mh = 125 GeV and SUSY naturalness

Similar documents
Properties of the Higgs Boson, and its interpretation in Supersymmetry

Natural SUSY and the LHC

Supersymmetry, Baryon Number Violation and a Hidden Higgs. David E Kaplan Johns Hopkins University

Higgs boson(s) in the NMSSM

Natural Electroweak Symmetry Breaking in NMSSM and Higgs at 100 GeV

Split SUSY at LHC and a 100 TeV collider

SUSY w/o the LHC: Neutralino & Gravitino LSPs

EW Naturalness in Light of the LHC Data. Maxim Perelstein, Cornell U. ACP Winter Conference, March

Higgs: Interpretation and Implications. Marco Farina April 19, 2013

D0 Higgs Results and Tevatron Higgs Combination

Higgs Signals and Implications for MSSM

Implication of LHC Higgs Signal for the MSSM Parameter Regions

Searches for Natural SUSY with RPV. Andrey Katz. C. Brust, AK, R. Sundrum, Z. Han, AK, M. Son, B. Tweedie, 1210.XXXX. Harvard University

Non-Standard Higgs Decays

Looking through the Higgs portal with exotic Higgs decays

Searches for Beyond SM Physics with ATLAS and CMS

Prospects and Blind Spots for Neutralino Dark Matter

Status of Supersymmetric Models

Decoupling and Alignment in Light of the Higgs Data. Howard E. Haber Pi Day, 2014 Bay Area ParCcle Physics Seminar San Francisco State Univ.

Dmitri Sidorov Oklahoma State University On behalf of the ATLAS Collaboration DIS2014, 04/28/2014

Review of ATLAS experimental results (II)

Introduction: SUSY with 5 fb-1 at the LHC. Maxim Perelstein, LEPP/Cornell University May 2, 2012, BNL

Search for Higgs in H WW lνlν

Searches at LEP. Ivo van Vulpen CERN. On behalf of the LEP collaborations. Moriond Electroweak 2004

Searches for Supersymmetry at ATLAS

SEARCHES FOR THE NEUTRAL HIGGS BOSONS OF THE MSSM

Beyond the Standard Model Higgs boson searches using the ATLAS etector

Status of low energy SUSY models confronted with the 125 GeV Higgs data

Dark Matter Direct Detection in the NMSSM

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

Hidden two-higgs doublet model

The first year of the LHC and Theory. G.G.Ross, Krakow, December 09

Physics at the TeV Scale Discovery Prospects Using the ATLAS Detector at the LHC

Two Higgs Doublets Model

+ µ 2 ) H (m 2 H 2

A SUPERSYMMETRIC VIEW OF THE HIGGS HUNTING

CMS Higgs Results Adi Bornheim Caltech

Beyond the SM Higgs a crucial aspect of the cross roads

arxiv:hep-ph/ v1 17 Apr 2000

Introduction to Supersymmetry

Andrey Katz C. Brust, AK, S. Lawrence, and R. Sundrum; arxiv:

The Higgs discovery - a portal to new physics

Supersymmetric Origin of Matter (both the bright and the dark)

Radiative natural SUSY with mixed axion-higgsino CDM

Higgs Physics as an Indirect BSM Probe

Composite Higgs and Flavor

Search for SM Higgs Boson at CMS

arxiv: v1 [hep-ph] 31 Oct 2011

Whither SUSY? G. Ross, RAL, January 2013

BSM Higgs Searches at ATLAS

HiggsSignals. Testing BSM physics with LHC Higgs precision data. Tim Stefaniak. Deutsches Elektronen-Synchrotron DESY, Hamburg

Whither SUSY? G. Ross, Birmingham, January 2013

Supersymmetry: A status report

Dark Matter Phenomenology

SEARCH FOR RARE & EXOTIC HIGGS DECAY AND PRODUCTION: STATUS AND PERSPECTIVES

Implications of LHC Higgs results

Higgs and New Physics at ATLAS and CMS

sin(2θ ) t 1 χ o o o

Search for R-parity violating Supersymmetry. III Phys. Inst. A, RWTH Aachen

Light Higgs Discovery Potential with ATLAS, Measurements of Couplings and

SUSY searches with ATLAS What did we learn with few fb -1?

Search for Higgs Bosons at LEP. Haijun Yang University of Michigan, Ann Arbor

LHC Higgs Signatures from Extended Electroweak Guage Symmetry

P. Sphicas/SSI2001. Standard Model Higgs

arxiv:hep-ph/ v1 6 Feb 2004

arxiv: v1 [hep-ph] 16 Jun 2011

Resonant H/A Mixing in CP Noninvariant 2HDM and MSSM

Higgs Physics. Yasuhiro Okada (KEK) November 26, 2004, at KEK

Split SUSY and the LHC

Phenomenology of a light singlet-like scalar in NMSSM

LHC Run1 Higgs Results. Quentin Buat - Simon Fraser University On behalf of the ATLAS and CMS collaborations

Higgs in the light of Hadron Collider limits: impact on a 4th generation

Potential Discoveries at the Large Hadron Collider. Chris Quigg

Physics prospects for the LHC

Dirac gauginos, R symmetry and the 125 GeV Higgs

Electroweak Baryogenesis and Higgs Signatures

Sven Heinemeyer GK Seminar, University of Freiburg,

Di-photon at 750 GeV! (A first read)

ATLAS Discovery Potential of the Standard Model Higgs Boson

CMS Searches for SUSY in Hadronic Final States

MSSM4G: MOTIVATIONS AND ALLOWED REGIONS

Charged Higgs in view of the LHC constraints in phenomenological MSSM

ttbar Background Estimation in the Search for b-associated MSSM Higgs Bosons Decaying to Tau-Pairs with ATLAS DPG Bonn, T 45. Higgs

Lessons From the First Round of SUSY Searches on the Way to 1 fb -1 at the LHC

The study of the properties of the extended Higgs boson sector within hmssm model

Sven Heinemeyer WIN (Heidelberg),

HIGGS Bosons at the LHC

Georges Aad For the ATLAS and CMS Collaboration CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France

Electroweak baryogenesis as a probe of new physics

The Physics of Heavy Z-prime Gauge Bosons

Slepton, Charginos and Neutralinos at the LHC

Electroweak Baryogenesis in the LHC era

Discussion: SUSY via searches for additional Higgs(inos)

Probing SUSY Dark Matter at the LHC

Summer plans and prospects on Higgs searches at DZero Yuji Enari D0 France meeting 1

CMS Searches for New Physics

750GeV diphoton excess and some explanations. Jin Min Yang

arxiv: v2 [hep-ph] 13 Jul 2012

Dark Matter Searches and Fine-Tuning in Supersymmetry. Maxim Perelstein, Cornell University PACIFIC 2011 Symposium September 9, 2011

Higgs Theory. Heather Logan (Carleton University) The LHC Early Phase for the ILC Fermilab April 12, 2007

Transcription:

mh = 125 GeV and SUSY naturalness Josh Ruderman (UC Berkeley) March 13, 212 Lawrence Hall, David Pinner, JTR 1112.273

h! ATLAS CMS p Observed p 1-2 1 2 SM H expected p Data 211, s = 7 TeV Ldt = 4.9 fb p-value 1-2 Interpretation Requires LEE CMS preliminary s = 7 TeV L = 4.76 fb 1σ 2σ 95% CL limit on / SM -3-4 8 7 6 5 4 3 2 3 ATLAS Preliminary 1 115 12 125 13 135 14 145 15 1 Observed CL s limit Expected CL limit s H ± 1 ATLAS Preliminary ± 2 Data 211, s = 7 TeV Ldt = 4.9 fb m H [GeV] 1 115 12 125 13 135 14 145 15 m H [GeV] γ) /σ(h γ SM 95%CL γ) σ(h γ -3-4 1 115 12 125 13 135 14 145 15 2 m H (GeV/c ) 4 3.5 3 2.5 2 1.5 1.5 Observed CLs Limit Median Expected CLs Limit ± 1σ Expected CLs ± 2σ Expected CLs Median Expected (HIG1-33) Observed Asymptotic Observed Ensemble cat-3 (Non-VBFTag) cat4 (VBFTag) CMS preliminary s = 7 TeV L = 4.76 fb 1 115 12 125 13 135 14 145 15 2 m H (GeV/c ) 1 σ SM usion limit on the cross section of a SM Higgs boson decaying into t 3σ

h! ZZ! 4l ATLAS CMS Events/5 GeV 8 6 4 2 DATA Background Signal (m =125 GeV) H Signal (m =15 GeV) H Signal (m =19 GeV) H Syst.Unc. (*) 4l H ZZ Ldt = 4.8 fb s = 7 TeV ATLAS Events/2 GeV 5 4 3 2 1 CMSs = 7 TeV L = 4.71 fb s = 7 TeV L = 4.7 fb LEP excluded (95% CL) Data [ 4e, 4μ, 2e 2μ ] Z+X DATA Z+X ZZ =14 2 m H =12 GeV/c ZZ mh = 12 GeV mh = 14 GeV Local p 15 2 25 [GeV] 1-2 -3 m 4l ATLAS (*) -4 Observed H ZZ 4l Expected Ldt = 4.8 fb s=7 TeV -5 1 12 13 14 15 16 17 18 19 2 [GeV] m H 2 3 local p-value 1-2 -3 1 12 13 14 15 16 m4 [GeV] CMS L = 4.7 fb w/o m4 uncertainties with m4 uncertainties int s = 7 TeV -4 1 115 12 125 13 135 14 145 15 155 16 1σ 2σ 3σ MH [GeV/c 2 ]

Tevatron Tevatron Run II Preliminary, L fb 95% CL Limit/SM Tevatron Exclusion Expected Observed ±1 Expected ±2 Expected Tevatron Exclusion 1 SM=1 February 27, 212 1 12 13 14 15 16 17 18 19 2 m H (GeV/c 2 )

Taking these excesses seriously already allows a precise determination of the Higgs mass! 6 all data % probability per.1 GeV bin 5 4 3 2 1 m h = 124.5 ±.8 GeV Jens Erler 121.695 1 115 12 125 13 135 M H [GeV] anyway, there is nowhere else to look: ATLAS excludes (95%): 1 117.5, 118.5 122.5, 129 539 GeV CMS excludes (95%): 127.5 6 GeV

my view on the Higgs is: guilty until proven innocent for the rest of this talk: m h 124 126 GeV let s explore the implications!

Nima Arkani-Hamed, Madrid 12/16/11

SUSY 125 sits in the battleground between natural and not natural m h = 125 GeV unnatural Predicted range for the Higgs mass 16 15 tanb = 5 tanb = 4 tanb = 2 tanb = 1 Split SUSY topic of this talk Higgs mass m h in GeV 14 13 High-Scale SUSY Experimentally favored 12 1 4 6 8 12 14 16 18 Supersymmetry breaking scale in GeV Giudice, Strumia 18.677

the plan: consequences of m h = 125 GeV for: 1. MSSM 2. NMSSM 3. SUSY SH u H d..7 >.7

MSSM

higgs mass in MSSM in general V = m 2 H h 2 + h 4 h 4 m h = h v 2 v = 174 GeV tree-level MSSM in decoupling limit, m A m Z D-terms contribute: h = g2 + g 2 2 cos 2 2 m h = m Z cos 2

higgs mass in MSSM 1-loop: t t i t i h h h h h h m 2 h m 2 Z cos 2 2 + 3 m 4 t (4 ) 2 v 2 " log m2 t m 2 t + X2 t m 2 t 1 X 2 t 12m 2 t!# B @ m2 Q 3 + m 2 t + t L m Z m t X t m t X t m 2 U 3 + m 2 t + t R m 2 Z 1 C A X t = A t µ tan maximal mixing: X t = p 6 m t

higgs mass in MSSM 2-loop calculations: O ( t s ) Suspect Djouadi, et al. DR scheme FeynHiggs Heinemeyer et al. On-Shell scheme There has also been a recent 3-loop calculation: O t 2 s Harlander, Kant, Mihaila, Steinhauser 83.672, 1111.7213

MSSM Higgs Mass mh @GeVD 14 13 12 1 m h = 12426 GeV X t = Suspect FeynHiggs 9 2 3 5 7 15 2 3 m t1 é X t = @GeVD 6 m t é

fine tuning in the MSSM tree-level: m 2 Z 2 = µ2 + m 2 H u + O 1 tan 2 one-loop: m 2 H u 3y2 t 8 2 m2 Q 3 + m 2 u 3 + A t 2 log m t m 2 H u m 2 Z 2 signals fine tuning

model-independent fine tuning write the potential in the direction that gets the VEV, V = m 2 H h 2 + h 4 h 4 extremizing, m 2 h = h v 2 = 2m 2 H m 2 H m 2 h /2 1 signals fine tuning Kitano and Nomura 6296

naturalness bounds higgsinos: µ 2. (3 GeV) 2 % 1 stops: m 2 t. (5 GeV)2 1 1+A 2 t /2m 2 t % 1 3 log /m t maximal mixing has the same fine tuning cost as doubling the stop masses A 2 t 6 m 2 t

the direct LHC squark limit: squark mass [GeV] 2 18 16 14 Squark-gluino-neutralino model, m( ) = GeV 1 ATLAS Combined Preliminary CL s observed 95% C.L. limit CL s median expected limit Expected limit ±1 ATLAS EPS 211 L dt = 4.71 fb, SUSY s=7 TeV = 1 fb 12 SUSY = fb 8 SUSY = fb 6 6 8 12 14 16 18 2 gluino mass [GeV] if the squarks are degenerate: m t m q & TeV

direct stop limit theorist-level reinterpretation shows weak limits: Left-Handed Stop ê Sbottom Right-Handed Stop m H é @GeVD 24 22 2 18 16 ATLAS 2-4 j, 1.4 fb CMS a T, 1.14 fb CMS H T ê MET, 1.1 fb D b é b é, 5.2 fb m é bl = m é H m H é @GeVD 24 22 2 18 16 ATLAS 2-4 j, 1.4 fb CMS a T, 1.14 fb CMS H T ê MET, 1.1 fb D b é b é, 5.2 fb m tr é = m H é 14 14 12 12 18 2 22 24 26 28 3 m é tl @GeVD 16 18 2 22 24 m é tr @GeVD points to SUSY models with flavor violating soft masses for the squarks Michele Papucci, JTR, Andreas Weiler 11.6926

Higgs points to heavy stops and fine tuning: 3 Higgs Mass vs. Fine Tuning 3 Lightest Stop Mass 25 25 2 Suspect FeynHiggs 25 2 Suspect FeynHiggs 2 m t é @GeVD 15 75 5 m t é @GeVD 15 15 5 5 2 5 5 75 25 D mh 2 5 3 m t1 é -4-2 2 4 X t êmé t m h m h & = max i @ log m 2 h @ log p i -4-2 2 4 X t êmé t X 2 t m 2 t 1 X 2 t 12m 2 t!

BSM higgs higgs rates open a window into BSM and naturalness g γ g h γ R = ( gg!h Br h! ) MSSM ( gg!h Br h! ) SM important modifications: g t i h h H h t i γ g γ

g g Æ h Æ g g 12 12 Suspect.85 m t é @GeVD 8.95 8 FeynHiggs.8.75 6 6 R gg gg m é t1 4.9.7 2 1. 1.5 2. 2.5 3. 3.5 X t êm t é R = ( gg!h Br h! ) MSSM ( gg!h Br h! ) SM

NMSSM

NSSM consider the superpotential: W SH u H d + µh u H d + M S S 2 which generates: F S 2 2 H u H d 2 and soft terms: V soft m S S 2 +( A SH u H d +h.c.) the lightest CP even eigenvalue satisfies the bound: m 2 h apple m 2 Z cos 2 2 + 2 v 2 sin 2 2 saturated when m s M S

tan and m 2 h apple m 2 Z cos 2 2 + 2 v 2 sin 2 2 want small tan 1..8.6.4.2. Cos 2 2b Sin 2 2b 2 4 6 8 Tan b perturbativity until the GUT scale requires:..7 16 2 d 2 dt 16 2 dy2 t dt = y2 t = 2 4 2 +3y 2 t 3g 2 2 6yt 2 + 2 16 3 g2 3 3g2 2

NMSSM Higgs Mass mh @GeVD 14 13 12 1 m h = 12426 GeV l =.6,.7 m t é = 12, 5 GeV X t = 9 2 4 6 8 Tan b

m h = 125 GeV 3 Tan b = 2 3 Tan b = 5 3 25 25 25 2 2 2 m t é @GeVD 15 m t é @GeVD 15 m t é @GeVD 15 5 l =,.3,.5,.6,.7 5 l =,.3,.5,.6,.7 5 m é t1 < GeV -4-2 2 4 X t êmé t m é t1 < GeV -4-2 2 4 X t êmé t

fine tuning in the NMSSM 3 Tan b = 2 3 Tan b = 5 25 25 5 2 5 2 5 5 m t é @GeVD 15 2 Suspect FeynHiggs m t é @GeVD 15 Suspect FeynHiggs 2 D mh 2 5 D mh 5 25 5 15 m é t1 < GeV -4-2 2 4 X t êmé t 5 2 25 m é t1 < GeV -4-2 2 4 X t êmé t m h. 15 possible with low mixing

m é t @GeVD 1 16 14 12 8 X t = 6 m t é Stop Mass X t = 6 4 Suspect FeynHiggs Tan b = 2 2.4.45.5.55.6.65.7 l Dmh 25 2 15 Fine Tuning X t = 6 m t é X t = Tan b = 2 5 Suspect FeynHiggs.4.45.5.55.6.65.7 l fine tuning highly prefers large (and small mixing)

SUSY

what about larger? W SH u H d top-down: fat higgs Harnik, Kribs, Larson, Murayama 311349 bottom-up: SUSY Barbieri, Hall, Nomura, Rychkov 67332 we restrict to. 2 so the theory is perturbative until. few TeV

higgs mass [GeV] 9 λ = 2 8 A 7 H H + the original papers focus on a heavy higgs masses 6 5 4 A H H + 3 m h 2 3 GeV 2 h h 1 1.5 2 2.5 3 3.5 4 tanβ Barbieri, Hall, Nomura, Rychkov 67332 the singlet was decoupled, m s & 1TeV this limit cannot be taken without spoiling naturalness: dm 2 H u,d dt = 2 m2 S 8 2 +...

singlet-higgs mixing M 2 = 2 v 2 sin 2 2 + MZ 2 cos2 2 v(µ, M S,A ) v(µ, M S,A ) m 2 s 5 lsusy Higgs Mass s Mass @GeVD 2 5 h m h = 12426 GeV 2 3 5 7 m S @GeVD

a reference point parameters =2 tan =2 µ =2GeV M S =GeV m S =5GeV m H + =47GeV m Q3 = m u3 =5GeV A t,a = with, m h = 125 GeV m h =5

3. 3 2 m h 2 < 2.5 25 5 15 2 Tan b 2. 1.5 6 15 m h D mh 125 ms HGeVL 5 1. 5 16 2.8 1. 1.2 1.4 1.6 1.8 2. l m includes the fine-tuning from h the level-splitting Figure : The Higgs mass and fine-tuning contours, m h and tan and on the right we vary and the singlet soft ma

non-decoupling of H bb y2 b (y 2 b ) SM h H bb =1+ sin 4 tan mz m H ± 2 bb =1 sin 4 tan v m H ± 2 MSSM l SUSY 1.5 1.5 m h = 125 GeV 1. 1. xi xi.5 x tt x WW x gg Tan b = 2 x bb. 3 5 75 15 m H + HGeVL.5 x tt x WW x gg Tan b = 2 x bb. 3 5 75 15 m H + HGeVL

non-decoupling of H R = ( gg!h Br h! ) SUSY ( gg!h Br h! ) SM 2. 1.25 m H + = 47 GeV 1.75 1.8 m h R gg 1.1 1.5 Tan b 1.6 1.4 125 1.2 1.9 16 2 1. 1. 1.2 1.4 1.6 1.8 2. l

SUSY predictions: h! enhanced: h! WW,ZZ (including VBF) depleted: h! bb,

SUSY predictions: h! enhanced: h! WW,ZZ (including VBF) CMS depleted: h! bb, ATLAS Dijet Tag Class 3 Class 2 Class 1 Class Combined -2 2 4 6 Best Fit σ/σ SM µ 3 Best fit H ± 1 ATLAS 2 1-2 -3 Data 211, s = 7 TeV 1 115 12 125 13 135 14 145 15 Ldt = 4.9 fb m H [GeV]

ombined obs. xp. for SM Higgs omb. ensemble bb (4.7 fb ) ττ (4.6 fb ) γγ (4.8 fb ) WW (4.6 fb ) ZZ (4.7 fb ) 4σ 35 14 145 ass (GeV).5. -.5 SUSY. 1 115 12 125 13 135 14 145 Higgs boson mass (GeV) enhanced: alue p (left) and best-fit ˆµ = s/s SM (right) as a function of ange 1 145 GeV. The local p-values for individual channels ed with the asymptotic formula (lines); the combined local p- ensembles h of background-only! pseudo-datasets (points). The (including VBF) ocal p-values p (m H ), should a Higgs boson with a mass m H orresponds to the ±1s uncertainties on the ˆµ values. h! WW,ZZ predictions: depleted: h! bb, CMS ATLAS S Preliminary s = 7 TeV = 4.6-4.8 fb m H = 125 GeV Combined (68%) Single channel CMS Preliminary s = 7 TeV L = 4.6-4.8 fb (local) 1 ATLAS Preliminary H WW lνlν H bb p -2 2σ H ττ -3 3σ 2 3 4 est fit σ/σ SM H γγ H WW H ZZ -.5.5 1 1.5 2 2.5 3 3.5 4 Best fit σ/σ SM -4-5 -6-7 Ldt = 4.7 fb s = 7 TeV Observed Expected 1 115 12 125 13 135 14 145 15 m H [GeV] Figure 12: Top left: fitted signal strength parameter (µ) as a function of m H for the whole mass range. 4σ 5σ

SUSY predictions: h! enhanced: h! WW,ZZ (including VBF) depleted: h! bb, Tevatron Best Fit σ / σ SM 5 4 3 Tevatron RunII Preliminary SM H bb, L int Best Fit ±1 s.d. 9.7 fb 2 1 5 1 115 12 125 13 135 14 145 15 2 Higgs Boson Mass (GeV/c ) Feb 24 212

super-preliminary scorecard: h! enhanced: h! WW,ZZ (including VBF) depleted: h! bb, m H = 125 GeV Combined (68%) Single channel CMS Preliminary s = 7 TeV L = 4.6-4.8 fb H bb H ττ H γγ H WW H ZZ -.5.5 1 1.5 2 2.5 3 3.5 4 Best fit σ/σ SM

fine-tuning for a 1D potential, V = m 2 H h 2 + h 4 h 4 = m2 H m 2 h /2 including singlet-doublet mixing, m2 H m 2 h /2 where m h is the higgs mass before mixing

large protects against fine tuning 25 2 Hm t él max Hm H +L max m max Naturalness Bounds D v = H2L mass HGeVL 15 5 1.2 1.4 1.6 1.8 2. l

A Natural SUSY Spectrum & - TeV strong dynamics 3 15 g t 1,2, b L 5 125 H, H ± s H h mass (GeV) flavor-degenerate squarks OK!

some remaining options for natural SUSY m h = 125 GeV NMSSM NMSSM + RPV SUSY m t <m q 1,2 m t = m q 1,2

take away points the MSSM requires maximal stop mixing and is ~1% tuned or worse the NSSM can be ~% tuned at the edge of its parameter space,.7, tan. 3 mh = 125 GeV is natural in SUSY because SUSY R of singlet-doublet mixing in, can be enhanced and flavor degen squarks are naturally accommodated

backup

what about m 6= m Q3 u3? the higgs mass is mostly determined by: (m t,x t) where: m 2 t m Q m 3 u3 m t é @GeVD 3 25 2 15 5 m Q3 êm u3 =.5, 1, 2 5-4 -2 2 4 X t êmé t D ê Ddegen 4 3 2 splitting the soft masses makes fine tuning worse 1.1.2.5 1. 2. 5.. m Q3 ê m u3

fine tuning in the MSSM to generalize we will adopt the definition: m h = max i @ log m 2 h @ log p i p i = m 2 Q 3, m 2 u 3, A t, µ, Bµ, m 2 H u, m 2 H d all defined at a cutoff to be conservative, we take = TeV

combo ATLAS CMS Local P-Value 1-2 -3-4 -5-6 -7 ATLAS Preliminary Observed Expected Ldt = 1.-4.9 fb s = 7 TeV 211 Data 1 115 12 125 13 135 14 145 15 M H [GeV] 2 3 4 5 Local p-value Best fit σ/σ SM 1-2 -3-4 CMS Preliminary, s = 7 TeV, Combined, L = 4.6-4.7 fb int Interpretation requires look-elsewhere effect correction 1 ±1σ from fit 1 115 12 125 13 135 14 145 15 155 16 2 Higgs boson mass (GeV/c ) 1σ 2σ 3σ 4σ 95% CL Limit on / SM 1 ATLAS Preliminary 211 Data Observed Expected Ldt = 1.-4.9 fb ±1 ± 2 s = 7 TeV 95% CL limit on σ/σ SM 1 CMS Preliminary, s = 7 TeV Combined, L = 4.6-4.7 fb int Observed Expected ± 1σ Expected ± 2σ CLs Limits 1 115 12 125 13 135 14 145 15 M H [GeV] 1 115 12 125 13 135 14 145 15 155 16 Higgs boson mass (GeV/c 2 )

non-decoupling of H the heavy Higgs doublet cannot be taken arbitrarily heavy consistently with naturalness 2 v 2 = 2B µ sin 2 m 2 H ± + m 2 W l SUSY non-decoupling effects are generic in the most natural part of parameter space! m H ±. TeV xi 1.4 1.2 1..8 m h = 126 GeV.6 x tt.4 x WW x.2 gg tanhbl= 2 x bb. 3 5 75 15 m H + HGeVL

precision electroweak.3.25.2.15 m H ± 35 t=5 4 3 2.5 tan β 68 % CL.15.1 m H ±=35 GeV m H ±=7 GeV T.1.5 7 2 95 % CL T st sb 1.5.5.1 m h (SM) t=1 35.1.5.5.1.15.2 S.5 1 1.5 2 2.5 3 3.5 4 4.5 5 tanβ

2 2 15 15 16 m c < m h ê2 25 m h D mh 126 5 ms HGeVL 15 2 5 m h 2 < - -8-6 -4-2 2 4 M s HGevL