Collective Dynamics of a Generalized Dicke Model

Similar documents
Polariton and photon condensates in organic materials. Jonathan Keeling. Sheffield, October 2014

Polariton and photon condensates with organic molecules

Towards new states of matter with atoms and photons

Prospects for a superradiant laser

Introduction to Classical and Quantum FEL Theory R. Bonifacio University of Milano and INFN LNF

From cavity optomechanics to the Dicke quantum phase transition

SUPA. Quantum Many-Body Physics with Multimode Cavity QED. Jonathan Keeling FOUNDED. University of St Andrews

Quantum Reservoir Engineering

Quantum structures of photons and atoms

9 Atomic Coherence in Three-Level Atoms

Quantum Simulation with Rydberg Atoms

Light-matter coupling: from the weak to the ultrastrong coupling and beyond. Simone De Liberato Quantum Light and Matter Group

Quantum Light-Matter Interactions

Quantum Feedback Stabilized Solid-State Emitters

Non-equilibrium quantum phase transition with ultracold atoms in optical cavity

8 Quantized Interaction of Light and Matter

Quantum information processing with individual neutral atoms in optical tweezers. Philippe Grangier. Institut d Optique, Palaiseau, France

arxiv: v1 [physics.atom-ph] 9 Nov 2013

Coherence and optical electron spin rotation in a quantum dot. Sophia Economou NRL. L. J. Sham, UCSD R-B Liu, CUHK Duncan Steel + students, U Michigan

Coupling n-level Atoms with l-modes of Quantised Light in a Resonator

Self organization of a Bose Einstein Condensate in an optical cavity

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED

Collective excitations of ultracold molecules on an optical lattice. Roman Krems University of British Columbia

Polariton Condensation

OIST, April 16, 2014

7 Three-level systems

Semester project report: Simulations for one ion experiments

Controlling discrete and continuous symmetries in superradiant phase transitions

Cooling Using the Stark Shift Gate

Cluster mean-field approach to the steady-state phase diagram of dissipative spin systems. Davide Rossini. Scuola Normale Superiore, Pisa (Italy)

Part3:Superfluidity: k Flow via obstacles, Persistent Currents & Quantised Vortices. Marzena Szymanska

Solid State Physics IV -Part II : Macroscopic Quantum Phenomena

Vortices and superfluidity

Non-relativistic Quantum Electrodynamics

Cavity QED with Rydberg Atoms Serge Haroche, Collège de France & Ecole Normale Supérieure, Paris

Cooperative atom-light interaction in a blockaded Rydberg ensemble

Spin-Boson Model. A simple Open Quantum System. M. Miller F. Tschirsich. Quantum Mechanics on Macroscopic Scales Theory of Condensed Matter July 2012

Dicke quantum spin glass of atoms and photons

A theory for localized low-frequency ideal MHD modes in axisymmetric toroidal systems is generalized to take into account both toroidal and poloidal

Relational time and intrinsic decoherence

Absorption-Amplification Response with or Without Spontaneously Generated Coherence in a Coherent Four-Level Atomic Medium

Quantum Computation with Neutral Atoms Lectures 14-15

Resonantly Enhanced Microwave Photonics

Kevin J. Weatherill. Joint Quantum Centre (Durham-Newcastle) Department of Physics Durham University

Quantum superpositions and correlations in coupled atomic-molecular BECs

Atoms and photons. Chapter 1. J.M. Raimond. September 6, J.M. Raimond Atoms and photons September 6, / 36

Coherent oscillations in a charge qubit

Modulated superradiance and synchronized chaos in clouds of atoms in a bad cavity

6. Molecular structure and spectroscopy I

Dispersion interactions with long-time tails or beyond local equilibrium

Pairing Phases of Polaritons

Quantum Optics exam. M2 LOM and Nanophysique. 28 November 2017

Optomechanics and spin dynamics of cold atoms in a cavity

Slow and stored light using Rydberg atoms

Non-equilibrium spin systems - from quantum soft-matter to nuclear magnetic resonance

Survey on Laser Spectroscopic Techniques for Condensed Matter

Synthesizing arbitrary photon states in a superconducting resonator

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris

arxiv:quant-ph/ v3 19 May 1997

Circuit QED: A promising advance towards quantum computing

Adiabatic quantum motors

Theory of bifurcation amplifiers utilizing the nonlinear dynamical response of an optically damped mechanical oscillator

Measurement Based Quantum Computing, Graph States, and Near-term Realizations

Conference on Research Frontiers in Ultra-Cold Atoms. 4-8 May Generation of a synthetic vector potential in ultracold neutral Rubidium

Collège de France abroad Lectures Quantum information with real or artificial atoms and photons in cavities

Quantum Microwave Photonics:

Different ion-qubit choises. - One electron in the valence shell; Alkali like 2 S 1/2 ground state.

PART 2 : BALANCED HOMODYNE DETECTION

Supplemental Information for Single-photon bus connecting spin-wave quantum memories

Quantum optics of many-body systems

Graduate Class, Atomic and Laser Physics: Rabi flopping and quantum logic gates

arxiv: v1 [quant-ph] 24 Sep 2012

Cavity optomechanics in new regimes and with new devices

Quantum optics and optomechanics

Superfluidity and Condensation

EE-LE E OPTI T C A L S Y TE

Retract. Press down D RG MG LG S. Recess. I-V Converter VNA. Gate ADC. DC Bias. 20 mk. Amplifier. Attenuators. 0.

Cavity Quantum Electrodynamics Lecture 2: entanglement engineering with quantum gates

Lie algebraic aspects of quantum control in interacting spin-1/2 (qubit) chains

Quantum Memory in Atomic Ensembles BY GEORG BRAUNBECK

Γ43 γ. Pump Γ31 Γ32 Γ42 Γ41

Coherent Backscattering, Photon Localization and Random Laser with Cold Atoms

Driving Qubit Transitions in J-C Hamiltonian

4. Spontaneous Emission october 2016

Motion and motional qubit

Rydberg excited Calcium Ions for quantum interactions. Innsbruck Mainz Nottingham

MODERN OPTICS. P47 Optics: Unit 9

Variational analysis of dissipative Ising models

Axion Detection With NMR

Microcavity Exciton-Polariton

Quantum Computation with Neutral Atoms

Atomic Physics with Stored and Cooled Ions

LONG-LIVED QUANTUM MEMORY USING NUCLEAR SPINS

Quantum optics of many-body systems

Dicke model and environment-induced entanglement in ion-cavity QED Harkonen, Kari; Plastina, Francesco; Maniscalco, Sabrina

Classical and quantum simulation of dissipative quantum many-body systems

Introduction. Resonant Cooling of Nuclear Spins in Quantum Dots

Spontaneous Symmetry Breaking in Bose-Einstein Condensates

Optomechanically induced transparency of x-rays via optical control: Supplementary Information

Time-dependent DMRG:

Transcription:

Collective Dynamics of a Generalized Dicke Model J. Keeling, J. A. Mayoh, M. J. Bhaseen, B. D. Simons Harvard, January 212 Funding: Jonathan Keeling Collective dynamics Harvard, January 212 1 / 25

Coupling many atoms to light Old question: What happens to radiation when many atoms interact collectively with light. Superradiance dynamical and steady state. Jonathan Keeling Collective dynamics Harvard, January 212 2 / 25

Coupling many atoms to light Old question: What happens to radiation when many atoms interact collectively with light. Superradiance dynamical and steady state. New relevance Superconducting qubits Quantum dots Nitrogen-vacancies in diamond Ultra-cold atoms κ κ Cavity Pump Rydberg atoms Pump Jonathan Keeling Collective dynamics Harvard, January 212 2 / 25

Dicke effect: Enhanced emission H int = k,i ) g k (ψ k S i e ik r i + H.c. Jonathan Keeling Collective dynamics Harvard, January 212 3 / 25

Dicke effect: Enhanced emission H int = k,i ) g k (ψ k S i e ik r i + H.c. If r i r j λ, use i S i S Collective decay: dρ dt = Γ 2 [ S + S ρ S ρs + + ρs + S ] Jonathan Keeling Collective dynamics Harvard, January 212 3 / 25

Dicke effect: Enhanced emission H int = k,i ) g k (ψ k S i e ik r i + H.c. If r i r j λ, use i S i S Collective decay: dρ dt = Γ 2 [ S + S ρ S ρs + + ρs + S ] If S z = S = N/2 initially: I Γ d Sz dt = ΓN2 4 sech2 [ ] ΓN 2 t S z N/2 -N/2 t D t D ΓN 2 /2 I=-Γd S z /dt Jonathan Keeling Collective dynamics Harvard, January 212 3 / 25

Dicke effect: Enhanced emission H int = k,i ) g k (ψ k S i e ik r i + H.c. If r i r j λ, use i S i S Collective decay: dρ dt = Γ 2 [ S + S ρ S ρs + + ρs + S ] If S z = S = N/2 initially: I Γ d Sz dt = ΓN2 4 sech2 [ ] ΓN 2 t S z N/2 -N/2 t D t D ΓN 2 /2 I=-Γd S z /dt Problem: dipole interactions dephase. [Friedberg et al, Phys. Lett. 1972] Jonathan Keeling Collective dynamics Harvard, January 212 3 / 25

Collective radiation with a cavity: Dynamics H int = i ( ψ S i + ψs + i ) Single cavity mode: oscillations [Bonifacio and Preparata PRA 7; JK PRA 9] Jonathan Keeling Collective dynamics Harvard, January 212 4 / 25

Collective radiation with a cavity: Dynamics H int = i ( ψ S i + ψs + i ) Single cavity mode: oscillations If S z = S = N/2 initially: ψ(t) 2 16 T=2ln( N )/ N 14 12 1 8 6 4 2 1/ N.1.2.3.4.5.6.7.8 Time [Bonifacio and Preparata PRA 7; JK PRA 9] Jonathan Keeling Collective dynamics Harvard, January 212 4 / 25

Collective radiation with a cavity: Dynamics H int = i ( ψ S i + ψs + i ) Single cavity mode: oscillations If S z = S = N/2 initially: ψ(t) 2 16 T=2ln( N )/ N 14 12 1 8 6 4 2 1/ N.1.2.3.4.5.6.7.8 Time [Bonifacio and Preparata PRA 7; JK PRA 9] ψ(t) 2 16 N=2 14 12 1 8 6 4 2 1 2 3 4 5 Time Jonathan Keeling Collective dynamics Harvard, January 212 4 / 25

Dicke model: Equilibrium superradiance transition ( H = ωψ ψ + ω S z + g ψ S + ψs +). Coherent state: Ψ e λψ +ηs + Ω Energy: E = ω λ 2 + ω N η 2 1 2 η 2 + 1 + gn η λ + λ η 1 + η 2 Small g, min at λ, η = [Hepp, Lieb, Ann. Phys. 73] Jonathan Keeling Collective dynamics Harvard, January 212 5 / 25

Dicke model: Equilibrium superradiance transition ( H = ωψ ψ + ω S z + g ψ S + ψs +). Coherent state: Ψ e λψ +ηs + Ω Energy: E = ω λ 2 + ω N η 2 1 2 η 2 + 1 + gn η λ + λ η 1 + η 2 Small g, min at λ, η = [Hepp, Lieb, Ann. Phys. 73] Jonathan Keeling Collective dynamics Harvard, January 212 5 / 25

Dicke model: Equilibrium superradiance transition ( H = ωψ ψ + ω S z + g ψ S + ψs +). Coherent state: Ψ e λψ +ηs + Ω Energy: E = ω λ 2 + ω N η 2 1 2 η 2 + 1 + gn η λ + λ η 1 + η 2 Small g, min at λ, η = [Hepp, Lieb, Ann. Phys. 73] Jonathan Keeling Collective dynamics Harvard, January 212 5 / 25

Dicke model: Equilibrium superradiance transition ( H = ωψ ψ + ω S z + g ψ S + ψs +). Coherent state: Ψ e λψ +ηs + Ω Energy: E = ω λ 2 + ω N η 2 1 2 η 2 + 1 + gn η λ + λ η 1 + η 2 Small g, min at λ, η = ω ḡ N SR Spontaneous polarisation if: Ng 2 > ωω [Hepp, Lieb, Ann. Phys. 73] Jonathan Keeling Collective dynamics Harvard, January 212 5 / 25

No go theorem and transition Spontaneous polarisation if: Ng 2 > ωω [Rzazewski et al PRL 75] Jonathan Keeling Collective dynamics Harvard, January 212 6 / 25

No go theorem and transition Spontaneous polarisation if: Ng 2 > ωω No go theorem:. Minimal coupling (p ea) 2 /2m i e m A p i g(ψ S + ψs + ), i A 2 2m Nζ(ψ + ψ ) 2 [Rzazewski et al PRL 75] Jonathan Keeling Collective dynamics Harvard, January 212 6 / 25

No go theorem and transition Spontaneous polarisation if: Ng 2 > ωω No go theorem:. Minimal coupling (p ea) 2 /2m i e m A p i g(ψ S + ψs + ), For large N, ω ω + 2Nζ. (RWA) i A 2 2m Nζ(ψ + ψ ) 2 [Rzazewski et al PRL 75] Jonathan Keeling Collective dynamics Harvard, January 212 6 / 25

No go theorem and transition Spontaneous polarisation if: Ng 2 > ωω No go theorem:. Minimal coupling (p ea) 2 /2m i e m A p i g(ψ S + ψs + ), For large N, ω ω + 2Nζ. (RWA) Need Ng 2 > ω (ω + 2Nζ). i A 2 2m Nζ(ψ + ψ ) 2 [Rzazewski et al PRL 75] Jonathan Keeling Collective dynamics Harvard, January 212 6 / 25

No go theorem and transition Spontaneous polarisation if: Ng 2 > ωω No go theorem:. Minimal coupling (p ea) 2 /2m i e m A p i g(ψ S + ψs + ), i A 2 2m Nζ(ψ + ψ ) 2 For large N, ω ω + 2Nζ. (RWA) Need Ng 2 > ω (ω + 2Nζ). But Thomas-Reiche-Kuhn sum rule states: g 2 /ω < 2ζ. No transition [Rzazewski et al PRL 75] Jonathan Keeling Collective dynamics Harvard, January 212 6 / 25

Dicke phase transition: ways out Problem: g 2 /ω < 2ζ for intrinsic parameters. Solutions: Non-solution Ferroelectric transition in D r gauge. [JK JPCM 7 ] See also [Nataf and Ciuti, Nat. Comm. 1; Viehmann et al. PRL 11] Grand canonical ensemble: If H H µ(s z + ψ ψ), need only: g 2 N > (ω µ)(ω µ) Incoherent pumping polariton condensation. Dissociate g, ω, e.g. Raman scheme: ω ω. [Dimer et al. PRA 7; Baumann et al. Nature 1. Also, Black et al. PRL 3 ] Jonathan Keeling Collective dynamics Harvard, January 212 7 / 25

Dicke phase transition: ways out Problem: g 2 /ω < 2ζ for intrinsic parameters. Solutions: Non-solution Ferroelectric transition in D r gauge. [JK JPCM 7 ] See also [Nataf and Ciuti, Nat. Comm. 1; Viehmann et al. PRL 11] Grand canonical ensemble: If H H µ(s z + ψ ψ), need only: g 2 N > (ω µ)(ω µ) Incoherent pumping polariton condensation. Dissociate g, ω, e.g. Raman scheme: ω ω. [Dimer et al. PRA 7; Baumann et al. Nature 1. Also, Black et al. PRL 3 ] Jonathan Keeling Collective dynamics Harvard, January 212 7 / 25

Dicke phase transition: ways out Problem: g 2 /ω < 2ζ for intrinsic parameters. Solutions: Non-solution Ferroelectric transition in D r gauge. [JK JPCM 7 ] See also [Nataf and Ciuti, Nat. Comm. 1; Viehmann et al. PRL 11] Grand canonical ensemble: If H H µ(s z + ψ ψ), need only: g 2 N > (ω µ)(ω µ) Incoherent pumping polariton condensation. Dissociate g, ω, e.g. Raman scheme: ω ω. [Dimer et al. PRA 7; Baumann et al. Nature 1. Also, Black et al. PRL 3 ] Jonathan Keeling Collective dynamics Harvard, January 212 7 / 25

Dicke phase transition: ways out Problem: g 2 /ω < 2ζ for intrinsic parameters. Solutions: Non-solution Ferroelectric transition in D r gauge. [JK JPCM 7 ] See also [Nataf and Ciuti, Nat. Comm. 1; Viehmann et al. PRL 11] Grand canonical ensemble: If H H µ(s z + ψ ψ), need only: g 2 N > (ω µ)(ω µ) Incoherent pumping polariton condensation. Dissociate g, ω, e.g. Raman scheme: ω ω. [Dimer et al. PRA 7; Baumann et al. Nature 1. Also, Black et al. PRL 3 ] Jonathan Keeling Collective dynamics Harvard, January 212 7 / 25

Dicke phase transition: ways out Problem: g 2 /ω < 2ζ for intrinsic parameters. Solutions: Non-solution Ferroelectric transition in D r gauge. [JK JPCM 7 ] See also [Nataf and Ciuti, Nat. Comm. 1; Viehmann et al. PRL 11] Grand canonical ensemble: If H H µ(s z + ψ ψ), need only: g 2 N > (ω µ)(ω µ) Incoherent pumping polariton condensation. Dissociate g, ω, e.g. Raman scheme: ω ω. [Dimer et al. PRA 7; Baumann et al. Nature 1. Also, Black et al. PRL 3 ] κ Pump κ Cavity Pump Jonathan Keeling Collective dynamics Harvard, January 212 7 / 25

Outline 1 Introduction: Dicke model and superradiance Rayleigh scheme: Generalised Dicke model 2 Attractors of dynamics (fixed points) Phase diagram: comparison to experiment 3 Approach to attractors: timescales Why slow timescales emerge 4 Attractors of dynamics (oscillations) Reaching other parameter ranges Jonathan Keeling Collective dynamics Harvard, January 212 8 / 25

Outline 1 Introduction: Dicke model and superradiance Rayleigh scheme: Generalised Dicke model 2 Attractors of dynamics (fixed points) Phase diagram: comparison to experiment 3 Approach to attractors: timescales Why slow timescales emerge 4 Attractors of dynamics (oscillations) Reaching other parameter ranges Jonathan Keeling Collective dynamics Harvard, January 212 9 / 25

Extended Dicke model [Baumann et al. Nature 1] z x κ Pump κ gψ Ω 2 Level System 2 Level system,, : : Ψ(x, z) = 1 : Ψ(x, z) = ω = 2ω recoil e ik(σx+σ z) σ,σ =± H = ωψ ψ + ω S z + g(ψ + ψ )(S + S + )+US z ψ ψ. t ρ = i[h, ρ] κ(ψ ψρ 2ψρψ + ρψ ψ) Jonathan Keeling Collective dynamics Harvard, January 212 1 / 25

Extended Dicke model [Baumann et al. Nature 1] z x κ Pump κ gψ Ω 2 Level System 2 Level system,, : : Ψ(x, z) = 1 : Ψ(x, z) = ω = 2ω recoil e ik(σx+σ z) σ,σ =± H = ωψ ψ + ω S z + g(ψ + ψ )(S + S + )+US z ψ ψ. t ρ = i[h, ρ] κ(ψ ψρ 2ψρψ + ρψ ψ) Jonathan Keeling Collective dynamics Harvard, January 212 1 / 25

Extended Dicke model [Baumann et al. Nature 1] z x κ Pump κ gψ Ω 2 Level System 2 Level system,, : : Ψ(x, z) = 1 : Ψ(x, z) = ω = 2ω recoil e ik(σx+σ z) σ,σ =± Feedback: U g2 ω c ω a H = ωψ ψ + ω S z + g(ψ + ψ )(S + S + )+US z ψ ψ. t ρ = i[h, ρ] κ(ψ ψρ 2ψρψ + ρψ ψ) Jonathan Keeling Collective dynamics Harvard, January 212 1 / 25

Extended Dicke model [Baumann et al. Nature 1] z x κ Pump κ gψ Ω 2 Level System 2 Level system,, : : Ψ(x, z) = 1 : Ψ(x, z) = ω = 2ω recoil e ik(σx+σ z) σ,σ =± Feedback: U g2 ω c ω a H = ωψ ψ + ω S z + g(ψ + ψ )(S + S + )+US z ψ ψ. t ρ = i[h, ρ] κ(ψ ψρ 2ψρψ + ρψ ψ) Jonathan Keeling Collective dynamics Harvard, January 212 1 / 25

Extended Dicke model [Baumann et al. Nature 1] z x κ Pump κ gψ Ω 2 Level System 2 Level system,, : : Ψ(x, z) = 1 : Ψ(x, z) = ω = 2ω recoil e ik(σx+σ z) σ,σ =± Feedback: U g2 ω c ω a H = ωψ ψ + ω S z + g(ψ + ψ )(S + S + )+US z ψ ψ. t ρ = i[h, ρ] κ(ψ ψρ 2ψρψ + ρψ ψ) Semiclassical EOM ( S = N/2 1) Ṡ = i(ω +U ψ 2 )S + 2ig(ψ + ψ )S z Ṡ z = ig(ψ + ψ )(S S + ) ψ = [κ + i(ω+us z )] ψ ig(s + S + ) Jonathan Keeling Collective dynamics Harvard, January 212 1 / 25

Extended Dicke model [Baumann et al. Nature 1] z x κ Pump κ gψ Ω 2 Level System 2 Level system,, : : Ψ(x, z) = 1 : Ψ(x, z) = ω = 2ω recoil e ik(σx+σ z) σ,σ =± Feedback: U g2 ω c ω a H = ωψ ψ + ω S z + g(ψ + ψ )(S + S + )+US z ψ ψ. t ρ = i[h, ρ] κ(ψ ψρ 2ψρψ + ρψ ψ) Semiclassical EOM ( S = N/2 1) Ṡ = i(ω +U ψ 2 )S + 2ig(ψ + ψ )S z Ṡ z = ig(ψ + ψ )(S S + ) ψ = [κ + i(ω+us z )] ψ ig(s + S + ) ω khz ω, κ, g N MHz. Jonathan Keeling Collective dynamics Harvard, January 212 1 / 25

Outline 1 Introduction: Dicke model and superradiance Rayleigh scheme: Generalised Dicke model 2 Attractors of dynamics (fixed points) Phase diagram: comparison to experiment 3 Approach to attractors: timescales Why slow timescales emerge 4 Attractors of dynamics (oscillations) Reaching other parameter ranges Jonathan Keeling Collective dynamics Harvard, January 212 11 / 25

Fixed points (steady states) = i(ω +U ψ 2 )S + 2ig(ψ + ψ )S z = ig(ψ + ψ )(S S + ) = [κ + i(ω+us z )] ψ ig(s + S + ) ψ =, S = (,, ±N/2) always a solution. If g > g c, ψ too A S y = I[S ] = B ψ = R[ψ] = Jonathan Keeling Collective dynamics Harvard, January 212 12 / 25

Fixed points (steady states) = i(ω +U ψ 2 )S + 2ig(ψ + ψ )S z = ig(ψ + ψ )(S S + ) = [κ + i(ω+us z )] ψ ig(s + S + ) ψ =, S = (,, ±N/2) always a solution. If g > g c, ψ too A S y = I[S ] = B ψ = R[ψ] = S z S y S x Small g:, only. (ω = 3MHz, UN = 4MHz) Jonathan Keeling Collective dynamics Harvard, January 212 12 / 25

Fixed points (steady states) = i(ω +U ψ 2 )S + 2ig(ψ + ψ )S z = ig(ψ + ψ )(S S + ) = [κ + i(ω+us z )] ψ ig(s + S + ) ψ =, S = (,, ±N/2) always a solution. If g > g c, ψ too A S y = I[S ] = B ψ = R[ψ] = S z S y S x Small g:, only. Larger g: SR too. (ω = 3MHz, UN = 4MHz) Jonathan Keeling Collective dynamics Harvard, January 212 12 / 25

Steady state phase diagram UN=, κ= = i(ω +U ψ 2 )S + 2ig(ψ + ψ )S z ω SR = ig(ψ + ψ )(S S + ) = [κ + i(ω+us z )] ψ ig(s + S + ) ḡ N See also Domokos and Ritsch PRL 2, Domokos et al. PRL 1 Jonathan Keeling Collective dynamics Harvard, January 212 13 / 25

Steady state phase diagram = i(ω +U ψ 2 )S + 2ig(ψ + ψ )S z = ig(ψ + ψ )(S S + ) = [κ + i(ω+us z )] ψ ig(s + S + ) 4 UN= ω UN=, κ= ḡ N SR SR(A): S y = 2 SR -2 SR -4.5 1 1.5 g N (MHz) See also Domokos and Ritsch PRL 2, Domokos et al. PRL 1 Jonathan Keeling Collective dynamics Harvard, January 212 13 / 25

Steady state phase diagram = i(ω +U ψ 2 )S + 2ig(ψ + ψ )S z = ig(ψ + ψ )(S S + ) = [κ + i(ω+us z )] ψ ig(s + S + ) 4 UN=-1 ω UN=, κ= ḡ N SR SR(A): S y = 2-2 + SRB + SR(B): ψ = -4.5 1 1.5 g N (MHz) See also Domokos and Ritsch PRL 2, Domokos et al. PRL 1 Jonathan Keeling Collective dynamics Harvard, January 212 13 / 25

Steady state phase diagram = i(ω +U ψ 2 )S + 2ig(ψ + ψ )S z = ig(ψ + ψ )(S S + ) = [κ + i(ω+us z )] ψ ig(s + S + ) 4 UN=-1 2 + + SRB -2 + -4.5 1 1.5 g N (MHz) See also Domokos and Ritsch PRL 2, Domokos et al. PRL 1 ω UN=, κ= ḡ N SR SR(A): S y = + SR(B): ψ = Jonathan Keeling Collective dynamics Harvard, January 212 13 / 25

Steady state phase diagram = i(ω +U ψ 2 )S + 2ig(ψ + ψ )S z = ig(ψ + ψ )(S S + ) = [κ + i(ω+us z )] ψ ig(s + S + ) 4 UN=-2 ω UN=, κ= ḡ N SR SR(A): S y = 2-2 + SRB + SR(B): ψ = -4.5 1 1.5 g N (MHz) See also Domokos and Ritsch PRL 2, Domokos et al. PRL 1 Jonathan Keeling Collective dynamics Harvard, January 212 13 / 25

Steady state phase diagram = i(ω +U ψ 2 )S + 2ig(ψ + ψ )S z = ig(ψ + ψ )(S S + ) = [κ + i(ω+us z )] ψ ig(s + S + ) 4 2 UN=-4 ω UN=, κ= ḡ N SR SR(A): S y = -2 + SRB + SR(B): ψ = -4.5 1 1.5 g N (MHz) See also Domokos and Ritsch PRL 2, Domokos et al. PRL 1 Jonathan Keeling Collective dynamics Harvard, January 212 13 / 25

Steady state phase diagram = i(ω +U ψ 2 )S + 2ig(ψ + ψ )S z = ig(ψ + ψ )(S S + ) = [κ + i(ω+us z )] ψ ig(s + S + ) 4 2-2 + SRB + + + + SRB+ SRB+ UN=-4 SRB -4.5 1 1.5 g N (MHz) See also Domokos and Ritsch PRL 2, Domokos et al. PRL 1 ω UN=, κ= ḡ N SR SR(A): S y = + SR(B): ψ = Jonathan Keeling Collective dynamics Harvard, January 212 13 / 25

Comparison to experiment (ω p -ω c ) (2π MHz) -1-2 -3-4.5 1 1.5 2 2.5 g 2 N (MHz) 2 UN = 1MHz Adapted from: [Bhaseen et al. PRA 12] [Baumann et al Nature 1 ] ω = ω c ω p + 5 2 UN, UN = g 2 4(ω a ω c ) Jonathan Keeling Collective dynamics Harvard, January 212 14 / 25

Outline 1 Introduction: Dicke model and superradiance Rayleigh scheme: Generalised Dicke model 2 Attractors of dynamics (fixed points) Phase diagram: comparison to experiment 3 Approach to attractors: timescales Why slow timescales emerge 4 Attractors of dynamics (oscillations) Reaching other parameter ranges Jonathan Keeling Collective dynamics Harvard, January 212 15 / 25

Dynamics: Evolution from normal state 4 2 (ii) (i) UN=-4 + SRB -2 (iii) -4.5 1 1.5 g N (MHz) Jonathan Keeling Collective dynamics Harvard, January 212 16 / 25

Dynamics: Evolution from normal state Gray: S = ( N, N, N/2) Black: Wigner distribution of S, ψ 4 2 + (ii) (i) UN=-4 SRB (i) SR(A) ψ 2 8 4 1 1 2 2 4 6 8 t (ms) -2 (iii) -4.5 1 1.5 g N (MHz) Oscillations:.1ms Decay: 2ms Jonathan Keeling Collective dynamics Harvard, January 212 16 / 25

Dynamics: Evolution from normal state Gray: S = ( N, N, N/2) Black: Wigner distribution of S, ψ 4 2-2 + (ii) -4.5 1 1.5 g N (MHz) (i) (iii) Oscillations:.1ms Decay: 2ms,.1ms UN=-4 SRB (i) SR(A) (ii) SR(B) ψ 2 ψ 2 8 4 2 1 1 1 2 2 4 6 8 t (ms).1.2.3.4 t (ms) Jonathan Keeling Collective dynamics Harvard, January 212 16 / 25

Dynamics: Evolution from normal state Gray: S = ( N, N, N/2) Black: Wigner distribution of S, ψ 4 2-2 + (ii) -4.5 1 1.5 g N (MHz) (i) (iii) Oscillations:.1ms Decay: 2ms,.1ms, 2ms UN=-4 SRB (i) SR(A) (ii) SR(B) (iii) SR(A) ψ 2 ψ 2 ψ 2 8 4 2 1 12 8 4 1 1 2 2 4 6 8 t (ms).1.2.3.4 t (ms) 5 4 15 151 1 2 t (ms) Jonathan Keeling Collective dynamics Harvard, January 212 16 / 25

Dynamics: Evolution from normal state Gray: S = ( N, N, N/2) Black: Wigner distribution of S, ψ 4 2-2 + (ii) -4.5 1 1.5 g N (MHz) (i) (iii) Oscillations:.1ms Decay: 2ms,.1ms, 2ms UN=-4 SRB (i) SR(A) (ii) SR(B) (iii) SR(A) ψ 2 ψ 2 ψ 2 8 4 2 1 12 8 4 1 1 2 2 4 6 8 t (ms).1.2.3.4 t (ms) 5 4 15 151 1 2 t (ms) Jonathan Keeling Collective dynamics Harvard, January 212 16 / 25

Asymptotic state: Evolution from normal state (Near to experimental UN = 13MHz). All stable attractors: 4 UN=-1 2 + SRB -2-4.5 1 1.5 g N (MHz) Jonathan Keeling Collective dynamics Harvard, January 212 17 / 25

Asymptotic state: Evolution from normal state (Near to experimental UN = 13MHz). Starting from All stable attractors: 4 2 4 Asymptotic state UN=-1 2 + SRB SRB 1 3 1 2 1 1 ψ 2-2 -2 1-4.5 1 1.5 g N (MHz) -4.5 1 1.5 g N (MHz) 1-1 Jonathan Keeling Collective dynamics Harvard, January 212 17 / 25

Timescales for dynamics: What are they? 4 2-2 Asymptotic state SRB -4.5 1 1.5 g N (MHz) 1 3 1 2 1 1 1 1-1 ψ 2 4 2-2 No unstable directions Initial growth time One unstable direction Two unstable directions -4.5 1 1.5 g N (MHz) 1s 1s 1ms 1ms 1ms 1µs 1µs Growth Most unstable eigenvalues near S = (,, N/2) Decay Slowest stable eigenvalues near final state Jonathan Keeling Collective dynamics Harvard, January 212 18 / 25

Timescales for dynamics: What are they? 4 2-2 Asymptotic state SRB -4.5 1 1.5 g N (MHz) 1 3 1 2 1 1 1 1-1 ψ 2 4 2-2 No unstable directions Initial growth time One unstable direction Two unstable directions -4.5 1 1.5 g N (MHz) 1s 1s 1ms 1ms 1ms 1µs 1µs Growth Most unstable eigenvalues near S = (,, N/2) Decay Slowest stable eigenvalues near final state Expand in ω /κ: Oscillations: ω, Decay: ω or ω 2 /κ Jonathan Keeling Collective dynamics Harvard, January 212 18 / 25

Timescales for dynamics: What are they? 4 2-2 Asymptotic state SRB -4.5 1 1.5 g N (MHz) Growth Most unstable eigenvalues near S = (,, N/2) 1 3 1 2 1 1 1 1-1 Decay Slowest stable eigenvalues near final state Expand in ω /κ: Oscillations: ω, Decay: ω or ω 2 /κ ψ 2 4 2-2 No unstable directions Initial growth time One unstable direction Two unstable directions -4.5 1 1.5 4 2-2 g N (MHz) Asymptotic decay time SRB -4.5 1 1.5 g N (MHz) 1s 1s 1ms 1ms 1ms 1µs 1µs 1s 1s 1ms 1ms 1ms 1µs 1µs Jonathan Keeling Collective dynamics Harvard, January 212 18 / 25

Timescales for dynamics: Consequences for experiment 4 Asymptotic state 1 3 2 1 2 SRB 1 1 ψ 2-2 1-4.5 1 1.5 g N (MHz) 1-1 Jonathan Keeling Collective dynamics Harvard, January 212 19 / 25

Timescales for dynamics: Consequences for experiment 6 1ms sweep 1 3 4 2 Asymptotic state SRB 1 3 1 2 1 1 ψ 2 4 2-2 -4..5 1. 1.5 2. 2.5 g 2 N (MHz 2 ) 1 2 1 1 1 1-1 -2 1-4.5 1 1.5 g N (MHz) 1-1 Jonathan Keeling Collective dynamics Harvard, January 212 19 / 25

Timescales for dynamics: Consequences for experiment 6 1ms sweep 1 3 4 2 Asymptotic state SRB 1 3 1 2 1 1 ψ 2 4 2-2 -4..5 1. 1.5 2. 2.5 g 2 N (MHz 2 ) 1 2 1 1 1 1-1 -2 1 6 2ms sweep 1 3-4.5 1 1.5 g N (MHz) 1-1 4 2 1 2 1 1-2 1-4 1-1..5 1. 1.5 2. 2.5 g 2 N (MHz 2 ) Jonathan Keeling Collective dynamics Harvard, January 212 19 / 25

Timescales for dynamics: Why so slow and varied? Suppose co- and counter-rotating terms differ a b Ω a Ωb g ψ g ψ H =... + g(ψ S + ψs + ) + g (ψ S + + ψs ) +... 2 Level System SR(A) near phase boundary at small δg Critical slowing down SR(A), SR(B) continuously connect Jonathan Keeling Collective dynamics Harvard, January 212 2 / 25

Timescales for dynamics: Why so slow and varied? Suppose co- and counter-rotating terms differ a b Ω a Ωb g ψ g ψ H =... + g(ψ S + ψs + ) + g (ψ S + + ψs ) +... 2 Level System 4 UN=-1 2 + SRB -2-4.5 1 1.5 g N (MHz) SR(A) near phase boundary at small δg Critical slowing down SR(A), SR(B) continuously connect Jonathan Keeling Collective dynamics Harvard, January 212 2 / 25

Timescales for dynamics: Why so slow and varied? Suppose co- and counter-rotating terms differ a b Ω a Ωb g ψ g ψ H =... + g(ψ S + ψs + ) + g (ψ S + + ψs ) +... 2 Level System δg = g g, 2ḡ = g + g 4 2 UN=-1 4 2 ḡ N=1 + SRB -2-2 -4.5 1 1.5 g N (MHz) -4 -.1 -.5.5.1 δg/ḡ SR(A) near phase boundary at small δg Critical slowing down SR(A), SR(B) continuously connect Jonathan Keeling Collective dynamics Harvard, January 212 2 / 25

Timescales for dynamics: Why so slow and varied? Suppose co- and counter-rotating terms differ a b Ω a Ωb g ψ g ψ H =... + g(ψ S + ψs + ) + g (ψ S + + ψs ) +... 2 Level System δg = g g, 2ḡ = g + g 4 2 UN=-1 4 2 ḡ N=1 + SRB -2-2 -4.5 1 1.5 g N (MHz) -4 -.1 -.5.5.1 δg/ḡ SR(A) near phase boundary at small δg Critical slowing down SR(A), SR(B) continuously connect Jonathan Keeling Collective dynamics Harvard, January 212 2 / 25

Outline 1 Introduction: Dicke model and superradiance Rayleigh scheme: Generalised Dicke model 2 Attractors of dynamics (fixed points) Phase diagram: comparison to experiment 3 Approach to attractors: timescales Why slow timescales emerge 4 Attractors of dynamics (oscillations) Reaching other parameter ranges Jonathan Keeling Collective dynamics Harvard, January 212 21 / 25

Regions without fixed points Changing U: gψ Ω U g2 ω c ω a 2 Level System 4 2 UN=-4 + SRB -2-4.5 1 1.5 g N (MHz) Jonathan Keeling Collective dynamics Harvard, January 212 22 / 25

Regions without fixed points g ψ Changing U: Ω U g2 ω c ω a 2 Level System 4 2 UN=-4 + SRB -2-4.5 1 1.5 g N (MHz) Jonathan Keeling Collective dynamics Harvard, January 212 22 / 25

Regions without fixed points g ψ Changing U: Ω U g2 ω c ω a 2 Level System 4 UN= 2 SR -2 SR -4.5 1 1.5 g N (MHz) Jonathan Keeling Collective dynamics Harvard, January 212 22 / 25

Regions without fixed points g ψ Changing U: Ω U g2 ω c ω a 2 Level System 4 UN=2 2-2 -4.5 1 1.5 g N (MHz) Jonathan Keeling Collective dynamics Harvard, January 212 22 / 25

Regions without fixed points g ψ Changing U: Ω U g2 ω c ω a 2 Level System 4 2 UN=4-2 -4.5 1 1.5 g N (MHz) Jonathan Keeling Collective dynamics Harvard, January 212 22 / 25

Regions without fixed points g ψ Changing U: Ω U g2 ω c ω a 2 Level System 4 UN=4 2 Persistent Oscillations -2-4.5 1 1.5 g N (MHz) ψ 2 12 112 8 8 6 4 4 2 5 1 15 2 4 6 8 1 12 14 16 18 t (ms) Jonathan Keeling Collective dynamics Harvard, January 212 22 / 25

Persistent (optomechanical) oscillations ψ 2 12 112 8 6 4 2 8 4 5 1 15 2 4 1 6 8 12 14 16 18 t (ms) Ṡ = i(ω + U ψ 2 )S + 2ig(ψ + ψ )S z Ṡ z = ig(ψ + ψ )(S S + ) ψ = [κ + i(ω + US z )] ψ ig(s + S + ) Jonathan Keeling Collective dynamics Harvard, January 212 23 / 25

Persistent (optomechanical) oscillations ψ 2 12 112 8 6 4 2 8 4 5 1 15 2 4 1 6 8 12 14 16 18 t (ms) Ṡ = i(ω + U ψ 2 )S + 2ig(ψ + ψ )S z Ṡ z = ig(ψ + ψ )(S S + ) ψ = [κ + i(ω + US z )] ψ ig(s + S + ) Fix ω + US z = if ψ =. Jonathan Keeling Collective dynamics Harvard, January 212 23 / 25

Persistent (optomechanical) oscillations ψ 2 12 112 8 6 4 2 8 4 5 1 15 2 4 1 6 8 12 14 16 18 t (ms) Ṡ = i(ω + U ψ 2 )S + 2ig(ψ + ψ )S z Ṡ z = ig(ψ + ψ )(S S + ) ψ = [κ + i(ω + US z )] ψ ig(s + S + ) Fix ω + US z = if ψ =. Jonathan Keeling Collective dynamics Harvard, January 212 23 / 25

Persistent (optomechanical) oscillations ψ 2 12 112 8 6 4 2 8 4 5 1 15 2 4 1 6 8 12 14 16 18 t (ms) Fix ω + US z = if ψ =. N S = re iθ 2 r = 4 (Sz ) 2 Ṡ = i(ω + U ψ 2 )S + 2ig(ψ + ψ )S z Ṡ z = ig(ψ + ψ )(S S + ) ψ = [κ + i(ω + US z )] ψ ig(s + S + ) Get: θ = ω + U ψ 2 ψ + κψ = 2igr cos(θ) Jonathan Keeling Collective dynamics Harvard, January 212 23 / 25

Persistent (optomechanical) oscillations ψ 2 12 112 8 6 4 2 8 4 5 1 15 2 4 1 6 8 12 14 16 18 t (ms) Fix ω + US z = if ψ =. N S = re iθ 2 r = 4 (Sz ) 2 ψ 2 12 1 8 6 4 ψ 2 S x S y S z Ṡ = i(ω + U ψ 2 )S + 2ig(ψ + ψ )S z Ṡ z = ig(ψ + ψ )(S S + ) ψ = [κ + i(ω + US z )] ψ ig(s + S + ) Get: θ = ω + U ψ 2 ψ + κψ = 2igr cos(θ) 2 -.4 18. 18.2 18.4 18.6 18.8 t(ms) Jonathan Keeling Collective dynamics Harvard, January 212 23 / 25.4.2 -.2 S x, S y, S z

Tuning g, g, U [Dimer et al. Phys. Rev. A. (27)] Ω a a b Ω Separate pump strength/detuning b g ψ g ψ 2 2 Level System g g Ω b, g g Ω a b, U g g a a 2 b Jonathan Keeling Collective dynamics Harvard, January 212 24 / 25

Tuning g, g, U [Dimer et al. Phys. Rev. A. (27)] Ω a a b Ω Separate pump strength/detuning b g ψ g ψ 2 2 Level System g g Ω b, g g Ω a b Possible realization: Hyperfine levels, U g g a a 2 b σ σ + m = 1 F m = F m =+1 F Jonathan Keeling Collective dynamics Harvard, January 212 24 / 25

Tuning g, g, U [Dimer et al. Phys. Rev. A. (27)] Ω a a b Ω Separate pump strength/detuning b g ψ g ψ 2 2 Level System g g Ω b, g g Ω a b Possible realization: Hyperfine levels, U g g a a 2 b σ σ + Atoms m = 1 F m = F m =+1 F B Jonathan Keeling Collective dynamics Harvard, January 212 24 / 25

Summary Wide variety of dynamical phases 4 2 UN=4 4 2 UN= SR 4 2 UN=-4 4 2 ḡ N=1 + SRB -2-2 SR -2-2 -4.5 1 1.5 g N (MHz) -4.5 1 1.5 g N (MHz) -4.5 1 1.5 g N (MHz) -4 -.1 -.5.5.1 δg/ḡ Slow dynamics ψ 2 12 8 4 5 4 15 151 1 2 t (ms) 4 Initial growth time No unstable directions 2 One unstable direction -2 Two unstable directions -4.5 1 1.5 g N (MHz) 1s 1s 1ms 1ms 1ms 1µs 1µs 4 Asymptotic decay time 2 SRB -2-4.5 1 1.5 g N (MHz) 1s 1s 1ms 1ms 1ms 1µs 1µs Persistent oscillations if U > ψ 2 12 12 1 8 8 6 4 4 2 5 1 15 2 4 6 8 1 12 14 16 18 t (ms) ψ 2 12 ψ 2 S.4 1 x S y S 8 z.2 6 4 -.2 2 -.4 18. 18.2 18.4 18.6 18.8 t(ms) JK et al. PRL 1, Bhaseen et al. PRA 12 S x, S y, S z Jonathan Keeling Collective dynamics Harvard, January 212 25 / 25

Jonathan Keeling Collective dynamics Harvard, January 212 26 / 3

Extra slides 5 Ferroelectric phase transition 6 Lipkin-Meshkov-Glick 7 Tricritical point Jonathan Keeling Collective dynamics Harvard, January 212 27 / 3

Ferroelectric transition Atoms in Coulomb gauge H = ω k a k a k + i [p i ea(r i )] 2 + V coul Jonathan Keeling Collective dynamics Harvard, January 212 28 / 3

Ferroelectric transition Atoms in Coulomb gauge H = ω k a k a k + i [p i ea(r i )] 2 + V coul Two-level systems dipole-dipole coupling H = ω S z + ωψ ψ + g(s + + S )(ψ + ψ ) + Nζ(ψ + ψ ) 2 η(s + S ) 2 (nb g 2, ζ, η 1/V ). Jonathan Keeling Collective dynamics Harvard, January 212 28 / 3

Ferroelectric transition Atoms in Coulomb gauge H = ω k a k a k + i [p i ea(r i )] 2 + V coul Two-level systems dipole-dipole coupling H = ω S z + ωψ ψ + g(s + + S )(ψ + ψ ) + Nζ(ψ + ψ ) 2 η(s + S ) 2 (nb g 2, ζ, η 1/V ). Ferroelectric polarisation if ω < 2ηN Jonathan Keeling Collective dynamics Harvard, January 212 28 / 3

Ferroelectric transition Atoms in Coulomb gauge H = ω k a k a k + i [p i ea(r i )] 2 + V coul Two-level systems dipole-dipole coupling H = ω S z + ωψ ψ + g(s + + S )(ψ + ψ ) + Nζ(ψ + ψ ) 2 η(s + S ) 2 (nb g 2 Ferroelectric polarisation if ω, ζ, η 1/V ). < 2ηN Gauge transform to dipole gauge D r H = ω S z + ωψ ψ + ḡ(s + S )(ψ ψ ) Dicke transition at ω < Nḡ 2 /ω 2ηN But, ψ describes electric displacement Jonathan Keeling Collective dynamics Harvard, January 212 28 / 3

Timescales for dynamics: U = and Lipkin-Meshkov-Glick Since κ ω, can consider eliminating ψ If U =, simple result: Ṡ = i(ω +U ψ 2 )S + 2ig(ψ + ψ )S z Ṡ z = ig(ψ + ψ )(S S + ) ψ = [κ + i(ω+us z )] ψ ig(s + S + ) t S = {S, H} ΓS (S ẑ), H = ω S z Λ + S 2 x Λ S 2 y with: Λ ± ω (g ± g ) 2, Γ 2κ (g 2 g 2 ) κ 2 +ω 2 κ 2 +ω 2 NB, g = g, no dissipation. Dissipation restored by finite κ. Jonathan Keeling Collective dynamics Harvard, January 212 29 / 3

Timescales for dynamics: U = and Lipkin-Meshkov-Glick Since κ ω, can consider eliminating ψ If U =, simple result: Ṡ = i(ω +U ψ 2 )S + 2ig(ψ + ψ )S z Ṡ z = ig(ψ + ψ )(S S + ) ψ = [κ + i(ω+us z )] ψ ig(s + S + ) t S = {S, H} ΓS (S ẑ), H = ω S z Λ + S 2 x Λ S 2 y with: Λ ± ω (g ± g ) 2, Γ 2κ (g 2 g 2 ) κ 2 +ω 2 κ 2 +ω 2 NB, g = g, no dissipation. Dissipation restored by finite κ. Jonathan Keeling Collective dynamics Harvard, January 212 29 / 3

Tricritical point 4 2-2 + UN=-4 SRB -4.5 1 1.5 g N (MHz) 2 19 18 + + 19.7 + 2 SRB SRB+ + 17 SRB 19.68 SRB + 1.6 1.65.5 1 1.5 g N (MHz) If ω u = UN/2 > κ, crossing of boundaries at: ω = ωu 2 κ 2 g ω UN N = 4 For g > g, 2 region exists at edge of SRB. ψ 2 Arg(ψ) S z /N 15 (a) 1 5 π (c) π/2 -π/2 -π.5 (e) g N =1. (MHz) SRB -.5-2 -1 1 2 (b) 2 SRB (d) (f) 8 6 4 2 9π/16 π/2 7π/16.5.4.3 4.1 4.2 Jonathan Keeling Collective dynamics Harvard, January 212 3 / 3