Ultra-High Energy Cosmic Rays and the GeV-TeV Diffuse Gamma-Ray Flux

Similar documents
Overview: UHECR spectrum and composition Arrival directions and magnetic field Method for search for UHE nuclei sources Application to the Auger data

arxiv: v1 [astro-ph.he] 14 Jul 2017

Secondary particles generated in propagation neutrinos gamma rays

STATUS OF ULTRA HIGH ENERGY COSMIC RAYS

Ultrahigh Energy Cosmic Rays propagation II

Cosmic Ray Astronomy. Qingling Ni

Ultra High Energy Cosmic Rays: Observations and Analysis

Extensive Air Showers and Particle Physics Todor Stanev Bartol Research Institute Dept Physics and Astronomy University of Delaware

MULTIMESSENGER APPROACH:Using the Different Messengers

Investigation on mass composition of UHE cosmic rays using CRPropa 2.0

PeV Neutrinos from Star-forming Regions. Hajime Takami KEK, JSPS Fellow

Gamma-ray bursts as the sources of the ultra-high energy cosmic rays?

PEV NEUTRINOS FROM THE PROPAGATION OF ULTRA-HIGH ENERGY COSMIC RAYS. Esteban Roulet CONICET, Bariloche, Argentina

On the GCR/EGCR transition and UHECR origin

Ultra High Energy Cosmic Rays What we have learnt from. HiRes and Auger. Andreas Zech Observatoire de Paris (Meudon) / LUTh

Absorption and production of high energy particles in the infrared background

Probing the extragalactic cosmic rays origin with gamma-ray and neutrino backgrounds

Ultrahigh Energy Cosmic Rays propagation I

A few grams of matter in a bright world

Multi-Messenger Astonomy with Cen A?

arxiv: v1 [astro-ph.he] 27 Dec 2018

arxiv:astro-ph/ v1 28 Oct 2004

> News < AMS-02 will be launched onboard the Shuttle Endeavour On May 2nd 2:33 P.M. from NASA Kennedy space center!

99 Years from Discovery : What is our current picture on Cosmic Rays? #6 How cosmic rays travel to Earth? Presented by Nahee Park

Cosmogenic neutrinos II

The Pierre Auger Observatory Status - First Results - Plans

Ultra High Energy Cosmic Rays I

UHECRs sources and the Auger data

Implications of recent cosmic ray results for ultrahigh energy neutrinos

The Highest Energy Cosmic Rays

Particle Acceleration in the Universe

Ultra-High Energy Cosmic Rays & Neutrinos above the Terascale

IMPACT OF OSCILLATIONS ON UHE NEUTRINO ASTRONOMY

The Pierre Auger Observatory in 2007

IceCube: Ultra-high Energy Neutrinos

Charged-particle and gamma-ray astronomy: deciphering charged messages from the world s most powerful

Ultra- high energy cosmic rays

arxiv:astro-ph/ v1 13 May 1999

Ultrahigh Energy cosmic rays II

Frontiers: Ultra High Energy Cosmic Rays

The Secondary Universe

Ultra-High Energy Cosmic Rays and Astrophysics. Hang Bae Kim Hanyang University Hangdang Workshop,

Neutrino Oscillations and Astroparticle Physics (5) John Carr Centre de Physique des Particules de Marseille (IN2P3/CNRS) Pisa, 10 May 2002

Very high energy photons and neutrinos: Implications for UHECR

Mass Composition Study at the Pierre Auger Observatory

Ultra High Energy Cosmic Rays. UHECRs from Mildly Relativistic Supernovae

Detection of Ultra-high energy neutrinos The First Light of the high energy neutrino astronomy

Blazars as the Astrophysical Counterparts of the IceCube Neutrinos

Cosmic Rays. Discovered in 1912 by Viktor Hess using electroscopes to measure ionization at altitudes via balloon

arxiv:astro-ph/ v1 17 Dec 2004

Implications of cosmic ray results for UHE neutrinos

Detection of Ultra-high energy neutrinos The First Light of the high energy neutrino astronomy

Detailed simulations of Fermi-LAT constraints on UHECR production scenarios

Strangelets from space. Jes Madsen University of Aarhus, Denmark

SEARCHES OF VERY HIGH ENERGY NEUTRINOS. Esteban Roulet CONICET, Centro Atómico Bariloche

Open questions with ultra-high energy cosmic rays

An Astrophysical Plasma Wakefield Accelerator. Alfven Wave Induced Plasma Wakefield Acceleration

A Multimessenger Neutrino Point Source Search with IceCube

Ultra High Energy Cosmic Rays

Mattia Di Mauro. Fermi-LAT point source population studies and origin of the Fermi-LAT gamma-ray background. Trieste, May, 3, 2016

Dr. John Kelley Radboud Universiteit, Nijmegen

Propagation in the Galaxy 2: electrons, positrons, antiprotons

Ultrahigh Energy Cosmic Rays from Tidal Disruption Events: Origin, Survival, and Implications

Cosmic Rays: high/low energy connections

Exploring the Ends of the Rainbow: Cosmic Rays in Star-Forming Galaxies

Summer School on Particle Physics in the LHC Era

The High-Energy Interstellar Medium

Cosmological Evolution of Blazars

PoS(jhw2004)003. Deciphering the Extreme Universe. Angela V. Olinto

High Energy Emission. Brenda Dingus, LANL HAWC

Charged Cosmic Rays and Neutrinos

TeV gamma-rays from UHECR sources 22 radio log10(e /ev ) 16 photon horizon γγ e + e CMB 14 IR kpc 10kpc 100kpc M pc Virgo 10M pc 100M pc G

arxiv:hep-ph/ v2 23 Sep 1998

arxiv: v1 [astro-ph.he] 14 Nov 2011

Milagro A TeV Observatory for Gamma Ray Bursts

Studies of Ultra High Energy Cosmic Rays with the Pierre Auger Observatory

from Fermi (Higher Energy Astrophysics)

ULTRA HIGH ENERGY COSMIC RAYS WHERE DO WE STAND AFTER 10 YEARS AT THE PIERRE AUGER OBSERVATORY

Recent Observations of Supernova Remnants

arxiv:astro-ph/ v2 31 Jan 2000

arxiv: v1 [astro-ph] 14 Nov 2007

Estimation of neutrino spectra from AGNs using measured VHE γ-ray spectra

Recent results from the Pierre Auger Observatory

Cosmic Rays in large air-shower detectors

Extensive Air Shower and cosmic ray physics above ev. M. Bertaina Univ. Torino & INFN

The Pierre Auger Project. Angela Olinto University of Chicago

Lorentz Invariance Violation: from theoretical and phenomenological perspectives

STUDY OF EXTENSIVE AIR SHOWERS IN THE EARTH S ATMOSPHERE

An Auger Observatory View of Centaurus A

High-energy neutrinos

Comparison of UHECR spectra from necklaces and vortons

Uri Keshet / CfA Impact of upcoming high-energy astrophysics experiments Workshop, KAVLI, October 2008

Cosmic Rays, GammaRays and the Universal. Background Radiation

Radio, γ-ray, and Neutrino Emission from Star- Forming Galaxies

UHE Cosmic Rays and Neutrinos with the Pierre Auger Observatory

White Paper on Ultra-High Energy Cosmic Rays

Hadronic interactions of ultra-high energy cosmic rays

Short Course on High Energy Astrophysics. Exploring the Nonthermal Universe with High Energy Gamma Rays

Ultra High Energy Cosmic Rays. and

PERSPECTIVES of HIGH ENERGY NEUTRINO ASTRONOMY. Paolo Lipari Vulcano 27 may 2006

Transcription:

The 4th International Workshop on The Highest Energy Cosmic Rays and Their Sources INR, Moscow May 20-22, 2008 Ultra-High Energy Cosmic Rays and the GeV-TeV Diffuse Gamma-Ray Flux Oleg Kalashev* (INR RAS) co-authors: D.Semikoz, G.Sigl * e-mail: kalashev@ms2.inr.ac.ru

Ultra-High Energy Cosmic Rays and the GeV-TeV Diffuse γ-ray Flux Overview Propagation of Ultra High Energy Cosmic Rays (UHECR) Source model and spectrum fitting Possible range of diffuse γ-ray flux from protons Diffuse γ-ray flux from heavy nuclei. Comparison Conclusion

Propagation of Ultra High Energy Cosmic Rays Protons and neutrons Pion production N γ b N p e + e - pair production p γ b pe + e - neutron β-decay n pe ν e

Propagation of Ultra High Energy Cosmic Rays Protons and neutrons Pion production N γ b N p E th = m π(m p +m π /2) ² ' 7 16 ( ² ev ) 1 ev For MWB (² ' 3 ev ): E th ' 70EeV (1) e + e - pair production p γ b pe + e - neutron β-decay n pe ν e

Propagation of Ultra High Energy Cosmic Rays Protons and neutrons Pion production N γ b N p E th = m π(m p +m π /2) ² ' 7 16 ( ² ev ) 1 ev (1) For MWB (² ' 3 ev ): E th ' 70EeV e + e - pair production p γ b pe + e - E th = m e(m A +m e ) ² ' 5 14 ( ² ev ) 1 ev neutron β-decay For MWB (² ' 3 ev ): E th ' 5 17 ev n pe ν e (2)

Propagation of Ultra High Energy Cosmic Rays Protons and neutrons Pion production e + e - pair production N γ b N p p γ b pe + e - neutron β-decay n pe ν e Electron-photon cascade e, γ e + e - pair production γγ b e + e - Inverse Compton e γ b e γ E th = m2 e ² ' 2.6 11 ( ² ev ) 1 ev For MWB (² ' 3 ev ): E th ' 5 14 ev

Propagation of Ultra High Energy Cosmic Rays Protons and neutrons Pion production e + e - pair production N γ b N p p γ b pe + e - neutron β-decay n pe ν e Electron-photon cascade e, γ e + e - pair production γγ b e + e - Inverse Compton e γ b e γ Synchrotron losses Double pair production γγ b e + e - e + e - e + e - pair production by e e γ b ee + e -

Propagation of Ultra High Energy Cosmic Rays Nuclei Pion production A γ b A p e + e - pair production A γ b Ae + e - Photo-disintegration A γ b A N.. Protons and neutrons Pion production N γ b N p p, n e, γ e + e - pair production p γ b pe + e - neutron β-decay Electron-photon cascade n pe ν e e, γ

Propagation of Ultra High Energy Cosmic Rays Energy loss length of Fe and protons A γ b A p e + e - pair production A γ b Ae + e - Photo-disintegration A γ b A N.. Protons and neutrons p Pion production N γ b N p p, n e, γ Fe e + e - pair production p γ b pe + e - e, γ Electron-photon cascade

Some references on UHECR propagation p production Photodisintegration e + e pair production Extragalactic magnetic field Infrared background Radio background A.Mucke et al.,comp.phys.comm.124,290(2000) F.Stecker et al. Astrophys.J. 512 (1999) 521-526. E.Khan et al. Astropart.Phys. 23 (2005) 191-201 M.J.Chodorowski et al. Astrophys.J.400,181(1992) K.Dolag et al., astro-ph/04419 F.Stecker et al. astro-ph/05449 T.A. Clark, L.W. Brown, and J.K. Alexander, Nature 228, 847 R.J. Protheroe, P.L. Biermann, Astropart. Phys. 6, 45

Phenomenological source model: F A(p) (E, z) = f E -α (1+z) 3+m Θ(E max -E) Θ(z-z min ) Θ(z max -z) z red shift, Θ(x)-step function Parameter Name Values Power of the Injection Spectrum, E -α α 2.0 α 2.7 End point of the Energy Spectrum E max 2x 20 E max 21 Evolution factor: (1+z) 3+m m -2 m 4 Red shift of the nearest source z min 0; 0.005; 0.01 Maximal source redshift z max 3

Fitting procedure For each set of parameters we dip scenario F(E, z) = f E -α (1+z) 3+m Θ(E max -E) Θ(z-z min ) Θ(z max -z) Calculate propagated spectrum Obtain normalization factor f by fitting HiRes spectrum (maximizing Poisson probability of measured events configuration using number of events in each bin*) Calculate goodness of fit defined as fraction of hypothetical experiments which result in worse agreement with the theory than the real data but have the same total number of events Among all the models we choose a subset which has goodness of fit more than 5% and for this subset we check the range of possible diffuse γ-ray flux We use two scenarios for fitting: The fit is done above 2 EeV ankle scenario The fit is done above 40 EeV *HiRes Mono spectrum including number of events in each bin http://www.physics.rutgers.edu/~dbergman/hires-monocular-spectra-200702.html

Fitting procedure F(E, z) = f E -α (1+z) 3+m Θ(E max -E) Θ(z-z min ) Θ(z max -z) dip scenario ankle scenario j(e)e 2 [ev cm s sr ] 4 3 2 1 EGRET p HiRes p inj j(e)e 2 [ev cm s sr ] 4 3 2 1 EGRET p HiRes p inj 8 12 14 16 E ev α=2.45; E max = 21 ev; m=3 18 20 8 12 14 16 E ev α=2; E max = 21 ev; m=3 18 20

Diffuse Gamma-Ray Flux from protons Contribution of e + e - production and GZK effect dip scenario ankle scenario j(e) E 2 [ev cm -2 s -1 sr -1 ] 4 3 2 1-1 -2-3 EGRET γ from π 0, no e + e - γ from π 0 and e + e - p HiRes p inj j(e) E 2 [ev cm -2 s -1 sr -1 ] 4 3 2 1-1 -2-3 EGRET γ from π 0, no e + e - γ from π 0 and e + e - p HiRes p inj -4-4 -5 8 12 14 16 18 20 E [ev] -5 8 12 14 16 18 20 E [ev]

F UHECR /F EGRET Diffuse Gamma-Ray Flux Dependence on the initial spectrum F A(p) (E, z) = f E -α (1+z) 3+m Θ(E max -E)Θ(z-z min ) Θ(z max -z) 1-1 -2 Dip scenario Ankle scenario -3-2 -1 0 1 2 3 4 m Fraction (predicted to EGRET) of integral fluxes between 1 and 2 GeV Minimal and maximal value The contribution of secondary photons from protons is at least 1% in realistic models and it may be more than 50% for strong evolution (m > 3)

Diffuse Gamma-Ray Flux Dependence on initial proton spectrum F A(p) (E, z) = f E -α (1+z) 3+m Θ(E max -E)Θ(z-z min ) Θ(z max -z) 1 m=4 m<4 F UHECR /F EGRET -1-2 m=-2-3 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 α

Diffuse Gamma-Ray Flux from protons compared with other possible astrophysical contributions 3 EGRET Star forming galaxies: V. Pavlidou and B. D. Fields, Astrophys. J. 575, L5 (2002) [arxiv:astro-ph/0207253]. j(e) E 2 [ev cm -2 s -1 sr -1 ] 2 star-forming starburst galaxies Total AGN UHECR AGN evolution UHECR GRB structure formation AGN: C. D. Dermer, arxiv:astro-ph/0605402. Starburst: T. A. Thompson, E. Quataert and E. Waxman, Astrophys. J. 654, 219 (2006) [arxiv:astro-ph/0606665]. large scale structure formation shocks: U. Keshet, E. Waxman, A. Loeb, V. Springel and L. Hernquist, Astrophys. J. 585, 128 2003) [arxiv:astro-ph/0202318]. 1 8 9 11 12 E [ev] γ ray bursts: C. D. Dermer, arxiv:astro-ph/06195

je 2 [ev sm sec sr ] 4 3 2 1 Diffuse Gamma-Ray Flux from nuclei e + e - production by nuclei and p gives main contribution Secondary γ-ray flux can be as low as 0.1% of EGRET bound level Fit is done above 40 EeV E max = Z x 21 ; α = 2; AGN evolution EGRET γ from π ±0 γ total p HiRes Fe (Z=26) je 2 [ev sm sec sr ] E max = Z x 2 x 19 ; α = 2; m=0 ok with Auger, but not supported by composition 4 3 2 studies of HiRes! 1 EGRET γ from π ±0 γ total p HiRes 8 12 14 16 18 20 E ev 8 12 14 16 18 20 E ev

Conclusions Protons contribute no less than 1% to the observed EGRET flux, and up to 50% in the case of strong source evolution Future measurements of resolved and unresolved components of the diffuse GeV-TeV γ ray background or upper limits on such components can give important information on UHECR origin and the distribution of their sources Nuclei sources are much less constrained in terms of diffuse gamma ray flux they produce

Appendix Sample transport equation for electrons (includes only pair production PP and inverse Compton scattering ICS)

References Original work on this subject HiRes spectrum O.Kalashev, D.Semikoz, G.Sigl, arxiv:astro-ph/0703099 R. Abbasi et al. [HiRes Collaboration], arxiv:astro-ph/0703099

Greisen-Zatsepin-Kuzmin (GZK) cutoff Interaction length on MWB approaches 6 Mpc ~20% of energy is carried away by pions in each interaction Threshold energy N γ N p N,N = p or n For MWB E th 4 x 19 ev

Energy loss lengths p and γ energy loss lengths (minimal RB assumed)

Deflection and synchrotron radiation Gyroradius: R g = E qeb ' 1.1 3 1 q E 21 ev B 9 G 1 Mpc Synchrotron loss length: de dt = 4 3 σ T B2 qme 8π m 4 ³ 2 E m e E γ ' 3eB 2m e ³ Ee m e 2 ' 2.2 14 E e 21 ev 2 B G ev 9 The gyroradii and the synchrotron loss rates of electrons for various strengths of the EGMF