TERMS AND DEFINITIONS IN THERMOCHEMISTRY

Similar documents
KOH(aq) + HNO 3 (aq) KNO 3 (aq) + H 2 O(l) A 52 B 26 C +26 D +52. (Total for Question = 1 mark) 2 Calculate the enthalpy change, in kj mol _ 1

Thermodynamics. Standard enthalpy change, H

IB Topics 5 & 15 Multiple Choice Practice

THERMODYNAMICS. Energy can be neither created nor destroyed but it can be converted from one form to another.

The chemical potential energy of a substance is known as its ENTHALPY and has the symbol H.

I PUC CHEMISTRY CHAPTER - 06 Thermodynamics

Topic 5.1 THERMODYNAMICS. Born-Haber Cycles Solubility of Ionic Compounds in Water Entropy Changes

CHAPTER 6: Chemical Energetics

AS Paper 1 and 2 Energetics

Name Date Class THE FLOW OF ENERGY HEAT AND WORK

3.2.1 Energetics. Enthalpy Change. 263 minutes. 259 marks. Page 1 of 41

I. Multiple Choice Questions (Type-I)

1.4 Enthalpy. What is chemical energy?

MgO. progress of reaction

Chapter 8. Thermochemistry 강의개요. 8.1 Principles of Heat Flow. 2) Magnitude of Heat Flow. 1) State Properties. Basic concepts : study of heat flow

Energy Relationships in Chemical Reactions

Thermochemistry: Heat and Chemical Change

Slide 1 / Objects can possess energy as: (a) endothermic energy (b) potential energy (c) kinetic energy. a only b only c only a and c b and c

Worksheet 5.2. Chapter 5: Energetics fast facts

Energetics. These processes involve energy exchanges between the reacting system and its surroundings.

ENERGY (THERMOCHEMISTRY) Ch 1.5, 6, 9.10, , 13.3

Energy Changes in Chemical Reactions

The table below includes some values of standard enthalpies of formation ( H ).

Thermochemistry HW. PSI Chemistry

CHEM 121 INTRODUCTION TO ENERGETICS, THERMODYNAMICS AND KINETICS

Q1. (a) Explain the meaning of the terms mean bond enthalpy and standard enthalpy of formation. Mean bond enthalpy

8 Energetics I. Enthalpy* change Enthalpy (H) is the heat content of a system.

(03) WMP/Jun10/CHEM4

Answers. Chapter 5. Exercises

_ + Units of Energy. Energy in Thermochemistry. Thermochemistry. Energy flow between system and surroundings. 100º C heat 50º C

Chapter 5 Practice Multiple Choice & Free

5.2 Energy. N Goalby chemrevise.org Lattice Enthalpy. Definitions of enthalpy changes

13 Energetics Answers to end-of-chapter questions

Chapter 3. Thermochemistry: Energy Flow and Chemical Change. 5.1 Forms of Energy and Their Interconversion

3.2.1 Energetics. Calorimetry. 121 minutes. 120 marks. Page 1 of 19

Chemical Reactions and Energy

Lecture 7 Enthalpy. NC State University

Ch. 6 Enthalpy Changes

Unit 7 Thermochemistry Chemistry 020, R. R. Martin

Name: General Chemistry Chapter 11 Thermochemistry- Heat and Chemical Change

Thermochemistry (chapter 5)

A. 2.5 B. 5.0 C. 10. D. 20 (Total 1 mark) 2. Consider the following reactions. N 2 (g) + O 2 (g) 2NO(g) 2NO 2 (g) 2NO(g) + O 2 (g)

ANSWERS IB Chemistry HL Yr 1 Unit 7 Energetics

CHAPTER 3 THE FIRST LAW OF THERMODYNAM- ICS

AQA A2 CHEMISTRY TOPIC 5.1 THERMODYNAMICS BOOKLET OF PAST EXAMINATION QUESTIONS

Quiz I: Thermodynamics

Standard enthalpy change of reactions

Topic 5 Test Energetics IB Chemistry 3/6/17 [30 marks]

Name: Thermochemistry. Practice Test C. General Chemistry Honors Chemistry

ENERGETICS. Energy changes which take place during a chemical reaction can be represented on an energy (enthalpy) profile diagram.

CH 221 Chapter Four Part II Concept Guide

Thermochemistry Chapter 4

(02) WMP/Jun10/CHEM2

Topic 05 Energetics : Heat Change. IB Chemistry T05D01

AS Paper 1 and 2 Kc and Equilibria

17.4 Calculating Heats Essential Understanding Heats of reaction can be calculated when it is difficult or

2. (12 pts) Write the reactions that correspond to the following enthalpy changes: a) H f o for solid aluminum oxide.

Name Date Class SECTION 16.1 PROPERTIES OF SOLUTIONS

1.8 Thermodynamics. N Goalby chemrevise.org. Definitions of enthalpy changes

Chapter 5 Thermochemistry

2. Enthalpy changes. N Goalby chemrevise.org

Advanced Subsidiary Unit 1: The Core Principles of Chemistry

Gas Laws. Bonding. Solutions M= moles solute Mass %= mass solute x 100. Acids and Bases. Thermochemistry q = mc T

Thermochemistry Ch. 8

MUNISH KAKAR's INSTITUE OF CHEMISTRY

So by applying Hess s law a = ΔH + b And rearranged ΔH = a - b

Chapter 8 Thermochemistry: Chemical Energy. Chemical Thermodynamics

Mr Chiasson Advanced Chemistry 12 / Chemistry 12 1 Unit B: Thermochemical Changes

Chapter Nine. Chemical Bonding I

lattice formation from gaseous ions

5 Chemical Energetics

Thermochemistry. Energy. 1st Law of Thermodynamics. Enthalpy / Calorimetry. Enthalpy of Formation

12A Entropy. Entropy change ( S) N Goalby chemrevise.org 1. System and Surroundings

ENTHALPY CHANGE CHAPTER 4

Unit 4: Reactions and Stoichiometry

2 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

1.8 Thermodynamics. Lattice formation enthalpy Enthalpy change when 1 mole of a solid ionic compound is formed from its gaseous ions

Gravity is a force which keeps us stuck to the earth. The Electrostatic force attracts electrons to protons in an atom.

Third Quarter Cumulative Review Questions. 1. Which factor distinguishes a metallic bond from an ionic bond or a covalent bond?

Thermochemistry Notes

10 Enthalpy changes Answers to Activity and Practice questions

Name. Practice Test 2 Chemistry 111

6.Thermodynamics. Some Important Points and Terms of the Chapter

Thermodynamics. Thermodynamics of Chemical Reactions. Enthalpy change

8. Energetics I. N Goalby chemrevise.org 1

Explain why the bond enthalpy of a Cl Cl bond is greater than that of a Br Br bond

Energetics. Exothermic and endothermic reactions

CHEMISTRY LEVEL 4C (CHM415115)

13 Energetics II. Eg. Na (g) Na + (g) + e - ΔH = +550 kj mol -1

8.6 The Thermodynamic Standard State

11B, 11E Temperature and heat are related but not identical.

Name AP CHEM / / Collected AP Exam Essay Answers for Chapter 16

Chemistry Chapter 16. Reaction Energy

10/23/10. Thermodynamics and Kinetics. Chemical Hand Warmers

Q1. (a) State what is meant by the term activation energy of a reaction. (1)

Enthalpy changes practice qs

4. Which of the following gas molecules will have the highest average velocity at 500K? a. H 2 b. He c. CH 4 d. C 2H 6

AP Questions: Thermodynamics

Chapter 8. Thermochemistry

Chemistry 30: Thermochemistry. Practice Problems

Transcription:

(v.2.0 16/3/90 8hrs.) TERMS AND DEFINITIONS IN THERMOCHEMISTRY (v.2.1 12/4/90 2hrs.) 1) ENTHALPY CHANGE ( H) This is the same as the heat change involved in a process (provided the initial and final states are at the same pressure). It is positive for an endothermic process (where heat energy is changed into chemical energy) and negative for an exothermic process (where chemical energy is changed into heat). If the process occurs at constant volume (ie in a sealed vessel) the heat change is not the same as the enthalpy change, though the enthalpy change may be calculated. The value of an enthalpy change depends on the temperature, the physical states (s, l, g, aq) of the reactants and products, the pressures of gaseous reactants and products, and the concentrations of solutions. Enthalpy changes are therefore stated for standard conditions. 2) STANDARD CONDITIONS The standard conditions are a pressure of 1 atmosphere and a concentration of 1 M for solutions. Solids and liquids are taken to be pure and in their standard states unless otherwise specified. The standard enthalpy change is denoted by Η Θ T, meaning the standard enthalpy change at temperature T, which should be specified (eg Η Θ 298). If no temperature is stated it is normally taken to be 298 K (25EC). 3) STANDARD STATE In the case of an element or compound the standard state is the most stable state of the substance at 1 atmosphere pressure and a specified temperature (usually 298 K). Thus the standard state of hydrogen at 298 K is the gaseous state, and for water it is the liquid state, whilst for carbon it is graphite, not diamond. Diamond is only apparently stable (metastable). The standard state for solutions is considered to be 1M. 4) ENTHALPY OF REACTION ( H) This is the enthalpy change involved in the reaction between substances in the quantities and states indicated by the chemical equation. It can be calculated as the total enthalpy of the products minus the total enthalpy of the reactants. It is usually expressed in kj. Often it is necessary to convert the result to Joules for further calculations. Just put 10 3 in place of the prefix "k". ie -285$83 kj = -285$83 H 10 3 J. The enthalpy change for a given reaction will vary depending on the states of the reactants and products. eg 2H 2 (g) + O 2 (g) nn> 2H 2 O(l) H = -571$66 kj (1) 2H 2 (g) + O 2 (g) nn> 2H 2 O(g) H = -483$64 kj (2) For this reason it is extremely important when writing thermochemical equations to put in the correct states. Note that the difference between the two values above is just twice the molar latent heat of vaporization of water, ie the heat required to convert 2 moles of water from liquid to gas. The enthalpy change will also vary according to the quantities of substances involved in the reaction. For example: H 2 (g) +2O 2 (g) nn> H 2 O(l) H = -285$83 kj (3) Thus, unless standard enthalpies are quoted, a H value must always be referred to a particular equation which you have written down. PAGE 1 OF ==

5) STANDARD ENTHALPY OF COMBUSTION ( H Θ c) This is the enthalpy change involved in the complete combustion of 1 mole of a substance in excess oxygen under standard conditions. It is usually negative since heat is given out in such reactions. Thus the standard molar enthalpy of combustion for benzene is given by: C 6 H 6 (l) + 72O 2 (g) nn> 6CO 2 (g) + 3H 2 O(l) H Θ c = -3267$5 kj mol -1 (4) Note that the H value given in (3) above is the standard molar enthalpy of combustion for hydrogen, whilst those in (1) and (2) above are not. 6) STANDARD ENTHALPY OF FORMATION ( H Θ f) This is the enthalpy change involved in the formation of one mole of a compound from its elements in their standard states. Thus the standard enthalpy of formation of benzene is given by: 6C(s) + 3H 2 (g) nn> C 6 H 6 (l) H Θ f = +49$0 kj mol -1 (5) (Since the enthalpy of formation of benzene is positive it is known as an endothermic compound.) From the definition the enthalpies of formation of elements in their standard states must be zero. Standard enthalpies of formation can be found in published tables. They are very convenient for the calculation of other enthalpy changes. The enthalpy change for a reaction is the total enthalpy of formation of the products, less the total enthalpy of formation of the reactants. Thus the enthalpy change for the oxidation of ethanol to ethanoic acid (as occurs when wine turns to vinegar) may be calculated: CH 3 CH 2 OH(l) + 2O 2 (g) nn> CH 3 COOH(l) (6) -(-276$98 + 0) +(-484$13) gives H Θ = -207$15 kj mol -1 (This result is not entirely accurate for vinegar since this is an aqueous solution and the above equation relates to the pure reactants and product.) 7)STANDARD ENTHALPY OF NEUTRALIZATION ( H Θ n) This is the enthalpy change involved in the neutralization of an acid by a base to form 1 mole of water under standard conditions. For strong acids and strong bases this is always very close to -57.24 kj mol -1. HCl(aq) + NaOH(aq) nn> NaCl(aq) + H 2 O(l) H Θ n = -57$25 kj mol -1 (7) HNO 3 (aq) + KOH(aq) nn> NaCl(aq) + H 2 O(l) H Θ n = -57$27 kj mol -1 (8) 8) STANDARD ENTHALPY OF (DIS)SOLUTION ( H Θ sol) This is the enthalpy change involved in the dissolution of 1 mole of a substance in a specified amount of solvent. If no volume is specified infinite dilution is assumed. Thus for sulphuric acid we have: H 2 SO 4 (l) + aq nn> H 2 SO 4 (aq,4) H Θ sol = -22$77 kj mol -1 (9) The symbol aq standing alone is used to represent an indefinite amount of water. The 4 symbol is used to indicate that an infinitely dilute solution is formed. 9) ENTHALPY OF DILUTION ( H dil ) This is the enthalpy change involved in the dilution of a solution containing 1 mole of the substance, from one specified concentration to a second specified concentration. FeCl 2 (aq,0$56m) + aq nn> FeCl 2 (aq,4) H Θ dil = -5$52 kj mol -1 (10) 10) STANDARD ENTHALPY OF ATOMIZATION ( H Θ a) PAGE 2 OF ==

This is the enthalpy change involved in the conversion of an element or compound to free atoms in the gaseous state. Sometimes it is quoted for the formation of 1 mol of atoms, and sometimes for the atomization of 1 mol of an element or compound. Thus it is always necessary to specify exactly what you mean when you use this term. Quoting the equation involved will do this. Thus the molar enthalpy of atomization of benzene may be quoted as: C 6 H 6 (l) nn> 6C(g) + 6H(g) H Θ a = 5558$9 kj mol -1 (11) whilst the molar enthalpy of atomization of chlorine is usually quoted as: 2Cl 2 (g) nn> Cl(g) H Θ a = 121$29 kj mol -1 (12) This enthalpy value is also the bond dissociation energy of chlorine. For carbon we have: C(s) nn> C(g) H Θ a = 171$291 kj mol -1 (13) This is also called the enthalpy of sublimation of carbon. Notice that all these values are positive since energy must be put in to break bonds. 11) BOND DISSOCIATION ENTHALPY (BOND DISSOCIATION ENERGY) ( H dis ) This is the enthalpy change involved in the breaking of 1 mole of a SPECIFIED bond, all reactants and products being in the gas phase. Thus the bond dissociation energy for the first CnH bond in methane is given by: CH 4 (g) nn> CH 3 (g) + H(g) H dis = 422 kj mol -1 (14) whilst the bond dissociation energy for the breaking of the second CnH bond in methane (ie once the first CnH bond has been broken) is given by: CH 3 (g) nn> CH 2 (g) + H(g) H dis = 364 kj mol -1 (15) Note that bond dissociation energies are always large and positive. Some useful bond dissociation energies are: BOND ENERGYªkJ mol -1 HnH 436 O=O 498 Cl-Cl 242 PAGE 3 OF ==

12) MEAN BOND ENERGY (BOND ENTHALPY TERM, or AVERAGE STANDARD BOND ENTHALPY) This is the average molar enthalpy change involved when several similar bonds in a variety of substances are broken. Thus the average strength of the CnH bond may be estimated from the enthalpy of atomization of methane: CH 4 (g) nn> C(g) + 4H(g) H dis = 1662 kj mol -1 (16) Clearly the average energy for one CnH bond will be a quarter of this: 3 H 1662 = 416 kj mol -1 This is the mean bond energy for the C-H bonds in methane. Similar bonds in many compounds have roughly the same mean bond energy. Different bonds have different energies. These values may be found in tables: BOND ENERGY TERMªkJ mol -1 CnC 348 C=C 682 C/C 962 C-O 360 C=O 743 OnH 463 CnH 416 Note that the value for the C=C double bond is nearly twice that for the single CnC bond, and the value for the C/C bond nearly three times as much. This is what one would expect. Using these mean bond energies it is possible to estimate the enthalpy change for a reaction which cannot be studied in in the laboratory. For example one might wish to calculate the enthalpy change of the following reaction: 2CH 4 (g) nn> C 2 H 6 (g) + H 2 (g) (17) In this reaction two CnH bonds are broken, one CnC bond and one HnH bond are formed. You can see this better if you draw out full structural formulae for the compounds: The enthalpy change may be calculated as follows: Enthalpy change for bond broken (2 C-H bonds) = 2H416 = 832 kj Enthalpy change for bonds formed (1 CnC bond + 1 HnH bond) = (-348) + (-436) = -784 kj mol -1 Total enthalpy change = 832 + (-784) = 48 kj mol -1 13) IONIZATION ENERGY (ENTHALPY OF IONIZATION) ( H I ) This is the minimum amount of energy required to remove 1 mole of electrons from 1 mole of atoms or ions (as appropriate), both reactants and products being in the gaseous state. For example Na(g) nn> Na + (g) + e - H I = 49$583 kj mol -1 (18) 1st ionization energy of sodium Na + (g) nn> Na 2+ (g) + 2e - H I = 456$24 kj mol -1 (19) 2nd ionization energy of sodium Successive ionization energies increase very rapidly for a given element, especially once the valence electrons PAGE 4 OF ==

have been removed. 14) ELECTRON AFFINITY ( H E ) This is the enthalpy change involved when 1 mole of atoms or ions (as appropriate) gains one mole of electrons, all reactants and products being in the gaseous state. For example Cl(g) + e - nn> Cl - (g) H E = -380 kj mol -1 (20) 1st electron affinity of chlorine Cl - (g) + e - nn> Cl 2- (g) H E not known, but positive.(21) 2nd electron affinity of chlorine Most first electron affinities are negative, showing that the ions formed are stable (as isolated ions in the gaseous state). All second electron affinities are positive. 15)STANDARD LATTICE ENERGY ( H Θ L) This is the enthalpy change involved when one mole of a crystalline ionic substance is created from the free ions in the gaseous state. It is a measure of the strength of the attractive forces between the ions. For example Na + (g) + Cl - (g) nn> NaCl(s) H = -411 kj mol -1 (22) lattice energy of sodium chloride 16) HESS'S LAW This is the law on which the whole of thermochemistry is based. It states that the enthalpy change for a process does not depend on the nature of any intermediate steps involved in bringing the process about. That is, the enthalpy change does not depend on the path chosen to accomplish the process, but only on the initial and final states involved. It is another statement of the law of conservation of energy. For example copper can be converted directly to copper(ii) oxide by heating in oxygen. Copper(II) oxide may also be produced indirectly if the copper is first dissolved in nitric acid to form copper(ii) nitrate, and this is then heated to form the copper(ii) oxide. In either case the total enthalpy change is the same. Hess's law allows the calculation of enthalpy changes which are difficult or impossible to measure directly (for example, enthalpies of formation) from those which are easy to measure (such as enthalpies of combustion). Thus the enthalpy of formation of benzene (equation 5) is calculated from the heats of combustion of hydrogen (equation 3) and benzene (equation 4) together with the heat of combustion of carbon: C(s) + O 2 (g) nn> CO 2 (g) H Θ c = -393$51 kj mol -1 (23) The idea is that (in principle) we can bring about the formation of 1 mole of benzene from its elements indirectly. We start with 6 moles of carbon, three moles of hydrogen, and a total of 72 moles of oxygen and convert them first into carbon dioxide and water: 6C(s) + 6O 2 (g) nn> 6CO 2 (g) (24) 3H 2 (g) + 12O 2 (g) nn> 3H 2 O(l) (25) Next we turn these into 1 mole of benzene and 72 moles of oxygen: 6CO 2 (g) + 3H 2 O nn> C 6 H 6 (l) + 72O 2 (g) (26) The enthalpy change for equation (24) is just 6 times that for the combustion of carbon (equation 23), whilst that for equation (25) is 3 times that for the combustion of hydrogen (equation 3). The enthalpy changes involved in equations (24) and (25) is therefore: PAGE 5 OF ==

(24):6H(-393$51) = -2361$06 kj mol -1 (25):3H(-285$83) = -857$49 kj mol -1 Although equation (26) cannot actually be carried out in the laboratory, it is the reverse of the combustion of benzene (equation 4) which can, and so the enthalpy change is just the same but with the sign changed: +3267$5 kj mol -1 Hess's law tells us that the overall enthalpy change is just the sum of the changes for the individual steps involved, so that the standard enthalpy of formation of benzene is given by the sum of the enthalpy changes for equations (24), (25) and (26).: -3218$5 + 3267$5 = +49$0 kj mol -1 Note that the oxygen is reformed in the original amount (72 moles) at the end of the process, so that it does not affect the calculation of the overall enthalpy change. 17) BORN HABER CYCLE This is one particular example of the application of Hess's Law. Na + (g) + Cl(g) 6666666666 8 H Θ a(cl 2 ) 9 H E (Cl) Na + (g) + 2Cl 2 (g) 9 8 H I (Na) Na + (g) + Cl - (g) Na(g) + 2Cl 2 (g) 9 8 H Θ a(na) 9 Na(s) + 2Cl 2 (g) (START) 9 H Θ L(NaCl) 9 9 9 H Θ f(nacl) 9 9 9 6666666666666666 NaCl(s) (FINISH) In the diagram above the following terms are used H Θ f(nacl) - the standard enthalpy of formation of sodium chloride. H Θ a(na) - the standard enthalpy of atomization of sodium. H I (Na) - the first ionization energy of sodium. H Θ a(cl 2 ) - the standard enthalpy of atomization of chlorine (per mole of chlorine atoms produced). H E (Cl) - the first electron affinity of chlorine. H Θ L(NaCl) - the standard lattice energy of sodium chloride. PAGE 6 OF ==

Upward arrows represent endothermic changes, and downward arrows represent exothermic changes. Since, according to Hess's law, going from START to FINISH one way round the cycle is the same thing as going from START to FINISH the other way round the cycle, the enthalpy terms are related by: H Θ f(nacl) = H Θ a(na) + H I (Na) + 2 H a (Cl 2 ) + H E (Cl) + H L (NaCl) This allows the calculation of the lattice energy, which otherwise could not be found. 18) HEAT CAPACITY (C) This is the amount of heat required to raise the temperature of a body by 1 K (or equally 1EC). Units: J kg -1 K -1 Thus for a calorimeter of heat capacity C J K -1 and a temperature rise of T K, the heat given up to the calorimeter is given by q = C H T Joules 19) SPECIFIC HEAT CAPACITY This is the amount of heat required to raise the temperature of 1 kg of a substance by 1 K. Units: J mol -1 K -1 20) MOLAR HEAT CAPACITY (C M ) This is the amount of heat required to raise the temperature of 1 mole of a substance by 1 K. Units: J mol -1 K -1 21) MOLAR ENTHALPY OF FUSION ( H fus ) This is the amount of heat required to convert 1 mole of a solid into the liquid state at the same temperature. Units: J mol -1 K -1 22) MOLAR ENTHALPY OF EVAPORATION ( H vap ) This is the amount of heat required to convert 1 mole of a liquid into the gaseous state at the same temperature. 23) MOLAR ENTHALPY OF SUBLIMATION ( H sub ) This is the amount of heat required to convert 1 mole of a solid into the gaseous state. For elements which do not consist of discrete molecules it is often essentially the same as the molar enthalpy of atomization. 24) ENDOTHERMIC COMPOUND See ENTHALPY OF FORMATION PAGE 7 OF ==