybe: m MS t from differential t t cross section up to very high p T (t t) 2014-03-25, Mainz S. Naumann-Emme: QCD Studies With CMS Data 25 / 25

BACKUP 2014-03-25, Mainz S. Naumann-Emme: QCD Studies With CMS Data 26 / 25

QCD-Model Uncertainties of TOP4-001 Hadronization: Flavor-dependent JES: Difference in jet energies from Pythia6 (Lund string fragmentation) to Herwig++ (cluster fragmentation), evaluated for light quarks, b-quarks, and gluons separately, then added in quadrature b fragmentation: Retuned Bowler-Lund fragmentation in Pythia to describe x B data from ALEPH and DELPHI, difference to Z2* tune taken as systematic uncertainty Semileptonic B-hadron decays: Varied branching ratios within PDG uncertainties; direct impact on neutrino fractions 2014-03-25, Mainz S. Naumann-Emme: QCD Studies With CMS Data 27 / 25

Hard scattering: QCD-Model Uncertainties of TOP4-001 Parton distribution functions: Difference between CTEQ6.6L and envelope of PDF+α S uncertainties from CT, MSTW2008, and NNPDF2.3 Renormalization and factorization scales: Q 2 0.25 and 4 ME-PS matching threshold: Default value of 20 GeV varied to and 40 GeV ME generator: Difference between MadGraph (LO multileg) and Powheg (NLO); additionally difference between measured and predicted top p T spectrum Non-perturbative QCD: Underlying event: Comparison between Pythia tunes: P11 vs. P11mpiHi and P11TeV Color reconnections: Comparison between Pythia tunes: P11 vs. P11noCR 2014-03-25, Mainz S. Naumann-Emme: QCD Studies With CMS Data 28 / 25

Compatibility of m t Result at 7 and 8 TeV Analyis at 7 TeV: TOP1-015 m t = 173.49 ± 0.43 (stat+jes) ± 0.98 (syst) GeV δm t (GeV) Fit calibration 0.06 p T - and η-dependent JES 0.28 Jet energy resolution 0.23 Missing transverse momentum 0.06 Lepton energy scale 0.02 b-tagging 0.12 Pileup 0.07 Non-t t background 0.13 b-jes 0.61 Parton distribution functions 0.07 QCD scales (µ R, µ F ) 0.24 ME-PS matching threshold 0.18 Underlying event 0.15 Color reconnection effects 0.54 Analyis at 8 TeV: TOP4-001 m t = 172.04 ± 0.19 (stat+jes) ± 0.75 (syst) GeV δm t (GeV) Fit calibration 0. p T - and η-dependent JES 0.18 Jet energy resolution 0.26 Missing transverse momentum 0.09 Lepton energy scale 0.03 b-tagging 0.02 Pileup 0.27 Non-t t background 0.11 Flavor-dependent JES 0.41 b fragmentation 0.06 Semileptonic B-hadron decays 0.16 Parton distribution functions 0.09 QCD scales (µ R, µ F ) 0.13 ME-PS matching threshold 0.15 ME generator 0.23 Underlying event 0.17 Color reconnection effects 0.15 2014-03-25, Mainz S. Naumann-Emme: QCD Studies With CMS Data 29 / 25

Compatibility of m t Result at 7 and 8 TeV Analyis at 7 TeV: TOP1-015 Analyis at 8 TeV: TOP4-001 m t = 173.49 ± 0.43 (stat+jes) ± 0.98 (syst) GeV m t = 172.04 ± 0.19 (stat+jes) ± 0.75 (syst) GeV Shift from 7 to 8 TeV: 1.45 GeV Significance: δ 2 7TeV + δ2 8TeV 2 ρ δ 7TeV δ 8TeV Correlation ρ: 0 for (stat+jes) low for experimental uncertainties, due to new MC/data corrections and scale factors high for theory uncertainties, since no drastic change in s Realistic assumptions for ρ significance of shift: 1.7 1.9σ 2014-03-25, Mainz S. Naumann-Emme: QCD Studies With CMS Data 30 / 25

Additional Jets in Top-Pair Events Differential t t cross section as a function of the jet multiplicity: CMS Preliminary, 19.6 fb at s = 8 TeV CMS Preliminary, 19.6 fb at s = 8 TeV dσ djets σ 1 1 jet Dilepton Combined p > 30 GeV T Data MadGraph+Pythia MC@NLO+Herwig POWHEG+Pythia TOP2-041 dσ djets σ 1 1 jet Dilepton Combined p > 30 GeV T Data MadGraph+Pythia 2 4*Q 2 Q /4 Matching up Matching down TOP2-041 -2-2 Data/MC -3 1.5 1 0.5 2 3 4 5 6 Jets Compare to...... different ME generators and hadronization models Data/MC -3 1.5 1 0.5 2 3 4 5 6 Jets... variations of Q 2 scale and threshold for ME-PS matching 2014-03-25, Mainz S. Naumann-Emme: QCD Studies With CMS Data 31 / 25

Constraining PDFs with Jets SMP2-028 Using same CMS inclusive-jet data and NLO theory as before, can also study impact on PDFs: 1.0 CMS Preliminary Q 2 =1.9 GeV 2 Fits performed with HERAFitter framework 0.8 HERA DIS + CMS Jets HERA DIS As baseline: HERA-I DIS data, similar to HERAPDF1.0 but with more flexible parametrization xf(x,q 2 ) 0.6 0.4 0.2 sea g u V d V Fixed α S (m Z ) = 0.1176 0.0-4 -3-2 Simultan. fit of PDF and α S with HERA+CMS data yields: α S (m Z ) = 0.1192 +0.0017 0.0015 experimental+non-perturb. uncertainty only 2014-03-25, Mainz S. Naumann-Emme: QCD Studies With CMS Data 32 / 25 x

1.0 CMS Preliminary Q 2 =1.9 GeV 2 HERA DIS + CMS Jets HERA DIS 0.8 Constraining PDFs with Jets SMP2-028 xf(x,q 2 ) 0.6 0.4 0.2 sea g u V d V Most significant impact: gluon at medium high x Fract. Uncert. xf(x,q 2 ) 2.0 1.5 1.0 0.5 0.0-4 -3-2 x CMS Preliminary gluon, Q 2 =1.9GeV 2 3.0 HERA DIS + CMS Jets 2.5 HERA DIS Q=1.4 GeV 0.0 0.2 x 0.1 0.0 0.1 0.2-4 -3-2 x Fract. Uncert. CMS Preliminary 90 gluon, Q 2 =1 4 GeV 2 HERA DIS + CMS Jets 80 HERA DIS 70 60 50 40 30 Q=0 GeV 20 0 0.2 x 0.1 0.0 0.1 0.2-4 -3-2 2014-03-25, Mainz S. Naumann-Emme: QCD Studies With CMS Data 33 / 25 xf(x,q 2 ) x

A W (η l ) = Constraining PDFs with W Asymmetry SMP2-021 dσ (W dη + ) dσ (W l dη ) l dσ (W dη + )+ dσ (W l dη ) l Muon charge asymmetry in W production: sensitive to d v, u v, d/u Charge asymmetry 0.3 0.25 0.2 a (a) p > 25 GeV T Data CMS, L = 4.7 fb at s = 7 TeV x d v 0.5 0.4 0.3 0.2 0.1 CMS NLO 13 parameter fit Q 2 =1.9 GeV 2 HERA I DIS + CMS A W HERA I DIS 0.15 NLO FEWZ + NLO PDF, 68% CL CT NNPDF23 HERAPDF15 Ratio 1.5 1 MSTW2008 MSTW2008CPdeut 0.1 0 0.5 1 1.5 2 Muon η 0.5 (HERA I DIS + CMS A W ) / (HERA I DIS) -4-3 -2 x MSTW2008CPdeut: variant of MSTW2008 with more flexible parametrization and deuteron corrections; changes uv and dv Again HERAFitter analysis with HERA-I DIS data as baseline; NLO from MCFM for W data 2014-03-25, Mainz S. Naumann-Emme: QCD Studies With CMS Data 34 / 25

Constraining PDFs with W+charm W+charm production directly sensitive to strangeness in the proton dσ(w+c)/d η [pb] 80 60 40 20 CMS L = 5.0 fb at s = 7 TeV p T l T p jet > 25 GeV > 35 GeV Data MSTW08 CT NNPDF23 NNPDF23 coll W l ν (l = µ,e) SMP2-002 Stat. uncertainty Total uncertainty 0 0 0.5 1 1.5 2 η l Strangeness in standard PDFs based on neutrino-scattering data x s R s = (s + s ) / (u + d ) 1 0.75 0.5 0.25 0 1.5 1 0.5 HERA I DIS + CMS W production CMS NLO free-s fit exp. unc. model unc. parametrization unc. Q 2 = 1.9 GeV 2 SMP2-021 0-4 -3-2 1 x Adding W+c data to A W and HERA-I DIS data enables free-s fit; result consistent with similar ATLAS analysis and recent NOMAD result 2014-03-25, Mainz S. Naumann-Emme: QCD Studies With CMS Data 35 / 25

PDF Constraints from Top Quarks Measured t t cross sections start providing constraints on the gluon PDF With the coming data, electroweak single-top production can be used to probe the b PDF and the u/d ratio (proton valence content: u/d = 2) NLO prediction from MCFM CMS, L = 19.7 fb, ABM11 CT CTw HERAPDF MSTW2008 NNPDF 2.3 s = 8 TeV CMS 1.95 ± 0. (stat.) ± 0.19 (syst.) n f = 4 n f = 5 n f = 4 n f = 5 n f = 4 n f = 4 TOP2-038 1 1.2 1.4 1.6 1.8 2 2.2 R t -ch. = σ t -ch. (t)/σ t -ch. (t) t-channel production: Kinematic regime: 0.02 x 0.5 Complementary to measurements via W asymmetry, which probe 0.001 x 0.1 at the LHC and 0.005 x 0.3 at the Tevatron 2014-03-25, Mainz S. Naumann-Emme: QCD Studies With CMS Data 36 / 25