Cross-Correlation of CFHTLenS Galaxy Catalogue and Planck CMB Lensing

Similar documents
POWER SPECTRUM ESTIMATION FOR J PAS DATA

Catherine Heymans. Observing the Dark Universe with the Canada- France Hawaii Telescope Lensing Survey

Measuring Neutrino Masses and Dark Energy

SEARCHING FOR LOCAL CUBIC- ORDER NON-GAUSSIANITY WITH GALAXY CLUSTERING

The Galaxy Dark Matter Connection

N-body Simulations. Initial conditions: What kind of Dark Matter? How much Dark Matter? Initial density fluctuations P(k) GRAVITY

Shear Power of Weak Lensing. Wayne Hu U. Chicago

The flickering luminosity method

Approximate Bayesian computation: an application to weak-lensing peak counts

Science with large imaging surveys

Cosmological Constraints from a Combined Analysis of Clustering & Galaxy-Galaxy Lensing in the SDSS. Frank van den Bosch.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

Cosmic Microwave Background Polarization. Gil Holder

Cosmology with weak-lensing peak counts

CONSTRAINTS AND TENSIONS IN MG CFHTLENS AND OTHER DATA SETS PARAMETERS FROM PLANCK, INCLUDING INTRINSIC ALIGNMENTS SYSTEMATICS.

Dr Carolyn Devereux - Daphne Jackson Fellow Dr Jim Geach Prof. Martin Hardcastle. Centre for Astrophysics Research University of Hertfordshire, UK

Probing Dark Matter Halos with Satellite Kinematics & Weak Lensing

RCSLenS galaxy cross-correlations with WiggleZ and BOSS

Physics of the Large Scale Structure. Pengjie Zhang. Department of Astronomy Shanghai Jiao Tong University

Weak gravitational lensing of CMB

Cross-Correlation of Cosmic Shear and Extragalactic Gamma-ray Background

The ultimate measurement of the CMB temperature anisotropy field UNVEILING THE CMB SKY

Variation in the cosmic baryon fraction and the CMB

CMB Lensing Reconstruction on PLANCK simulated data

A look into the Dark Universe

Primordial and Doppler modulations with Planck Antony Lewis On behalf of the Planck collaboration

Detection of hot gas in multi-wavelength datasets. Loïc Verdier DDAYS 2015

GALAXY CLUSTERING. Emmanuel Schaan AST 542 April 10th 2013

The Galaxy Dark Matter Connection

Warm dark matter with future cosmic shear data

XIII. The Very Early Universe and Inflation. ASTR378 Cosmology : XIII. The Very Early Universe and Inflation 171

Large Scale Structure with the Lyman-α Forest

Cosmology on small scales: Emulating galaxy clustering and galaxy-galaxy lensing into the deeply nonlinear regime

BARYON ACOUSTIC OSCILLATIONS. Cosmological Parameters and You

PAPER 73 PHYSICAL COSMOLOGY

A5682: Introduction to Cosmology Course Notes. 11. CMB Anisotropy

Geometrical models for spheroidal cosmological voids

Probing Cosmic Origins with CO and [CII] Emission Lines

Unication models of dark matter and dark energy

Large-Scale Filaments From Weak Lensing

Cosmology with high (z>1) redshift galaxy surveys

Planck was conceived to confirm the robustness of the ΛCDM concordance model when the relevant quantities are measured with much higher accuracy

Cosmology. Introduction Geometry and expansion history (Cosmic Background Radiation) Growth Secondary anisotropies Large Scale Structure

A5682: Introduction to Cosmology Course Notes. 11. CMB Anisotropy

Cosmology with CMB & LSS:

Week 3: Sub-horizon perturbations

Cosmology from Topology of Large Scale Structure of the Universe

STUDY OF THE LARGE-SCALE STRUCTURE OF THE UNIVERSE USING GALAXY CLUSTERS

Synergistic cosmology across the spectrum

The cosmic background radiation II: The WMAP results. Alexander Schmah

Halo models of large scale structure

The angular homogeneity scale of the Universe

CMB beyond a single power spectrum: Non-Gaussianity and frequency dependence. Antony Lewis

Constraining Dark Energy and Modified Gravity with the Kinetic SZ effect

Weak lensing measurements of Dark Matter Halos around galaxies

arxiv: v1 [astro-ph.co] 3 Apr 2019

Dark Matter and Cosmic Structure Formation

NeoClassical Probes. of the Dark Energy. Wayne Hu COSMO04 Toronto, September 2004

Refining Photometric Redshift Distributions with Cross-Correlations

Halo Model. Vinicius Miranda. Cosmology Course - Astro 321, Department of Astronomy and Astrophysics University of Chicago

Thermal History of the Universe and the Cosmic Microwave Background. II. Structures in the Microwave Background

Effect of weak lensing on GWs

Cosmology AS

Galaxies 626. Lecture 3: From the CMBR to the first star

The Galaxy Dark Matter Connection

The Clustering of Dark Matter in ΛCDM on Scales Both Large and Small

Exploring Dark Energy

Investigating Cluster Astrophysics and Cosmology with Cross-Correlation of Thermal Sunyaev-Zel dovich Effect and Weak Lensing

N-body Simulations and Dark energy

What do we really know about Dark Energy?

Fluctuations of cosmic parameters in the local universe

The angular homogeneity scale of the Universe

Large Imaging Surveys for Cosmology:

Cosmology with Peculiar Velocity Surveys

Morphology and Topology of the Large Scale Structure of the Universe

Cosmic Microwave Background

Study the large-scale structure of the universenovember using galaxy 10, 2016 clusters 1 / 16

Testing gravity. Camille Bonvin Kavli Institute for Cosmology and DAMTP Cambridge

Observing the Dimensionality of Our Parent Vacuum

Shant Baghram. Séminaires de l'iap. IPM-Tehran 13 September 2013

Constraining Modified Gravity and Coupled Dark Energy with Future Observations Matteo Martinelli

New techniques to measure the velocity field in Universe.

Gravitational Lensing of the CMB

Advanced Topics on Astrophysics: Lectures on dark matter

B-mode Polarization of The Cosmic Microwave Background

Microwave Background Polarization: Theoretical Perspectives

Relativistic effects in large-scale structure

CMB Polarization and Cosmology

Priming the BICEP. Wayne Hu Chicago, March BB

Secondary Polarization

The Power. of the Galaxy Power Spectrum. Eric Linder 13 February 2012 WFIRST Meeting, Pasadena

Cosmological Constraints on Dark Energy via Bulk Viscosity from Decaying Dark Matter

Physics 463, Spring 07. Formation and Evolution of Structure: Growth of Inhomogenieties & the Linear Power Spectrum

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

Chapter 9. Cosmic Structures. 9.1 Quantifying structures Introduction

Cross-correlations of CMB lensing as tools for cosmology and astrophysics. Alberto Vallinotto Los Alamos National Laboratory

Large-scale structure as a probe of dark energy. David Parkinson University of Sussex, UK

Theory of galaxy formation

PONT 2011 Avignon - 20 Apr 2011 Non-Gaussianities in Halo Clustering properties. Andrea De Simone

The impact of relativistic effects on cosmological parameter estimation

Transcription:

Cross-Correlation of CFHTLenS Galaxy Catalogue and Planck CMB Lensing A 5-month internship under the direction of Simon Prunet Adrien Kuntz Ecole Normale Supérieure, Paris July 08, 2015

Outline 1 Introduction 2 Theoretical Cosmology Cosmological Perturbation Theory Gravitational Lensing and Galaxy Density Cross-Correlation The Halo Model 3 Data Maps Galaxies Convergence 4 Results Bayesian Analysis Consistency Checks 5 Conclusions A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 2 / 57

The Initial Motivation Introduction A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 3 / 57

Aims of my Internship Introduction Achieve a good comprehension of the cosmological perturbation theory and of the halo model (1 month1/2) Implement a python program to compute covariances from the halo model (1 month 1/2) Retrieve data from both the CFHTLenS and the Planck collaboration, format them in a sky map, and perform simulations (1 month) Use a bayesian analysis to fit galaxy bias from the correlation of the two maps (1 week) Write an insternship report and a presentation(2 weeks) A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 4 / 57

Aims of my Internship Introduction Achieve a good comprehension of the cosmological perturbation theory and of the halo model (1 month1/2) Implement a python program to compute covariances from the halo model (1 month 1/2) Retrieve data from both the CFHTLenS and the Planck collaboration, format them in a sky map, and perform simulations (1 month) Use a bayesian analysis to fit galaxy bias from the correlation of the two maps (1 week) Write an insternship report and a presentation(2 weeks) A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 4 / 57

Aims of my Internship Introduction Achieve a good comprehension of the cosmological perturbation theory and of the halo model (1 month1/2) Implement a python program to compute covariances from the halo model (1 month 1/2) Retrieve data from both the CFHTLenS and the Planck collaboration, format them in a sky map, and perform simulations (1 month) Use a bayesian analysis to fit galaxy bias from the correlation of the two maps (1 week) Write an insternship report and a presentation(2 weeks) A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 4 / 57

Aims of my Internship Introduction Achieve a good comprehension of the cosmological perturbation theory and of the halo model (1 month1/2) Implement a python program to compute covariances from the halo model (1 month 1/2) Retrieve data from both the CFHTLenS and the Planck collaboration, format them in a sky map, and perform simulations (1 month) Use a bayesian analysis to fit galaxy bias from the correlation of the two maps (1 week) Write an insternship report and a presentation(2 weeks) A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 4 / 57

Aims of my Internship Introduction Achieve a good comprehension of the cosmological perturbation theory and of the halo model (1 month1/2) Implement a python program to compute covariances from the halo model (1 month 1/2) Retrieve data from both the CFHTLenS and the Planck collaboration, format them in a sky map, and perform simulations (1 month) Use a bayesian analysis to fit galaxy bias from the correlation of the two maps (1 week) Write an insternship report and a presentation(2 weeks) A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 4 / 57

Outline 1 Introduction Theoretical Cosmology Cosmological Perturbation Theory 2 Theoretical Cosmology Cosmological Perturbation Theory Gravitational Lensing and Galaxy Density Cross-Correlation The Halo Model 3 Data Maps Galaxies Convergence 4 Results Bayesian Analysis Consistency Checks 5 Conclusions A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 5 / 57

Theoretical Cosmology Friedmann-Lemaître Model Cosmological Perturbation Theory ds 2 = c 2 dt 2 a 2 (t) dx 2 Physical coordinates : r = a (t) x Friedmann equations : ȧ 2 +kc 2 a 2 ä a = 4πG 3 = 8πGρ+Λc2 3 ( ) ρ + 3p + Λc2 c 2 3 Solution : p = wρc 2 ρ a 3(1+w) A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 6 / 57

Theoretical Cosmology Friedmann-Lemaître Model Cosmological Perturbation Theory ds 2 = c 2 dt 2 a 2 (t) dx 2 Physical coordinates : r = a (t) x Friedmann equations : ȧ 2 +kc 2 a 2 ä a = 4πG 3 = 8πGρ+Λc2 3 ( ) ρ + 3p + Λc2 c 2 3 Solution : p = wρc 2 ρ a 3(1+w) A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 6 / 57

Theoretical Cosmology Friedmann-Lemaître Model Cosmological Perturbation Theory ds 2 = c 2 dt 2 a 2 (t) dx 2 Physical coordinates : r = a (t) x Friedmann equations : ȧ 2 +kc 2 a 2 ä a = 4πG 3 = 8πGρ+Λc2 3 ( ) ρ + 3p + Λc2 c 2 3 Solution : p = wρc 2 ρ a 3(1+w) A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 6 / 57

Theoretical Cosmology Friedmann-Lemaître Model Cosmological Perturbation Theory ds 2 = c 2 dt 2 a 2 (t) dx 2 Physical coordinates : r = a (t) x Friedmann equations : ȧ 2 +kc 2 a 2 ä a = 4πG 3 = 8πGρ+Λc2 3 ( ) ρ + 3p + Λc2 c 2 3 Solution : p = wρc 2 ρ a 3(1+w) A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 6 / 57

Perturbation Theory Theoretical Cosmology Cosmological Perturbation Theory ρ (x, t) ρ (t) (1 + δ (x, t)) Linear solution : δ (x, t) = D + 1 (t) A (x) Non-linear solution : δ (k, t) = + n=1 an (t) δ n (k) A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 7 / 57

Perturbation Theory Theoretical Cosmology Cosmological Perturbation Theory ρ (x, t) ρ (t) (1 + δ (x, t)) Linear solution : δ (x, t) = D + 1 (t) A (x) Non-linear solution : δ (k, t) = + n=1 an (t) δ n (k) A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 7 / 57

Perturbation Theory Theoretical Cosmology Cosmological Perturbation Theory ρ (x, t) ρ (t) (1 + δ (x, t)) Linear solution : δ (x, t) = D + 1 (t) A (x) Non-linear solution : δ (k, t) = + n=1 an (t) δ n (k) A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 7 / 57

Theoretical Cosmology Linear and Non-Linear Scales Cosmological Perturbation Theory Credit : Baghram et al (2011) A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 8 / 57

Theoretical Cosmology Cosmological Perturbation Theory Correlation Function and Power Spectrum Primordial quantum fluctuations and inflation Gaussian initial conditions Gravitational instability ξ (r) = δ (x) δ (x + r) δ (k) δ (k ) = (2π) 3 δ D (k + k ) P (k) and higher order : B, T... A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 9 / 57

Theoretical Cosmology Cosmological Perturbation Theory Correlation Function and Power Spectrum Primordial quantum fluctuations and inflation Gaussian initial conditions Gravitational instability ξ (r) = δ (x) δ (x + r) δ (k) δ (k ) = (2π) 3 δ D (k + k ) P (k) and higher order : B, T... A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 9 / 57

Theoretical Cosmology Cosmological Perturbation Theory Correlation Function and Power Spectrum Primordial quantum fluctuations and inflation Gaussian initial conditions Gravitational instability ξ (r) = δ (x) δ (x + r) δ (k) δ (k ) = (2π) 3 δ D (k + k ) P (k) and higher order : B, T... A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 9 / 57

Theoretical Cosmology Cosmological Perturbation Theory Correlation Function and Power Spectrum Primordial quantum fluctuations and inflation Gaussian initial conditions Gravitational instability ξ (r) = δ (x) δ (x + r) δ (k) δ (k ) = (2π) 3 δ D (k + k ) P (k) and higher order : B, T... A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 9 / 57

Theoretical Cosmology Cosmological Perturbation Theory Correlation Function and Power Spectrum Primordial quantum fluctuations and inflation Gaussian initial conditions Gravitational instability ξ (r) = δ (x) δ (x + r) δ (k) δ (k ) = (2π) 3 δ D (k + k ) P (k) and higher order : B, T... A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 9 / 57

Outline 1 Introduction Theoretical Cosmology Gravitational Lensing and Galaxy Density 2 Theoretical Cosmology Cosmological Perturbation Theory Gravitational Lensing and Galaxy Density Cross-Correlation The Halo Model 3 Data Maps Galaxies Convergence 4 Results Bayesian Analysis Consistency Checks 5 Conclusions A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 10 / 57

Lens Equation Theoretical Cosmology Gravitational Lensing and Galaxy Density S α α given in General Relativity D LS L D OS θ D OL θ s O Lens equation : θ = f (θ s ) A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 11 / 57

Illustration Theoretical Cosmology Gravitational Lensing and Galaxy Density Figure: Distortion of an extended source by a point-like lens A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 12 / 57

Illustration Theoretical Cosmology Gravitational Lensing and Galaxy Density A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 13 / 57

Illustration Theoretical Cosmology Gravitational Lensing and Galaxy Density A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 14 / 57

Theoretical Cosmology Gravitational Lensing and Galaxy Density Effect on the CMB Deformation of the photon paths κ (θ) = A. Kuntz (ENS Ulm) χcmb 0 Correlation of CFHTLenS and Planck W κ (χ) δ (χθ, χ) dχ 07/08/2015 15 / 57

Theoretical Cosmology Gravitational Lensing and Galaxy Density Effect on the CMB Deformation of the photon paths κ (θ) = A. Kuntz (ENS Ulm) χcmb 0 Correlation of CFHTLenS and Planck W κ (χ) δ (χθ, χ) dχ 07/08/2015 15 / 57

Galaxy Overdensity Theoretical Cosmology Gravitational Lensing and Galaxy Density δ gal (χθ, χ) = b (χ) δ (χθ, χ) g (θ) = χ CMB 0 W g (χ) δ (χθ, χ) dχ W g (χ) b (χ) A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 16 / 57

Galaxy Overdensity Theoretical Cosmology Gravitational Lensing and Galaxy Density δ gal (χθ, χ) = b (χ) δ (χθ, χ) g (θ) = χ CMB 0 W g (χ) δ (χθ, χ) dχ W g (χ) b (χ) A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 16 / 57

Galaxy Overdensity Theoretical Cosmology Gravitational Lensing and Galaxy Density δ gal (χθ, χ) = b (χ) δ (χθ, χ) g (θ) = χ CMB 0 W g (χ) δ (χθ, χ) dχ W g (χ) b (χ) A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 16 / 57

Lensing kernels Theoretical Cosmology Gravitational Lensing and Galaxy Density A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 17 / 57

Outline 1 Introduction Theoretical Cosmology Cross-Correlation 2 Theoretical Cosmology Cosmological Perturbation Theory Gravitational Lensing and Galaxy Density Cross-Correlation The Halo Model 3 Data Maps Galaxies Convergence 4 Results Bayesian Analysis Consistency Checks 5 Conclusions A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 18 / 57

Theoretical Cosmology Cross-Correlation Spherical Harmonics and Correlation κ (θ) lm κ lmyl m (θ) and g (θ) lm g lmyl m (θ) κlm g l m = δll δ mm C κg l C κg l = ) dχ W κ (χ)w g (χ) P (k = l χ 2 χ, z (χ) A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 19 / 57

Covariance Theoretical Cosmology Cross-Correlation Covariance : Σ κg ij = C κg κg l i C l j C κg l i C κg l j Σ κg ij = Gaussian Term + Non-Gaussian Term Non-Gaussian term involves T = δ (k 1 ) δ (k 2 ) δ (k 3 ) δ (k 4 ) A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 20 / 57

Covariance Theoretical Cosmology Cross-Correlation Covariance : Σ κg ij = C κg κg l i C l j C κg l i C κg l j Σ κg ij = Gaussian Term + Non-Gaussian Term Non-Gaussian term involves T = δ (k 1 ) δ (k 2 ) δ (k 3 ) δ (k 4 ) A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 20 / 57

Covariance Theoretical Cosmology Cross-Correlation Covariance : Σ κg ij = C κg κg l i C l j C κg l i C κg l j Σ κg ij = Gaussian Term + Non-Gaussian Term Non-Gaussian term involves T = δ (k 1 ) δ (k 2 ) δ (k 3 ) δ (k 4 ) A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 20 / 57

Correlation Matrix Theoretical Cosmology Cross-Correlation A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 21 / 57

Outline 1 Introduction Theoretical Cosmology The Halo Model 2 Theoretical Cosmology Cosmological Perturbation Theory Gravitational Lensing and Galaxy Density Cross-Correlation The Halo Model 3 Data Maps Galaxies Convergence 4 Results Bayesian Analysis Consistency Checks 5 Conclusions A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 22 / 57

Spherical Collapse Theoretical Cosmology The Halo Model Expansion δ sc = 1.69 Turnaround ρ halo = sc ρ background, sc 340 Gravitational collapse Virialization A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 23 / 57

Spherical Collapse Theoretical Cosmology The Halo Model Expansion δ sc = 1.69 Turnaround ρ halo = sc ρ background, sc 340 Gravitational collapse Virialization A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 23 / 57

Spherical Collapse Theoretical Cosmology The Halo Model Expansion δ sc = 1.69 Turnaround ρ halo = sc ρ background, sc 340 Gravitational collapse Virialization A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 23 / 57

Ingredients Theoretical Cosmology The Halo Model n (m, z) Press & Schechter (1974) ρ (r; m) NFW profile (1997) δ h (x,z; m) = k>0 b k (m, z) δ (x) k /k! Mo & White (1995) A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 24 / 57

Correlation Function Theoretical Cosmology The Halo Model 1-halo ρ tot (x) = i ρ (x x i, m i ) ξ (r) = ρ(x)ρ(x+r) ρ 2 1 2-halo ρ (x) ρ (x + r) = 1-halo term + 2-halo term A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 25 / 57

Correlation Function Theoretical Cosmology The Halo Model 1-halo ρ tot (x) = i ρ (x x i, m i ) ξ (r) = ρ(x)ρ(x+r) ρ 2 1 2-halo ρ (x) ρ (x + r) = 1-halo term + 2-halo term A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 25 / 57

Correlation Function Theoretical Cosmology The Halo Model 1-halo ρ tot (x) = i ρ (x x i, m i ) ξ (r) = ρ(x)ρ(x+r) ρ 2 1 2-halo ρ (x) ρ (x + r) = 1-halo term + 2-halo term A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 25 / 57

Power Spectrum Theoretical Cosmology The Halo Model Credit : Cooray & Sheth (2002) A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 26 / 57

Trispectrum Theoretical Cosmology The Halo Model T hhhh (k 1, k 1, k 2, k 2 ) = T 1h + T 2h + T 3h + T 4h A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 27 / 57

Outline 1 Introduction 2 Theoretical Cosmology Data Maps Galaxies Cosmological Perturbation Theory Gravitational Lensing and Galaxy Density Cross-Correlation The Halo Model 3 Data Maps Galaxies Convergence 4 Results Bayesian Analysis Consistency Checks 5 Conclusions A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 28 / 57

Data Maps The CFHTLenS Catalogue Galaxies Analysis of the CFHT Legacy Survey specialized in the production of a galaxy catalogue for lensing measurement CFHTLS : 171 MegaCam pointings 2003-2008, more than 2300 hours 4 patches, 154 deg 2 Galaxy catalogue and accurate photometric redshifts : σ 0.04 (1 + z) 0.2 < z < 1.3 and 18 < i AB < 24 A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 29 / 57

Redshift Distribution Data Maps Galaxies dn dz = α z 0 ( z z 0 ) λ exp ( ( z z 0 ) β ) A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 30 / 57

Healpix Data Maps Galaxies JPL / NASA Pixels of equal area Iso-latitude Interface in Python 1 pixel = 1.7 arcmin A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 31 / 57

Data Maps Galaxies Mask Healpix pixel Mask Weight : w i = S unmasked S tot Galaxy overdensity : δ i = N i /w i N N n = 15.1 gal / arcmin 2 A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 32 / 57

Data Maps Galaxies Mask Healpix pixel Mask Weight : w i = S unmasked S tot Galaxy overdensity : δ i = N i /w i N N n = 15.1 gal / arcmin 2 A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 32 / 57

Data Maps Galaxies Mask Healpix pixel Mask Weight : w i = S unmasked S tot Galaxy overdensity : δ i = N i /w i N N n = 15.1 gal / arcmin 2 A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 32 / 57

Data Maps Galaxies Mask Healpix pixel Mask Weight : w i = S unmasked S tot Galaxy overdensity : δ i = N i /w i N N n = 15.1 gal / arcmin 2 A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 32 / 57

Mask Data Maps Galaxies A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 33 / 57

Galaxy Map Data Maps Galaxies A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 34 / 57

Galaxy Map Data Maps Galaxies A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 35 / 57

Noise Data Maps Galaxies Poisson process : shot noise C gg l C gg l + N gg l, N gg l = 1/ n ( n in galaxies / steradian!) Small effect A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 36 / 57

Outline 1 Introduction 2 Theoretical Cosmology Data Maps Convergence Cosmological Perturbation Theory Gravitational Lensing and Galaxy Density Cross-Correlation The Halo Model 3 Data Maps Galaxies Convergence 4 Results Bayesian Analysis Consistency Checks 5 Conclusions A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 37 / 57

Convergence Map Data Maps Convergence A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 38 / 57

Noise Data Maps Convergence Obtained from the Planck simulations Dominant over C κκ l! A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 39 / 57

Data Maps Convergence A Consequence of the High Level of Noise Σ κg ij = 1 [ (2π) 2 ( (C δ K κκ ij l 4πf sky Ω i i + Nl κκ ) ( ) ( ) ) 2 i C gg l j + N gg l i + C κg l i + ] κg T ij A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 40 / 57

Outline 1 Introduction 2 Theoretical Cosmology Results Bayesian Analysis Cosmological Perturbation Theory Gravitational Lensing and Galaxy Density Cross-Correlation The Halo Model 3 Data Maps Galaxies Convergence 4 Results Bayesian Analysis Consistency Checks 5 Conclusions A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 41 / 57

Results Bayesian Analysis Bayes Theorem C κg l C gg l = A b C κg l = b 2 C gg l P (A, b C) = P(A,b)P(C A,b) P(C) { P (C A, b) = N exp 1 ( ) ( ) } C C (A, b) Σ 1 C C (A, b) 2 A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 42 / 57

Results Bayesian Analysis Bayes Theorem C κg l C gg l = A b C κg l = b 2 C gg l P (A, b C) = P(A,b)P(C A,b) P(C) { P (C A, b) = N exp 1 ( ) ( ) } C C (A, b) Σ 1 C C (A, b) 2 A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 42 / 57

Results Bayesian Analysis Bayes Theorem C κg l C gg l = A b C κg l = b 2 C gg l P (A, b C) = P(A,b)P(C A,b) P(C) { P (C A, b) = N exp 1 ( ) ( ) } C C (A, b) Σ 1 C C (A, b) 2 A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 42 / 57

MCMC 2013 Results Bayesian Analysis A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 43 / 57

MCMC 2015 Results Bayesian Analysis A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 44 / 57

Best-Fit Values Results Bayesian Analysis 2013 2015 Patch A b χ 2 /ν A b χ 2 /ν All 1.05 +0.15 0.15 0.93 +0.02 0.02 47.2/36 0.86 +0.15 0.16 0.92 +0.02 0.02 37.4/36 A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 45 / 57

C κg l Results Bayesian Analysis A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 46 / 57

C gg l Results Bayesian Analysis A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 47 / 57

Outline 1 Introduction 2 Theoretical Cosmology Results Consistency Checks Cosmological Perturbation Theory Gravitational Lensing and Galaxy Density Cross-Correlation The Halo Model 3 Data Maps Galaxies Convergence 4 Results Bayesian Analysis Consistency Checks 5 Conclusions A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 48 / 57

κg, simu Cl Results Consistency Checks A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 49 / 57

gg, simu Cl Results Consistency Checks A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 50 / 57

Recovered A and b Results Consistency Checks A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 51 / 57

Outline Conclusions 1 Introduction 2 Theoretical Cosmology Cosmological Perturbation Theory Gravitational Lensing and Galaxy Density Cross-Correlation The Halo Model 3 Data Maps Galaxies Convergence 4 Results Bayesian Analysis Consistency Checks 5 Conclusions A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 52 / 57

Summary Conclusions Learned Cosmological Perturbation Theory and Halo Model Implemented a Python program to compute the trispectrum in the halo model Created a galaxy and convergence map Used a Bayesian analysis to fit a galaxy bias Performed consistency checks A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 53 / 57

Summary Conclusions Learned Cosmological Perturbation Theory and Halo Model Implemented a Python program to compute the trispectrum in the halo model Created a galaxy and convergence map Used a Bayesian analysis to fit a galaxy bias Performed consistency checks A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 53 / 57

Summary Conclusions Learned Cosmological Perturbation Theory and Halo Model Implemented a Python program to compute the trispectrum in the halo model Created a galaxy and convergence map Used a Bayesian analysis to fit a galaxy bias Performed consistency checks A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 53 / 57

Summary Conclusions Learned Cosmological Perturbation Theory and Halo Model Implemented a Python program to compute the trispectrum in the halo model Created a galaxy and convergence map Used a Bayesian analysis to fit a galaxy bias Performed consistency checks A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 53 / 57

Summary Conclusions Learned Cosmological Perturbation Theory and Halo Model Implemented a Python program to compute the trispectrum in the halo model Created a galaxy and convergence map Used a Bayesian analysis to fit a galaxy bias Performed consistency checks A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 53 / 57

Conclusions Conclusions b = 0.92 +0.02 0.02 : good tracers of matter A 2013 = 1.05 +0.15 0.15 and A2015 = 0.86 +0.15 0.15 : compatible but different Partly confirm Omori & Holder (2015) A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 54 / 57

Forthcoming Work Conclusions SDSS data : much better coverage of the sky If still a difference : investigate! A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 55 / 57

Questions? Comments? Conclusions A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 56 / 57

Conclusions Thank You CFHT! A. Kuntz (ENS Ulm) Correlation of CFHTLenS and Planck 07/08/2015 57 / 57