Implication of LHC Higgs Signal for the MSSM Parameter Regions

Similar documents
Slepton, Charginos and Neutralinos at the LHC

Higgs Signals and Implications for MSSM

Non-Standard Higgs Decays

Searches at LEP. Ivo van Vulpen CERN. On behalf of the LEP collaborations. Moriond Electroweak 2004

Decoupling and Alignment in Light of the Higgs Data. Howard E. Haber Pi Day, 2014 Bay Area ParCcle Physics Seminar San Francisco State Univ.

Properties of the Higgs Boson, and its interpretation in Supersymmetry

LHC Studies on the Electroweak Sector of MSSM

A SUPERSYMMETRIC VIEW OF THE HIGGS HUNTING

Two Higgs Doublets Model

mh = 125 GeV and SUSY naturalness

arxiv: v2 [hep-ph] 26 Feb 2013

Status of low energy SUSY models confronted with the 125 GeV Higgs data

Some Thoughts on What Else to Trigger with the FTK

SUSY at Accelerators (other than the LHC)

SUSY at Accelerators (other than the LHC)

Sven Heinemeyer WIN (Heidelberg),

Charged Higgs in view of the LHC constraints in phenomenological MSSM

Higgs boson(s) in the NMSSM

Heavy MSSM Higgses at the LHC

Phenomenology of a light singlet-like scalar in NMSSM

Light neutralino dark matter

arxiv: v1 [hep-ph] 7 Apr 2014

Neutralino Dark Matter and the 125 GeV Higgs boson measured at the LHC

HIGGS Bosons at the LHC

Search for Higgs Bosons at LEP. Haijun Yang University of Michigan, Ann Arbor

Can the Hbb coupling be equal in magnitude to its Standard Model value but opposite in sign? Howard E. Haber July 22, 2014

SUSY & Non SM Higgs Searches

arxiv: v2 [hep-ph] 13 Jul 2012

Dark Matter Phenomenology

arxiv: v2 [hep-ph] 25 Sep 2014

Sven Heinemeyer GK Seminar, University of Freiburg,

Supersymmetry, Baryon Number Violation and a Hidden Higgs. David E Kaplan Johns Hopkins University

MSSM Higgs self-couplings at two-loop

The study of the properties of the extended Higgs boson sector within hmssm model

Higgs in the light of Hadron Collider limits: impact on a 4th generation

HUNTING FOR THE HIGGS

arxiv:hep-ph/ v1 17 Apr 2000

Fourth Generation and Dark Matter

Higgs Searches at CMS

Probing SUSY Contributions to Muon g-2 at LHC and ILC

Hidden Higgs boson in extended supersymmetric scenarios at the LHC

Complementarity of the CERN LEP collider, the Fermilab Tevatron, and the CERN LHC in the search for a light MSSM Higgs boson

Highlights of Higgs Physics at LEP

Pseudoscalar Higgs boson signatures at the LHC

Higgs physics at the LHC

Physics at the TeV Scale Discovery Prospects Using the ATLAS Detector at the LHC

Precision Observables M W, (g 2) µ

LHC Higgs Signatures from Extended Electroweak Guage Symmetry

Search for BSM Higgs bosons in fermion decay modes with ATLAS

Detecting Higgs Bosons within Supersymmetric Models

SUSY Phenomenology & Experimental searches

P. Sphicas/SSI2001. Standard Model Higgs

Beyond the Standard Model Higgs boson searches using the ATLAS etector

Introducing SModelS - with an application to light neutralino DM

Supersymmetry at the ILC

Natural Electroweak Symmetry Breaking in NMSSM and Higgs at 100 GeV

BSM Higgs Searches at ATLAS

Beyond the Standard Model Higgs Boson Searches at DØ

Charged Higgs Beyond the MSSM at the LHC. Katri Huitu University of Helsinki

Inert Doublet Model:

Searching for neutral Higgs bosons in non-standard channels

Higgs Physics as an Indirect BSM Probe

Sho IWAMOTO. 7 Nov HEP phenomenology joint Cavendish DAMTP U. Cambridge

SEARCHES FOR THE NEUTRAL HIGGS BOSONS OF THE MSSM

Koji TSUMURA (NTU à Nagoya U.)

The 2HDM in light of the recent LHC results. Rui Santos

Sho IWAMOTO. 15 Sep Osaka University. Based on [ ] in collaboration with M. Abdullah, J. L. Feng, and B. Lillard (UC Irvine)

SUSY-Yukawa Sum Rule at the LHC

SUSY at the LHC. Bhaskar Dutta Texas A&M University. LHCP 2018, 4-9 June

SUSY w/o the LHC: Neutralino & Gravitino LSPs

Georges Aad For the ATLAS and CMS Collaboration CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France

Compositeness at ILC250?

The Lightest Higgs Boson and Relic Neutralino in the MSSM with CP Violation

Supersymmetric Origin of Matter (both the bright and the dark)

Searches for exotica at LHCb

Interconnection between Particle Physics and Cosmology at the LHC

Resonant H/A Mixing in CP Noninvariant 2HDM and MSSM

Outline: Introduction Search for new Physics Model driven Signature based General searches. Search for new Physics at CDF

Higgs Searches beyond SM

arxiv: v1 [hep-ph] 31 Oct 2011

Probing the Connection Between Supersymmetry and Dark Matter

ttbar Background Estimation in the Search for b-associated MSSM Higgs Bosons Decaying to Tau-Pairs with ATLAS DPG Bonn, T 45. Higgs

Discussion: SUSY via searches for additional Higgs(inos)

Phenomenology of new neutral gauge bosons in an extended MSSM

Higgs Search with the CMS detector at LHC. Satyaki Bhattacharya

Contributions by M. Peskin, E. Baltz, B. Sadoulet, T. Wizansky

The Higgs discovery - a portal to new physics

SUSY Higgses in the light of LHC discoveries. Jae Sik Lee

Search for physics beyond the Standard Model at LEP 2

Searches for Beyond SM Physics with ATLAS and CMS

Search for SUperSYmmetry SUSY

Light Higgs Discovery Potential with ATLAS, Measurements of Couplings and

ATLAS Discovery Potential of the Standard Model Higgs Boson

Koji TSUMURA (NTU Nagoya U.) KEK 16-18/2/2012

Higgs Physics. Yasuhiro Okada (KEK) November 26, 2004, at KEK

Lecture 18 - Beyond the Standard Model

Higgs and New Physics at ATLAS and CMS

Physics prospects for the LHC

Electroweak baryogenesis as a probe of new physics

Natural SUSY and the LHC

Transcription:

Implication of LHC Higgs Signal for the MSSM Parameter Regions Shufang Su U. of Arizona PITT PACC Workshop: Light Higgs Jan 13 15, 2012 S. Su In collaboration with N. Christensen, T. Han, L. Carpenter work ongoing...

Outline Higgs signal as light CPeven Higgs h 0 mh around 125 GeV (or 115 130 GeV) σ(gg h 0 )Br(h 0 γγ/ww/zz) close to the SM value Higgs signal as heavy CPeven Higgs H 0 Direct collider search limits Indirect constraints: b sγ, Bs µ + µ,... Collider signatures: superparticles Collider signatures: other MSSM Higgses S. Su 2

Outline Higgs signal as light CPeven Higgs h 0 mh around 125 GeV (or 115 130 GeV) σ(gg h 0 )Br(h 0 γγ/ww/zz) close to the SM value Higgs signal as heavy CPeven Higgs H 0 Direct collider search limits Indirect constraints: b sγ, Bs µ + µ,... Collider signatures: superparticles Collider signatures: other MSSM Higgses S. Su 2

Current LHC Indication of 125 GeV Higgs Signal strength 2.5 2 1.5 1 0.5 0 0.5 1 1.5 2 ATLAS Preliminary Best fit ±1 σ (a) 1 Ldt = 1.04.9 fb s = 7 TeV 110 115 120 125 130 135 140 145 150 M H [GeV] (b) 0.5 ATLASCONG2011163 ATLAS 2011 Data Best fit!/! SM 2.5 2 1.5 1 CMS Preliminary, s = 7 TeV 1 Combined, L = 4.64.7 fb int ±1! from fit CMS 0 0.5 1 110 115 120 125 130 135 140 145 150 155 160 2 S. Su CMS PAS HIG11032 Higgs boson 3 mass (GeV/c ) Figure 13: The observed local pvalue p 0 (top panel) and bestfit ˆµ = σ/σ SM (bottom panel) a function of the SM Higgs boson mass in the range 110 160 GeV/c 2. The solid black line

LHC 125 GeV Higgs Signal Identify regions in MSSM parameter space that gives mh around 125 GeV (or 115 130 GeV) σ(gg H)Br(H γγ/ww/zz) around SM value Consistent with direct/indirect exp bounds (consider those relevant to the Higgs sector) Tevatron/LHC h 0 /H 0 /A 0 ττ search, H ± search b sγ, Bs µ + µ,.. dark matter (funnel region?) S. Su 4

125 GeV Higgs as Light CPeven h 0 [ ( Consider 125 GeV Higgs as light CPeven h 0 Dominant loop correction to mh0 from stop sector m 2 h MZ 2 cos 2 2β + 3 m 4 t 4π 2 v 2 [ 1 2 X t + t + 1 16π 2 ( ) 3 m 2 ( ) ] t 2 v 32πα 2 3 Xt t + t 2 ( ) t = log M 2 SUSY m 2 t X t = 2Ã2 t M 2 SUSY 1 Ã 2 t 12M 2 SUSY, ( Ã t = A t µ cot β, Small stop mixing At (mh min ): need stop mass VERY large (510 TeV, FP region). large stop mixing At (mh max ):... S. Heinemeyer et. al., 1112.3026 A. Arbey et. al., 1112.3028; A. Arbey et. al., 1112.3032; P. Draper et. al., 1112.3068 M. Carena et, al., 1112.3336; A. Arvanitaki and G. Villadoro, 1112.4835 S. Su... 5

Stop Contribution At 3000 2800 2600 2400 2200 2000 1800 1600 Masses for Higgses, ma=1000, tan!=10, MSUSY=2000 GeV, M1=M2=M3=1000 GeV Mh0 120 125 115 105 105 126 90 100 127 110 115 128 125 129 126 130 127 128 129 130 45.. (""" $'"" $&"" $%"" $$"" $""" #'"" #&"" $"" )67717.89:.*59;7<.=4,#"""<.56>!,#"<.)**?,$""".012<.)#,)$,)(,#""".012 )75# )75$!)75#!!"!"" %!" %"" (!" ("" $!" $"". #%"" 1400 1200 123 124 120 123 120 1000 500 1000 1500 M3SQ=M3SU (GeV) #%"" ("" %""!"" &"" @"" '"" A"" #$"" #""".!"" #""" #!"" )(*+,)(*./0123 #""" ##"" #$"" #("" #!" st1 could be as light as 200300 GeV large stop mass splittings between mst1 and mst2. st2 st1+z? S. Su 6

Stop Contribution 3000 500 A t 1.5 TeV, Tan Β 10 3000 500 A t 2.5 TeV, Tan Β 60 2500 mu3 GeV 2500 2000 1500 1000 400 119 123 124 120 121 122 1000 1500 2000 2500 m h GeV m t GeV 119 mu3 GeV 2500 2000 1500 1000 300 400 123 124 1000 113 1500 2000 122 121 125 119 120 500 200 118 116 117 300 m h GeV m t GeV 123 100 200 500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000 m Q3 GeV M. Carena et, al., 1112.3336; m Q3 GeV 500 Figure 1: Contour plots of the Higgs mass in the m Q3 m u3 plane, for different values of A t and M3SQ M3SU: one stop could be light tan β. The stau soft masses have been fixed at m 2 L 3 = m 2 e 3 = (350 GeV) 2, while µ = 1030 GeV light and AM3SQ: τ = 500 GeV, light leading st1 tomostly a lightestlefthanded? stau mass of aboutsbl? 135 GeV for tan β = 60. The lightest stop masses are overlaid in dashed black lines. S. Su 7 light M3SU: light st1 mostly righthanded?

Stop Phenomenology t 1 bχ ± 1 Consider t 1 t 1 pair production at the LHC t 1 tχ 0 1 t 1 tχ 0 2 χ ± 1 W ( ) χ 0 1 χ 0 2 Z ( ) χ 0 1 χ 0 2 hχ 0 1 Collider Signatures: χ ± 1 lνχ0 1 via sleptons χ 0 2 llχ 0 1, ννχ 0 1 via sleptons Collider Signatures (with light sleptons) bbww+met bbww+zz+met bbww+hh+met... tt+met bb+ll+met tt+ll+met... S. Su 8

Stop Contribution M3SQ=M3SU, maximum mixing little dependence on µ and tanβ little dependence on ma except for small ma tanβ in a narrow region. S. Heinemeyer et. al., 1112.3026 S. Su 9

Stop Contribution ma=400 GeV S. Heinemeyer et. al., 1112.3026 MSUSY=500 GeV MSUSY= 1 TeV MSUSY= 2 TeV S. Su 10

Stop Contribution MA=1 TeV, tanβ =20 S. Heinemeyer et. al., 1112.3026 positive M3At gives larger contributions comparing to positive M3At. S. Su 11

Sbottom Contribution: Negative m 2 h h4 b v2 16π 2 µ 4 M 4 SUSY ( ( 1+ t ) 16π 2 (9h2 b 5 m2 t v 64πα 3) 2 h b m b v cos β(1 + tan β h b ) small msb, large µ negative and large Δhb (µm3 large and negative) large hb (but then enhanced h 0 bb and suppressed h0 γγ/ww/zz ) m 2 h h4 τv 2 48π 2 µ 4 M 4 τ small mstau, large µ h τ m τ v cos β(1 + tan β h τ ) negative and large Δhtau (µm2 large and negative) large htau muon g2? S. Su 12

Region I: Decoupling Region TB 60 50 40 30 20 10 σ(gg H)Br(H γγ/ww/zz) around SM value Region I: decoupling region of large ma (>2 mz). h 0 is SM like. slightly suppressed gg h 0 and h 0 γγ, WW and ZZ 125 124 123 126 125 120 124 123 120 115 115 110 110 105 105 100 100 M3SQ=M3SU=1000, At=1500, MSUSY=2000, mu=1000 126 126 Mh0 125 125 124 123 124 123 100 105 110 115 120 100 105 110 115 120 90 90 100 200 300 400 500 600 700 800 900 1000 ma (GeV) S. Su 13 TB 60 50 40 30 20 10 0.1 0.1 0.2 0.4 0.6 0.2 0.2 0.4 0.4 0.6 0.6 0.6 0.6 0.6 0.8 0.8 0.8 0.9 100 200 300 400 500 600 700 800 900 1000 ma (GeV) 0.8 0.8 gg" h0 " ## gg" h0 " WW/ZZ 0.9 0.9 0.8 1

120 115 110 105 Avoid Intense Coupling Region avoid the intense coupling region: small ma, large tanβ. h 0, H 0, A 0 masses close to each other h 0 bb, h 0 ττ enhanced, h 0 γγ, WW, ZZ suppressed TB 60 50 40 30 20 100 100 105 110 115 125 124 126 125 123 124 123 120 Mh0 TB 60 50 40 30 20 0.1 0.2 0.2 gg" h0 " ## gg" h0 " WW/ZZ 0.4 0.4 0.4 0.4 10 10 0.1 0.1 0.2 0.2 100 150 200 250 300 ma (GeV) 0.4 0.6 100 150 200 250 300 ma (GeV) 0.6 S. Su 14

120 115 110 105 Avoid Intense Coupling Region avoid the intense coupling region: small ma, large tanβ. h 0, H 0, A 0 masses close to each other h 0 bb, h 0 ττ enhanced, h 0 γγ, WW, ZZ suppressed TB 60 50 40 30 20 100 100 105 110 115 125 124 126 125 123 124 123 120 Mh0 TB 60 50 40 30 20 0.1 0.2 0.2 gg" h0 " ## gg" h0 " WW/ZZ 0.4 0.4 0.4 0.4 10 10 0.1 0.1 0.2 0.2 100 150 200 250 300 ma (GeV) 0.4 0.6 100 150 200 250 300 ma (GeV) 0.6 there are exceptions... S. Su 14

Region II: suppressed h 0 bb suppressed h 0 bb leads to enhanced h 0 γγ, WW, ZZ hb b : sin α cos β [ 1 h b tan β 1+ h b tan β ( 1+ )] 1 tan α tan β S. Su 15

Region II: suppressed h 0 bb suppressed h 0 bb leads to enhanced h 0 γγ, WW, ZZ hb b : sin α cos β [ 1 h b tan β 1+ h b tan β ( 1+ )] 1 tan α tan β region IIA: small αeff region S. Su 15

Region II: suppressed h 0 bb suppressed h 0 bb leads to enhanced h 0 γγ, WW, ZZ hb b : sin α cos β [ 1 h b tan β 1+ h b tan β ( 1+ )] 1 tan α tan β region IIA: small αeff region region IIB: suppressed bottom Yukawa coupling S. Su 15

Region IIA: Small αeff Suppression of h 0 bb coupling due to the mixing effects in the CPeven Higgs sector hb b : sin α [ 1 h b tan β cos β 1+ h b tan β ( ) ( ) ( 1+ )] 1 tan α tan β region IIA: small αeff region M 2 H = [ [ ] m 2 A sin2 β + M 2 Z cos2 β (m 2 A + M 2 Z ) sin β cos β + Loop 12 (m 2 A + M 2 Z ) sin β cos β + Loop 12 m 2 A cos2 β + M 2 Z sin2 β + Loop 22 ] sin(2α) = 2(M 2 H ) 12 Tr[M 2 H ] 2 det[m 2 H ], moderate for large tanβ M M small to moderate ma S. Su 16

Region IIA: Small αeff Suppression of h 0 bb coupling due to the mixing effects in ( ) ( ) ( ) ( ) the CPeven Higgs sector Loop 12 = m 4 t 16π 2 v 2 sin 2 β µãt M 2 SUSY M [ A t à t M 2 SUSY 6 ] + h4 b v2 16π 2 sin2 β µ3 A b M 4 SUSY Carena et. al., hepph/9808312 Carena et. al., hepph/9907422 + h4 τv 2 48π 2 sin2 β µ3 A τ M 4 τ S. Su 17

Region IIA: Small αeff Suppression of h 0 bb coupling due to the mixing effects in ( ) ( ) ( ) ( ) the CPeven Higgs sector Loop 12 = m 4 t 16π 2 v 2 sin 2 β µãt M 2 SUSY M [ A t à t M 2 SUSY 6 ] + h4 b v2 16π 2 sin2 β µ3 A b M 4 SUSY Carena et. al., hepph/9808312 Carena et. al., hepph/9907422 + h4 τv 2 48π 2 sin2 β µ3 A τ M 4 τ stop contribution light stop, large µat µat <0 for At < 6 mst µat >0 for At> 6 mst S. Su 17

Region IIA: Small αeff Suppression of h 0 bb coupling due to the mixing effects in ( ) ( ) ( ) ( ) the CPeven Higgs sector Loop 12 = m 4 t 16π 2 v 2 sin 2 β µãt M 2 SUSY M [ A t à t M 2 SUSY 6 ] + h4 b v2 16π 2 sin2 β µ3 A b M 4 SUSY Carena et. al., hepph/9808312 Carena et. al., hepph/9907422 + h4 τv 2 48π 2 sin2 β µ3 A τ M 4 τ stop contribution light stop, large µat µat <0 for At < 6 mst µat >0 for At> 6 mst light sbottom large µ 3 Ab large hb sb contribution S. Su 17

Region IIA: Small αeff Suppression of h 0 bb coupling due to the mixing effects in ( ) ( ) ( ) ( ) the CPeven Higgs sector Loop 12 = m 4 t 16π 2 v 2 sin 2 β µãt M 2 SUSY M [ A t à t M 2 SUSY 6 ] + h4 b v2 16π 2 sin2 β µ3 A b M 4 SUSY Carena et. al., hepph/9808312 Carena et. al., hepph/9907422 + h4 τv 2 48π 2 sin2 β µ3 A τ M 4 τ stop contribution light stop, large µat µat <0 for At < 6 mst µat >0 for At> 6 mst light sbottom large µ 3 Ab large hb sb contribution stau contribution light stau large µ 3 Aτ large hτ S. Su 17

Region IIA: Small αeff 60 50 0 0.1 0.2 1.8 2 1.6 1.4 1.2 gg! h0! "" 1 TB 40 30 20 0.4 0.6 1.4 1.2 1.8 1.8 1.6 1 2 0.90.9 0.8 10 0.1 0.2 0.4 0.8 100 200 300 400 500 600 700 800 900 1000 ma (GeV) M3SL=M3SE=340, µ =1030 Aτ=1500, At=2500 M1=100, M2=1000, M3=1200 MSUSY=1000 S. Su 18

Region IIA: Small αeff 60 50 0 0.1 0.2 1.8 2 1.6 1.4 1.2 gg! h0! "" 1 TB 40 30 20 0.4 0.6 1.6 1.4 1.2 1.8 1.8 1 2 0.90.9 0.8 '" &" "A% "A# " 6,0BB 10 0.1 0.2 0.4 0.8 %" 100 200 300 400 500 600 700 800 900 1000 ma (GeV) M3SL=M3SE=340, µ =1030 Aτ=1500, At=2500!" M1=100, M2=1000, M3=1200 MSUSY=1000 S. Su +,./012 18 34 $" #"!"A#!"A% "!"A'!" )!"A#!"A%!"A'!"" #"" $"" %"" &"" '"" ("" )"" *""!"""

Region IIA: Small αeff 60 50 0 0.1 0.2 1.8 2 1.6 1.4 1.2 gg! h0! "" 1 TB 40 30 20 10 0.4 0.1 0.2 0.6 1.6 1.4 1.2 1.8 0.8 0.4 1.8 1 2 0.90.9 30 100 200 300 400 500 600 700 800 900 1000 ma (GeV) 0.8 M3SL=M3SE=340, µ =1030 Aτ=1500, At=2500 10!" M1=100, M2=1000, M3=1200 MSUSY=1000 S. Su ma +,./012 (GeV) 18 TB 34 60 '" 90 50 &" 40 %" $" 20 #" 115 110 105 105100 120 "A% "A# 123!"A# 124!"A% "!"A' 123 124 125 125!" ) 120 " 124 124 115 105 100 125 125 124!"A' 1206,0BB Mh0 123 124!"A#!"A% 100!"" 200 #"" 300 $"" 400 %"" 500 &"" 600 '"" ("" 700 )"" 800 *"" 900!""" 1000

Region IIA: Small αeff 60 50 0 0.1 0.2 1.8 2 1.6 1.4 1.2 gg! h0! "" 1 TB 40 30 20 10 0.4 0.1 0.2 0.6 1.6 1.4 1.2 1.8 0.8 0.4 1.8 1 2 0.90.9 30 100 200 300 400 500 600 700 800 900 1000 20 ma (GeV) 15 20 #" 10 0.8 TB 34 60 '" 90 50 &" 40 %" tan! $" 50 45 40 35 115 110 105 105100 30 25 120 CMS Preliminary 2011 4.6 fb "A% "A# 123!"A# 124!"A% "!"A' 123 124 125 125!" ) 120 " 124 124 115 105 100 1 125 125 124!"A' 1206,0BB Mh0 123 124 95% CL excluded regions CMS observed ±1" theory CMS expected LEP M3SL=M3SE=340, µ =1030 Aτ=1500, At=2500!" max 10 5 MSSM m h scenario, M = 1 TeV SUSY M1=100, M2=1000, M3=1200 MSUSY=1000 0 100!"" 100 200 #"" 150 300 $"" 200 400 %"" 250 500 &"" 300 600 '"" 350 ("" 700 400 )"" 800 450 *"" 900!""" 1000 500 S. Su ma +,./012 m (GeV) [GeV] 18 A!"A#!"A%

Region IIA: Small αeff 60 50 0 0.1 0.2 1.8 2 1.6 1.4 1.2 gg! h0! "" 1 TB 40 30 20 10 0.4 0.1 0.2 0.6 1.6 1.4 1.2 1.8 0.8 0.4 1.8 1 2 0.90.9 30 100 200 300 400 500 600 700 800 900 1000 20 ma (GeV) 15 20 #" 10 0.8 TB 34 60 '" 90 50 &" 40 %" tan! $" 50 45 40 35 115 110 105 105100 30 25 120 CMS Preliminary 2011 4.6 fb "A% "A# 123!"A# 124!"A% "!"A' 123 124 125 125!" ) 120 " 124 124 115 105 100 1 125 125 124!"A' 1206,0BB Mh0 123 124 95% CL excluded regions CMS observed ±1" theory CMS expected LEP M3SL=M3SE=340, µ =1030 Aτ=1500, At=2500!" max 10 5 MSSM m h scenario, M = 1 TeV SUSY M1=100, M2=1000, M3=1200 MSUSY=1000 0 100!"" 100 200 #"" 150 300 $"" 200 400 %"" 250 500 &"" 300 600 '"" 350 ("" 700 400 )"" 800 450 *"" 900!""" 1000 500 S. Su ma +,./012 m (GeV) [GeV] 18 A!"A#!"A%

Region IIB: Suppressed hb suppressed h 0 bb coupling due to suppression of bottom Yukawa: Δhb large and positive hb b : sin α cos β [ 1 h b tan β 1+ h b tan β ( 1+ )] 1 tan α tan β region IIB: suppressed bottom Yukawa coupling H 0 d b g b µm3 large and positive, small msb large Δhb > 0 suppressed h 0 bb coupling b b Carena et. al., hepph/9808312 Carena et. al., hepph/0202167 S. Su 19

Region III: Enhanced h γγ W γ q/l γ h 0 W h 0 q/l W γ q/l γ SM contribution usually suppressed. dominantly from W, subdominantly from top (bottom). q/ l γ H ± γ χ ± γ h 0 q/ l h 0 H ± h 0 χ ± q/ l γ H ± γ χ ± γ MSSM extra stop/sbottom/stau contribution (enhancement) stop contribution: small mst, large At sbottom/stau contribution: small msb, msτ, large µ, large tanβ chargino contribution is only important for chargino lighter than 100 GeV. S. Su 20

Region III: Enhanced h γγ stop/sbottom also leads to suppressed gg h 0 : combined gg h 0 γγ usually suppressed. A t 2.5 TeV, Tan Β 10, 3000 0.88 Σ gg h Σ gg h SM Br h ΓΓ Br h ΓΓ SM 2500 0.87 mu3 GeV 2000 1500 0.84 0.86 1000 0.83 0.85 500 0.87 500 1000 1500 2000 2500 3000 M. Carena et, al., 1112.3336; m Q3 GeV S. Su 21

Region III: Enhanced h 300 γγ stau contribution: small msτ, large µ, large tanβ Μ Μ GeV 1400 1200 1000 800 600 0.9 200 0.88 0.87 tanβ 10 300 400 madd plot. L3 GeV 0.86 200 250 300 350 400 450 500 tanβ 60 me3 GeV 500 450 400 Μ GeV 350 300 250 S. Su M. Carena et, al., 1112.3336; 22 500 Figure 4: Contour plots of the ratio of the σ(gg 200 800 600 1400 1200 1000 800 0.866 0.868 600 200 300 tanβ 10 tanβ 60 0.864 0.863 1.5 1.1 0.863 1 200 200 250 250300 300350 350400 400 450 4500 500 m L3 GeV m L3 GeV tanβ 60 400 0.86 200 250 300 350 400 450 500 1.3 m L3 GeV 200 100 300 0.9

gg h Not Too Much Suppressed g g t/b t/b t/b h 0 cos α usually suppressed ht t : <1 sin β small suppression in the decoupling region. bottom contribution opposite to top contribution. large bottom Yukawa leads to suppressed gg h 0. g g t/ b t/ b t/ b h 0 light stop without mixing leads to enhancement of gg h 0. not good for large mh0. light stop with large At, light sbottom with large µ and tanβ leads to suppression of gg h 0 S. Su 23

125 GeV Higgs as Heavy CPeven Higgs H 0 heavy CPeven Higgs H 0 SM like light CPeven Higgs h 0 (<114 GeV), evade LEP bound by reduced ZZh 0 coupling Region IV: ma: 95 100 GeV, tanβ: 810 (near mh max region?) MSUSY=Xt=1 TeV MA=100 GeV, tanβ=10 S. Heinemeyer et. al., 1112.3026 S. Su 24

Direct Experimental Constraints LEP/Tevatron H ± searches c ( ) m H±$*+,. %/& %1& %(& %&& 0& GH,=B,!EA">>? E#"AA,@@EI>,!"#$%&$'()*+*&.(±(,( ±((,( σ(!"#$%&$'()*+*& /01(234(55(!"%63'$' )!7(!"%63'$' GH,=B,!EA">>? E#"AA,@@EI>, %/& %1& %(& %&& 0& /& 234$*523467$8324697$2:$"#;$<452) ± ± 5@@CDE#F$6 τν$=b$6 $A@$=#>? /& %& '% % %& %& (!"#$β S. Su 25

Direct Experimental Constraints CMS pp h 0 /H 0 /A 0 +X with h 0 /H 0 /A 0 ττ [pb] 95% CL $(#"!!) 10 CMS Preliminary 1 4.6 fb s=7 TeV 95% CL Limits Observed Expected ± 1$ Expected ± 2$ Expected 50 45 40 35 30 CMS Preliminary 2011 4.6 fb 1 1 1 10 tan! 25 20 15 10 5 max MSSM m h 95% CL excluded regions CMS observed ±1" theory CMS expected LEP scenario, M SUSY = 1 TeV 100 200 300 400 500 [GeV] m A 3: The expected one and twostandarddeviation ranges and the observ 0 100 150 200 250 300 350 400 450 500 m A [GeV] S. Su 26

Direct Experimental Constraints CMS pp h 0 /H 0 /A 0 +X with h 0 /H 0 /A 0 ττ [pb] 95% CL $(#"!!) 10 CMS Preliminary 1 4.6 fb s=7 TeV 95% CL Limits Observed Expected ± 1$ Expected ± 2$ Expected 50 45 40 35 30 CMS Preliminary 2011 4.6 fb 1 1 1 10 tan! 25 20 15 10 5 max MSSM m h 95% CL excluded regions CMS observed ±1" theory CMS expected LEP scenario, M SUSY = 1 TeV 100 200 300 400 500 [GeV] m A 3: The expected one and twostandarddeviation ranges and the observ 0 100 150 200 250 300 350 400 450 500 m A [GeV] S. Su 26

Indirect Experimental Constraints Only consider those get contribution from the Higgs sector b s γ Br(b sγ) = (3.55 ± 0.24 ± 0.09) 10 4, EXP(2010); Br(b sγ) = (3.15 ± 0.23) 10 4, QCDNNLO. γ γ t t b H ± s b χ ± s H ± loop: always positive. Chargino loop: negative for µat>0, positive for µat<0 S. Su 27

b s γ 60 50 Region IIA b! s " TB 40 30 20 10 3σ mu=mst=200 GeV, At=0 2σ 1σ mu=mst=at=200 GeV 0.000431 0.000404 0.00038 0.000355 100 200 300 400 500 600 700 800 900 1000 ma (GeV) smaller M2 with µat>0 could possibly cancel H ± contribution. S. Su 28

b s γ ma=250 GeV, H ± contribution mu=mst=200 GeV, At=0 mu=mst=at=200 GeV, χ ± contribution A. Arvanitaki and G. Villadoro, 1112.4835 S. Su 29

Indirect Experimental Constraints Br(B s µ + µ ) < 1.08 10 8, CMS + LHCb; Bs µ + µ Br(B s µ + µ ) < 3.9 10 8, Br(B s µ + µ ) = (3.19 ± 0.19) 10 9, CDF; SM, add ref.. b R l tan 2 β s L,d L h 0,H 0,A 0 tan β l + S. Su 30

Implication for Future LHC Searches In those identified MSSM regions What are the discovery channels for superparticles? What are the discovery channels for other MSSM Higgses? Work in Progress... S. Su 31

Conclusions LHC Higgs search indication: mh around 125 GeV (or 115 130 GeV) σ(gg H)Br(H γγ/ww/zz) around the SM value Interpret H as MSSM light CPeven Higgs mh0: large stop sector mixing large mass splitting, one stop could be light Region I: decoupling region (ma > 2 mz) Region IIA: small αeff Region IIB: suppressed bottom Yukawa hb Region III: enhanced h 0 γγ by stau with large mixing (stop/ sbottom contribution leads to the suppression of gg h 0 ) S. Su 32

Conclusions Interpret 125 GeV Higgs as the heavy CPeven Higgs. Region IV: ma: 95 100 GeV, tanβ: 810 Exp indirect constraints and direct constraints Implication for LHC searches: superparticles and Higgses (work in progress...) S. Su 33