The CMS Electromagnetic Calorimeter: overview, lessons learned during Run 1 and future projections

Similar documents
Performance of the CMS electromagnetic calorimeter during the LHC Run II

Calibration of the CMS Electromagnetic Calorimeter with first LHC data

Upgrade of the CMS Forward Calorimetry

Future prospects for the measurement of direct photons at the LHC

CMS ECAL status and performance with the first LHC collisions

Search for high mass resonances in the diphoton and Zγ channels at LHC

Physics potential of ATLAS upgrades at HL-LHC

Upgrade of ATLAS and CMS for High Luminosity LHC: Detector performance and Physics potential

THE main physics motivation for building the Compact

PoS(EPS-HEP 2013)508. CMS Detector: Performance Results. Speaker. I. Redondo * CIEMAT

Validation of Geant4 Physics Models Using Collision Data from the LHC

Introduction. Tau leptons. SLHC. Summary. Muons. Scott S. Snyder Brookhaven National Laboratory ILC Physics and Detector workshop Snowmass, Aug 2005

PERFORMANCE OF THE ATLAS MUON TRIGGER IN RUN 2

The ATLAS muon and tau triggers

Physics at Hadron Colliders

Physics studies to define the CMS muon detector upgrade for High-Luminosity LHC

STANDARD MODEL AND HIGGS BOSON

Performance of muon and tau identification at ATLAS

M. Diemoz INFN Sezione di Roma, P.le A. Moro 2, Roma, Italy

Case study: The Lead Tungstate Calorimeter for CMS

Overview of the Higgs boson property studies at the LHC

Highlights from the 9 th Pisa Meeting on Advanced Detectors Calorimetry Session

2 ATLAS operations and data taking

Design of the new ATLAS Inner Tracker for the High Luminosity LHC era

Non-collision Background Monitoring Using the Semi-Conductor Tracker of ATLAS at LHC

Calibration and Performance of the ATLAS Tile Calorimeter During the LHC Run 2

CMS Note Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

Measurement of the Inclusive Isolated Prompt Photon Cross Section at CDF

HL-LHC Physics with CMS Paolo Giacomelli (INFN Bologna) Plenary ECFA meeting Friday, November 23rd, 2012

LHCb Calorimetry Impact

Electron reconstruction and identification in CMS at LHC

Atlas Status and Perspectives

LHC status and upgrade plan (physics & detector) 17 3/30 Yosuke Takubo (KEK)

Muon reconstruction performance in ATLAS at Run-2

Studies on the e + e - spectrum with the first data of the CMS experiment at the Large Hadron Collider

The ATLAS Liquid Argon Calorimeter: Construction, Integration, Commissioning Ph. Schwemling on behalf of the ATLAS LAr Group

Research and Development for the ATLAS Forward Calorimetry at the Phase-II LHC

Search for high mass diphoton resonances at CMS

Electronic calibration of the ATLAS LAr calorimeter and commissioning with cosmic muon signals

Studies of top pair production in the fully hadronic channel at LHC with CMS

Higgs couplings and mass measurements with ATLAS. Krisztian Peters CERN On behalf of the ATLAS Collaboration

Lepton and Photon reconstruction and identification performance in CMS and ATLAS

THE ATLAS TRIGGER SYSTEM UPGRADE AND PERFORMANCE IN RUN 2

(a) (b) Fig. 1 - The LEP/LHC tunnel map and (b) the CERN accelerator system.

ATLAS NOTE. August 25, Electron Identification Studies for the Level 1 Trigger Upgrade. Abstract

ATLAS Tile Calorimeter Calibration and Monitoring Systems

Analyses with photons or electrons with early LHC data at the CMS experiment

Digital Calorimetry for Future Linear Colliders. Tony Price University of Birmingham University of Birmingham PPE Seminar 13 th November 2013

Higgs Searches and Properties Measurement with ATLAS. Haijun Yang (on behalf of the ATLAS) Shanghai Jiao Tong University

Particle detection 1

The HL-LHC physics program

Discovery of the W and Z 0 Bosons

Measurement of the Higgs Couplings by Means of an Exclusive Analysis of its Diphoton decay

ATLAS Calorimetry (Geant)

Recent CMS results on heavy quarks and hadrons. Alice Bean Univ. of Kansas for the CMS Collaboration

How to find a Higgs boson. Jonathan Hays QMUL 12 th October 2012

Results from combined CMS-TOTEM data

The CMS ECAL Laser Monitoring System

Seminario finale di dottorato

2008 JINST 3 S Outlook. Chapter 11

The rejection of background to the H γγ process using isolation criteria based on information from the electromagnetic calorimeter and tracker.

Higgs cross-sections

The ATLAS Run 2 Trigger: Design, Menu, Performance and Operational Aspects

Jet Energy Calibration. Beate Heinemann University of Liverpool

Simulation and validation of the ATLAS Tile Calorimeter response

Measurement of the associated production of direct photons and jets with the Atlas experiment at LHC. Michele Cascella

LHCb: From the detector to the first physics results

Discovery potential of the SM Higgs with ATLAS

Application of the Tau Identification Capability of CMS in the Detection of Associated Production of MSSM Heavy Neutral Higgs Bosons Souvik Das

Il Calorimetro Elettromagnetico di CMS

Highlights from the LHC Run1

Calorimetry in particle physics experiments

First physics with the ATLAS and CMS experiments. Niels van Eldik on behalf of the ATLAS and CMS collaborations

ATLAS jet and missing energy reconstruction, calibration and performance in LHC Run-2

Risultati dell esperimento ATLAS dopo il run 1 di LHC. C. Gemme (INFN Genova), F. Parodi (INFN/University Genova) Genova, 28 Maggio 2013

Dark matter searches and prospects at the ATLAS experiment

Particle Flow Algorithms

Upgrade of ATLAS Electron and Photon Triggers and Performance for LHC Run2

PoS(DIS 2010)058. ATLAS Forward Detectors. Andrew Brandt University of Texas, Arlington

PoS(CORFU2016)060. First Results on Higgs to WW at s=13 TeV with CMS detector

Transverse momentum and pseudorapidity distributions with minimum bias events in CMS at the LHC

Higgs Searches at CMS

Muon commissioning and Exclusive B production at CMS with the first LHC data

Identifying Particle Trajectories in CMS using the Long Barrel Geometry

Measurement of charged particle spectra in pp collisions at CMS

arxiv: v1 [hep-ex] 5 Sep 2014

Commissioning of the ATLAS LAr Calorimeter

Status and Performance of the ATLAS Experiment

The achievements of the CERN proton antiproton collider

Reconstruction in Collider Experiments (Part IX)

Dr. Andrea Bocci. Using GPUs to Accelerate Online Event Reconstruction. at the Large Hadron Collider. Applied Physicist

ATLAS New Small Wheel Phase I Upgrade: Detector and Electronics Performance Analysis

Excited Electron Search in the e eeγ Channel in ATLAS at S = 7 TeV

The Electromagnetic Calorimeter of the HERA-B Experiment

Top quarks objects definition and performance at ATLAS

CALICE scintillator HCAL

Results and Prospects for Ion Physics at LHCb

Chapter 2 The CMS Experiment at the LHC

READINESS OF THE CMS DETECTOR FOR FIRST DATA

Electroweak Physics at the Tevatron

Transcription:

Journal of Physics: Conference Series OPEN ACCESS The CMS Electromagnetic Calorimeter: overview, lessons learned during Run 1 and future projections To cite this article: Cristina Biino 2015 J. Phys.: Conf. Ser. 587 012001 Related content - CMS Electromagnetic Trigger commissioning and first operation experiences Pascal Paganini and the CMS collaboration - The simulation of the CMS electromagnetic calorimeter F Cossutti - The CMS ECAL performance with examples A Benaglia View the article online for updates and enhancements. Recent citations - Gamma-Ray Induced Radiation Damage Up to 340 Mrad in Various Scintillation Crystals Fan Yang et al This content was downloaded from IP address 80.243.131.58 on 05/03/2018 at 08:59

The CMS Electromagnetic Calorimeter: overview, lessons learned during Run 1 and future projections Cristina Biino Istituto Nazionale di Fisica Nucleare, sezione di Torino, v. P. Giuria 1, 10125 Torino, Italy E-mail: Cristina.Biino@to.infn.it Abstract. The Electromagnetic Calorimeter (ECAL) of the Compact Muon Solenoid (CMS) experiment at the LHC is a hermetic, fine grained, homogeneous calorimeter, containing 75,848 lead tungstate scintillating crystals. We highlight the key role of the ECAL in the discovery and elucidation of the Standard Model Higgs boson during LHC Run I. We discuss, with reference to specific examples from LHC Run I, the challenges of operating a crystal calorimeter at a hadron collider. Particular successes, chiefly in terms of achieving and maintaining the required detector energy resolution in the harsh radiation environment of the LHC, are described. The prospects for LHC Run II (starting in 2015) are discussed, building upon the experience gained from Run I. The high luminosity upgrade of the LHC (HL-LHC) is expected to be operational from about 2025 to 2035 and will provide instantaneous and integrated luminosities of around 5 10 34 /cm 2 /s and 3000/fb respectively. We outline the challenges that ECAL will face and motivate the evolution of the detector that is thought to be necessary to maintain its performance throughout LHC and High-Luminosity LHC operation. 1. Introduction The CMS detector [1] is a multipurpose particle physics experiment at the CERN Large Hadron collider (LHC) optimized to investigate electroweak symmetry breaking via the search of the standard model (SM) Higgs boson. The performance of the high resolution CMS electromagnetic calorimeter is important because electrons and photons are essential ingredients in at least three of the Higgs boson decays channels: H γγ, H ZZ ( ) 4e ±, H W W ( ) eνeν. The key physics channel driving the design of the CMS electromagnetic calorimeter (ECAL) was H γγ. This decay mode is the most sensitive for a low mass SM Higgs boson (m H < 150 GeV). The branching ratio is very small, 0.002 but the signature is clean: a narrow resonance of two high transverse energy (E T ) photons over a non resonant background of di-photon events [2]. The large irreducicle background originates from the QCD production of two photons while the reducible part comes from events in which at least one of the photons originates from misidentification of jet fragments. The discovery potential increases with the instrumental invariant mass resolution and background rejection. This translates to a need for efficient photons and electrons identification, high energy and position resolution. The width of the diphoton resonance of a SM Higgs boson is totally dominated by the instrumental invariant mass resolution of the electromagnetic calorimeter. The ECAL design requirements were: Excellent energy and position/angle resolution up to η <2.5, to match the tracker coverage. Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltd 1

Hermeticity, compactness and high granularity Fast response ( 25 ns) and particle id, energy and isolation measurement at trigger level Large dynamic range (5 GeV to 5 TeV) and excellent linearity (at the per-mill level) Radiation tolerance (ECAL was designed for 14 TeV and L = 10 34 cm 2 s 1, and for a total luminosity of 500/fb) In the following we discuss the challenges of operating the CMS electromagnetic crystal calorimeter at a hadron collider, in particular in achieving and maintaining the required energy resolution in the harsh radiation environment of the LHC. We summarise the role of ECAL in the discovery of the Higgs boson. We also present the prospect for the LHC Run II starting in 2015 and the challenges that ECAL will face with the High Luminosity (HL) upgrade of LHC, based on the experience gained during Run I. 2. The CMS electromagnetic calorimeter The CMS electromagnetic calorimeter (ECAL)[3] (see Fig. 1) is a hermetic, homogeneous, fine grained lead tungstate (P bw O 4 ) crystal calorimeter. The choice of an homogeneous medium was made to obtain a better energy resolution by minimizing sampling fluctuations [4]. Very dense crystals offer the potential to achieve the required excellent performance and compactness. The CMS design enabled the electromagnetic calorimeter to fit within the volume of the CMS superconducting solenoid magnet. The 75,848 crystals are arranged in a central barrel section (EB), with pseudorapidity coverage up to η = 1.48, closed by two endcaps (EE), extending coverage up to η =3.0. Crystals are projective and positioned slightly off-pointing ( 3 0 ) relative to the interaction point (IP) to avoid cracks aligned with particle trajectories. The calorimeter has no longitudinal segmentation, the measurement of the photon angle relies on the primary vertex reconstruction from the silicon tracker. The crystal length in EB is 230 mm (220 mm in EE) corresponding to 26 (25) radiation lengths. The transverse size of the crystals at the front face is 2.2 2.2 cm 2 in EB (2.86 2.86 cm 2 in EE). The total crystal volume is 11 m 3 and the weight is 92 t. The barrel calorimeter is organized into 36 supermodules each containing 1,700 crystals while the endcaps consist of two dees, with 3,662 crystals each. A preshower detector (ES), based on lead absorber and silicon strips sensors (4,288 sensors, 137,216 strips, 1.90 61 mm 2 with x-y view), placed in front of the endcaps at 1.65 < η <2.6, improves the photon-π 0 separation. The total thickness of the ES is 3 radiation lengths. Figure 1. Schematic view of the CMS electromagnetic calorimeter. 2

2.1. Crystal properties The main features of P bw O 4 scintillating crystals are high density (δ=8.28 g/ cm 3 ), extremely short radiation length and small Moliére radius (X 0 =0.85 cm, R M =2.19 cm), allowing the realization of a homogeneous compact calorimeter with high granularity. It produces fast signals, 80% of the light is emitted in 25 ns. This is important since the LHC collision rate is 40 MHz. The light emission peak is at 420 nm. The crystals are transparent to their entire scintillation emission spectrum The major drawbacks are: the reduced light yield (LY), only 100 photons per MeV for a 23 cm long crystal, that requires the use of a photodetector readout system with internal gain; a strong light yield dependence on temperature ( LY/ T = -2%/ o C at 18 o C) which imposes a requirement on temperature stability of ±0.05 o C in EB. Most of the crystals were produced ( 10,000 crystals/year) in Russia (Bogoroditsk Techno- Chemical plant) with a small contribution from China (Shanghai Institute of Ceramics). The energy, position and time resolution of arrays of crystals have been throughly studied at beam tests with no magnetic field, no material upstream of the crystals, no radiation damage, and a negligible channel response variation. The obtained energy resolution, for central impact of electrons on a 3 3 crystal array, has a stochastic, a noise and a constant term [5]: σ E /E = 2.8%/ E 0.128 GeV/E 0.3% where E is measured in GeV. The constant term is dominated by the longitudinal non-uniformity of light collection. Material upstream of ECAL can result in photon conversion and electron Bremsstrahlung that can both affect all terms in the energy resolution. The CMS goal was to achieve a constant term below 1% [6]. The time resolution is also excellent (<100 ps for E>20 GeV) and has been measured at beam tests using the time difference between adjacent crystals belonging to the same electromagnetic shower. The ECAL time information can be exploited as an alternative method to determine the position of the primary vertex in events with low track multiplicity (see talk by Daniele Del Re at this conference). Figure 2. ECAL Front-End electronic chain. Figure 3. Pulse shape. 2.2. Photodetectors and electronics readout chain For the purposes of light collection the crystals are equipped in the barrel with Hamamatsu avalanche photodiodes (APD, two for each crystal, 5 5 mm 2 each, 75% Q.E) read in parallel. The gain is set at 50 and they are insensitive to the 4T magnetic field. In the endcap region the scintillation light from each crystal is readout by vacuum photo-triodes (VPT, 280 mm 2, 20% Q.E.). The gain is set at 10 and they operate in a magnetic field almost parallel to their axis. The gain of the APDs is sensitive to temperature (-2.3 % o C). The temperature dependence of the VPT response is assumed to be negligible relative to the temperature sensitivity of the crystals. Accordingly a less stringent temperature stability requirement of 0.1 o C is assumed for the endcap dees. 3

To provide the desired resolution over the full energy range of signal events, the readout system measures energies over a wide dynamic range (between 50 MeV and 2 TeV); it is fast to minimize event pile-up, has low power consumption and uses radiation hard components. In order to minimize external noise contributions most of the readout chain is mounted directly on the detector. This has also the advantage of reducing the number of Gigabit optical links to the off-detector readout. The On-detector electronics (see Fig. 2) has been designed to read 5x5 crystals, forming a trigger-tower in the EB (a super-crystal in EE). In the VFE cards (Very Front End) the signals from photodetectors are pre-amplified and shaped by an ASIC Multi Gain Pre-Amplifier chip which consists of three parallel amplification stages with nominal gain 1, 6 and 12. Each of the three analog outputs are digitized in parallel by a multi channel 40 MHz, 12 bit ADC, with an integrated logic that selects the highest not saturated signal. A time window of 10 samples is readout for every L1 Trigger. From the ten time samples we reconstruct (Fig. 3) the pedestal P, the signal amplitude A, and the time at the maximum T max using a digital filtering technique, weights, fit and ratio methods. We subtract P on an event by event basis. The electronic noise is about 40 MeV/channel in EB. Trigger primitives are generated from the summed amplitudes of 25 crystals in the FE (Front End) cards and sent to the Off-detector electronics. Electrons and photon candidates are formed at L1 by summing E T in adjacent trigger towers. All front-end ASICs were developed in 0.25µm technology, which is intrinsically radiation hard (see also talks by Jean-Baptiste Sauvan and by Philippe Gras at this conference). 3. ECAL operation and environmental stability CMS is a complex experiment with 100M readout channels; nevertheless during collisions about 98% of the CMS total channels have been operational. The ECAL detector has been stably and efficiently running with very few single dead channels (99.1% active channels in EB, 98.4% in EE, 96.8% in ES), with little evolution in their number, and causing less than 1% downtime. This is a very good result for a detector that has no intrinsic redundancy. This has been possible due to the continuous work of a relatively small number of scientists, whose constant dedication has allowed ECAL and the CMS experiment to outperform any expectation. A number of bad channels with low voltage supply problems have been fixed in the current long LHC shutdown period. Fluctuations in temperature affect the LY of the crystals and the APD gain. A cooling system maintains the environmental temperature to be stable within specifications: T < 0.02 0 C in EB (< 0.05 0 C in EE) [7]. Also the stability of the bias voltages has been within specifications. The contribution of environmental instabilities to the energy resolution constant term has been below 0.1%. 3.1. ECAL trigger The single-photon L1 Trigger has been continuously operated unprescaled, with a low threshold (E T =15 GeV) and with an efficiency > 99% for photons relevant for the H γγ analysis (leading photons with E T > 33 GeV). This result has been possible following the implementation of the online rejection of spikes (anomalous isolated energy depositscaused by direct ionization of the APD sensitive volume [8]). If untreated, these would cause the eventual saturation of the bandwidth assigned to electron and photon triggers in CMS. Thanks to the flexibility of the front end electronics, we are able to suppress the spike contribution to the L1 trigger by a coarse analysis of the lateral energy deposit inside each trigger tower. The spike rejection obtained is 96% maintaining a trigger efficiency for electrons and photons of 99%. The timing cut and a simple shower-shape algorithm is applied on the anomalous signals surviving the L1 Trigger at the next High Level Trigger (HLT). 4

3.2. ECAL response variation and corrections The ECAL crystal response varies under irradiation due to the formation of colour centers that absorb the light and reduce the transparency of the P bw O 4 (we have no evidence yet of damage to the scintillation mechanism itself). This damage is partially recovered in a few hours at room temperature (thermal annealing of the colour centers). Damage and recovery during LHC cycles are monitored by laser light injected, during the LHC orbit gaps, into each crystal, through optical quartz fibres [9]. Blue light (447 nm) is used to while infrared and green light provide complementary measurements at other wavelengths. An optical switch directs light to one half-supermodule or one quarter-dee in turn. A complete cycle takes 45 min. The laser light is also injected into PN diodes to follow the laser pulse to pulse variations with an accuracy of 0.1%. ECAL signals are compared and normalized, event by event, to the reference PN diodes. The resulting transparency corrections (see section 4) are ready for prompt reconstruction in less than 48 hours. Figure 4. Top: ECAL response loss under irradiation: relative response variation as a function of time measured by the laser monitoring system and averaged in various η intervals, listed in the plot legend. Bottom: LHC on/off cycles. Damage and recovery during LHC cycles is evident. Fig. 4 shows the relative response variation measured by the laser monitoring system in 2011 and 2012 (Run I). The response is averaged in various pseudorapidity intervals. The LHC istantaneous luminosity varied from 10 33 cm 2 s 1 in April 2011 to 7 10 33 cm 2 s 1 at the end of 2012. Damage and recovery during LHC cycles is evident and the crystal transparency correction plays a crucial role in particular for the crystals in the endcaps. The observed response change is from 6% (in EB) to 70% (in EE). We observe steady recovery during the low luminosity Heavy Ions run (November 2012) and in periods without beam. During the present LHC shutdown we are following the transparency recovery taking data whenever possible. Figure 5. History plot for 2012 data of the ratio of isolated electron energy E, measured in the ECAL endcaps to the electron momentum p, measured in the tracker, before (red dots) and after (green dots) correction of the transparency loss, as measured by the laser monitoring system. The corrections validity is checked regularly using i.e. electrons from W decays (Fig. 5). 5

In 2012 we applied weekly transparency corrections at L1 and HLT to account for the response loss observed in the endcaps and to keep constant the trigger energy thresholds. See Fig. 6. In 2015 this will be extended also to the barrel because of the expected increase in LHC luminosity (1 10 34 cm 2 s 1 ). Figure 6. HLT trigger (E T >33 GeV) efficiency in 2012: in EB in black; in the endcaps before weekly transparency corrections in red, and after in blue. Figure 7. Superclusters of clusters along φ (magnetic bending direction). Dynamic clustering is necessary to recover energy radiated upstream of ECAL. Secondary irradiation effects are: the slow increase of leakage current, and therefore noise, due to bulk damage in the ES sensors [10] and in the APDs and a small reduction of signal due to the conditioning of the VPT photocathodes. 4. Energy reconstruction and energy resolution In the CMS calorimeter the crystal lateral dimensions are comparable to the Moliére radius. Therefore the electron and photon electromagnetic shower energy is deposited over several crystals especially if the photons/electrons interact in the upstream tracker material. Clustering and containment corrections are fundamental to reconstruct the particle s original energy. Energy deposits are spread due to secondary emission (Bremsstrahlung and conversions) in the tracker material and distributed along φ by the intense CMS magnetic field. The clustering algorithm therefore uses a dynamic window in φ to form Superclusters [11] (see Fig. 7). To obtain the most accurate estimate of electron and photon energy in a Supercluster of crystals we use the following formula: E e/γ = F e/γ G Σ i S i (t) C i A i + E ES where the factors for the absolute energy calibration and related corrections are: G, the absolute energy scale factor (GeV/ADC count) and F e/γ, the energy containment corrections (depending on the particle kind, geometry, clustering, upstream material). The factors related to the equalization of channel response are : A i, the single channel amplitude (in ADC counts); C i, the inter-crystal calibration coefficient; and S i, the correction for time-dependent response variations (or crystal transparency correction). After applying the Supercluster algorithm, the energy of the e/γ candidate is estimated from the sum over the index i of the signal amplitudes (A i ) of the individual crystals in the Supercluster, weighted with the channel dependent coefficients to correct for time response variation (S i ), to equalize the channel response (C i ), to calibrate the ADC to energy conversion (G) and to correct for imperfect clustering and geometric effects (F e/γ ). For EE clusters the preshower energy is also added (E ES ). 6

16th International Conference on Calorimetry in High Energy Physics (CALOR 2014) IOP Publishing Figure 8. Effect of the dynamical clustering algorithm and energy corrections on the e+ e invariant mass resolution in EB (left) and EE (right) for Z 0 candidate events. For EE the effect of adding the preshower energy is also shown. Fig. 8 shows the impact of the clusterisation process on the Z e+ e energy scale and resolution from the incorporation of more sophisticated clustering and energy containment correction algorithms in EB and in EE: using fixed 5 5 crystals arrays, then the raw Supercluster energy and then including the Fe correction. Figure 9. Effect of the intercalibration and transparency corrections on the e+ e invariant mass resolution in EB (left) and EE (right) for Z 0 candidate events. The invariant mass of electron pairs from Z e+ e at different levels of energy reconstruction is shown In Fig. 9: with both electrons in EB for the left plot (in EE, right plot) without any correction (violet), without time-dependent corrections Si (red) and with all corrections (blue). Figure 10. The Z e+ e invariant mass resolution as a function of time for prompt (in blue) and re-reconstruction (in black). The width of the peak, fitted with a Crystal Ball (CB) function is plotted. Here we use the CB width as a measure of the mass resolution. Figure 11. The relative electron resolution (derived from Z e+ e events) plotted as a function of pseudorapidity. For prompt calibration constants (grey), with optimised calibration constants (blue) and expected from MC simulation (red). Fig. 10 shows the stability of the resolution measured from Z e+ e events in the endcaps as a function of time. The re-reconstruction of data, following a calibration based on the full 7

data sample, improves the resolution stability and absolute resolution respect to the prompt (within 48 hours from data taking) reconstruction. The stability is at the per-mill level. The variable R 9 = E 3 3 /E SC defined as the ratio of the energy in a simple 3 3 array of crystals to the energy in the Supercluster is used to identify electrons with little radiation in the tracker or unconverted photons. According to MC 70% of the photons with R 9 > 0.94 are truly unconverted while all the photons with R 9 < 0.94 converted upstream of ECAL. We derive electron energy resolution from the Z e + e peak width. The quantity σ e /E is extracted, in η/r 9 bins, from an unbinned maximum likelihood fit to the invariant mass distribution of e + e pairs. The result for electrons with R 9 >0.94 is given in Fig. 11. The energy resolution is better than 2% for η <0.8 and between 2% and 5% elsewhere. The impact on the resolution from the material upstream of ECAL is particularly evident at η >1. Resolution is also degraded near detector cracks between ECAL modules (vertical lines in the plot). The differences between data (in blue) and MC (in red) come from various effects not yet perfectly simulated (such as imperfect description of the upstream material ). The amount of material in front of ECAL is shown in Fig. 12. Fig. 13 shows the energy corrections as a function of η for different intervals of R 9. The resolution of the MC used for the H γγ analysis has been tuned to match the data for different R 9 categories by adding an extra smearing term. Figure 12. Material in front of ECAL as a function of η. Figure 13. W eν electron candidates. Particle energy corrections as a function of η in different intervals of R 9. Calibrations procedure exploits different samples of events to intercalibrate, verify and tune monitoring and algorithmic corrections. For more details see talk by Alessio Ghezzi at this conference. 5. Role of ECAL in the Higgs discovery On 4 th July 2012 the CMS and the ATLAS collaboration announced the observation of a new particle, consistent with the SM Higgs boson, at a mass around 125 GeV [12] [13]. Five channels had been examined by CMS: H γγ, H ZZ ( ) 4 leptons, H W W ( ), H bb, H tt, all critically dependent on ECAL. The first two modes are the so called golden modes and have been used to extract the best and most recent measurement by CMS of the boson mass M Higgs = 125.7±0.3 stat ±0.3 syst GeV. The 68% confidence level contour plot of the Higgs mass estimation versus signal strength from the two golden modes and their combination is shown in Fig. 14. The decay rates are consistent with the SM predictions. 8

Figure 14. 68% confidence level contour plot of the Higgs mass (m X ) estimation versus signal strength (σ/σ SM ) from the γγ (green) and 4-leptons channels (red) and their combination (black). In the combination the signal strengths are constrained to the SM expectations for the Higgs boson. 5.1. The ECAL benchmark search channel: H γγ The experimental signature is a small narrow excess of events in the M γ1γ2 invariant mass spectrum on a large falling background: M γ1γ2 = 2E γ1 E γ2 (1 cosθ γ1γ2 The search for the Higgs boson through its two photon decay channel depends on identifying efficiently the two photons, measuring accurately their energies and their relative opening angle. In two photon events an important contribution to the invariant mass resolution comes from the resolution of the opening angle between the two photons. ECAL has no longitudinal segmentation and the photon direction is obtained from the shower position and the identification of the interaction vertex (IP). The large length of the interaction region ( 6 cm) would lead to a large uncertainty on the photon direction (see Fig. 15). But Higgs are produced in association with tracks from Figure 15. The photon direction is obtained from the position of the shower and of the interaction vertex. The large spread in the beam spot ( 6 cm) transform in a large uncertainty on the photon direction. The diphoton vertex must be located to better than 1 cm to make a negligible contribution to the mass resolution as compared to the ECAL energy resolution. underlying events, initial state gluon radiation etc. The efficiency of correct assignment of the IP vertex, within 1 cm of the true vertex, has been estimated with simulation and data samples to be 83% for H γγ events and close to 100% for events where the two photons have a combined transverse energy >100 GeV. The combined shape of the expected SM Higgs invariant mass distribution for the γγ decay channel, estimated using the photon energy resolution is shown in Fig. 16 and Fig. 17 with an invariant mass resolution of 1.76 GeV for data taken at 7 TeV and 1.87 GeV for data taken at 8 TeV, for simulated M Higgs =120 GeV and 125 GeV respectively. Fig. 18 is an event display of a proton-proton collision producing two high energy photons, observed as large and isolated energy deposits in ECAL barrel. The invariant mass is around 125 GeV and the event is a candidate H γγ decay. 9

16th International Conference on Calorimetry in High Energy Physics (CALOR 2014) IOP Publishing Figure 16. Expected preliminary SM Higgs invariant mass width, for the γγ channel, from simulation and 7 TeV data. Figure 18. CMS event display of a candidate H γγ decay. Figure 17. Expected preliminary SM Higgs invariant mass width, for the γγ channel, from simulation and 8 TeV data. Figure 19. CMS event display of a candidate H ZZ ( ) e+ e e+ e decay. Figure 20. Excess of events in the diphoton channel at about 125GeV/c2. Figure 21. Excess of events seen in all 4 leptons channels at 125 GeV/c2. An excess of events has been seen at a Mγγ = 125GeV/c2. Fig. 20 shows the diphoton mass spectrum (Moriond 2013). The signal significance is just over 3σ but better results available soon. This suggests the presence of a new boson with integer spin, but different from unity. 10

5.2. H ZZ ( ) 4 leptons The search for the Higgs boson through its decay to two Z bosons subsequently decaying into 4 leptons (4 muons, 2 muons and 2 electrons, 4 electrons) has a low and well defined background. The 4 electron final state is particularly challenging because the softest electron often has p T <15 GeV. This is a difficult kinematic region due to the magnetic field and Bremsstrahlung. The tracker improves the ECAL electron energy measurement at very low p T. Fig. 19 is an event display of a p-p collision producing four high energy electrons, seen as large and isolated energy deposit in ECAL barrel. The invariant mass is around 125 GeV and the event is a candidate H ZZ ( ) 4 leptons decay. An excess of events has been seen in all 4 lepton channels at about 125GeV/c 2. Fig. 21 shows the four lepton mass spectrum. The signal significance is over 6σ. 6. Future perspectives So far CMS has collected a total of about 30 fb 1 at 7 Tev in 2011 and at 8 TeV in 2012. Although until now the peak Lumi has been below foreseen maximum ( 7 10 33 cm 2 s 1 ), the number of collisions per crossing has been higher due to LHC running at 20MHz. The experiments have been performing well and we have already experienced without problems 80 reconstructed vertices in a special run in 2012. LHC Run II, that starts in 2015, will be at higher energy ( 13 TeV) and at an instantaneous luminosity up to 2 10 34 cm 2 s 1, but, from past experience in Run I, we expect that the ECAL will perform well under these conditions. We expect to collect 300 fb 1 by the end of nominal LHC operation in 2023. The High Luminosity LHC (HL-LHC or Phase 2, 2025-2035) will provide unprecedented instantaneous ( 5 10 34 cm 2 s 1 ) and integrated luminosity ( 3000 fb 1 ). The expected numbers of events per bunch crossing will be 140 and radiation levels will be 6 times higher than for the nominal LHC design with a strong η dependence in the endcaps. The lead tungstate crystals forming the EB will still perform well, even after the expected 3000fb 1 at the end of HL-LHC. Our main concern is the crystal transparency degradation with the integrated hadron fluence in the endcaps as indicated in Fig. 23. The simulation of the fractional response in EE has been tuned on data from highly irradiated crystals. In the fiducial region used for electron/photon physics (η <2.5), at about 500 fb 1, the response drop to 10% of the original signal. The reduction of light output causes a progressive deterioration of energy resolution, shown in Fig. 24, and trigger efficiency, with a strong η dependence. We therefore plan to replace the ECAL endcaps before the start of HL-LHC. Figure 22. Simulation of fractional response from EE as a function of η, for different integrated luminosities. Figure 23. Deterioration of the energy resolution in EE as a function of η, for different integrated luminosities. The APDs have recently been exposed to the levels of radiation expected at the end of HL- LHC. Although they will continue to be operational, there will be some increase in noise due 11

to radiation-induced dark current that will require mitigation. Triggering on electromagnetic objects with 140 pileup events necessitates a change of the front-end electronics. New developments in high-speed optical links will allow single-crystal readout at 40 MHz to upgraded Off-detector processors, allowing maximum flexibility and enhanced triggering possibilities. The VFE system will also be upgraded, to provide improved rejection of anomalous signals in the APDs as well as to mitigate the increase in APD noise. We are also considering lowering the EB operating temperature from 18 degrees C to 8 0 C, in order to increase the scintillation light output and reduce the APD dark current. For the Endcap Calorimetry upgrade two conceptual designs are currently being considered: an e.m. calorimeter built with a Shashlik design and a finely segmented calorimeter (a la CALICE). Both approaches require significant R&D and extensive studies. For details see talks by Burak Bilki, Milena Quittnat and Alexey Drozdetskiy at this conference. 7. Conclusions The CMS electromagnetic calorimeter meets the high expectations of the CMS design. A new boson has been discovered in the decay channels H γγ, H ZZ ( ) 4 leptons with significant contributions from ECAL. The excellent resolution achieved in the ECAL barrel drives the sensitivity for H γγ (1% di-photon mass resolution for unconverted photons in the center of the barrel). Work is ongoing to further optimise the calibration and time-dependent response corrections, and we expect that the ECAL will continue to perform well during the upcoming LHC Run II. A better understanding of systematic effects, such as local containment fluctuations and the effects of upstream material, is leading to a closer agreement between data and simulation. The HL-LHC will impose severe requirements on the performance and radiation tolerance of the detectors. The ECAL barrel will remain performant up to 3000 fb 1, following planned modifications to the front-end electronics (FE electronics, increase granularity of L1 trigger processors, 40 MHz data stream readout, VFE with faster shaping time, cooling). The endcaps will need to be replaced prior to HL-LHC to enable the full exploitation of the HL-LHC physics potential. The ECAL barrel will perform up to 3000 fb 1 with some upgrade (FE electronics, increase granularity of L1 trigger processors, 40 MHz data stream, VFE with faster shaping time, cooling). The endcaps will work until 500 fb 1 but they need to be replaced to enable full exploitation of the HL-LHC potential. References [1] CMS Collaboration, The CMS experiment at the CERN LHC, J.Inst. 3 (2008) S08004, 2008. [2] CMS Collaboration, Letter of Intent, CERN-LHCC-92-003, 1992. [3] CMS Collaboration, CMS Technical Proposal, CERN-LHCC-94-38, 1994. [4] CMS Collaboration The e.m. calorimeter project: Technical Design Report, CERN-LHCC-97-33, 1997. [5] P.Adzic et al. Energy resolution of the barrel of the CMS e.m. calorimeter, J.Inst. 2 P04004, 2007. [6] CMS Collaboration Physics Technical Design Report, Vol.1-2, CERN-LHCC-2006-001, 2006. [7] CMS Collaboration Performance and operation of the CMS e.m. calorimeter J.Inst. 5 T03010, 2010. [8] D.Petyt et al. Anomalous APD signals in the CMS Electromagnetic Calorimeter NIM A 695 293, 2011. [9] M.Anfreville et al. Laser monitoring system for the CMS PbWO 4 e.m. calorimeter NIM A594 294-320, 2008. [10] D.Barney et al. Measurement of the bulk leakage current of silicon sensors of the CMS preshower detector after an integrated luminosity of 6.17 fb 1 at sqrt(s)=7 TeV J.Inst. 8 P02004, 2013. [11] CMS Collaboration Energy, calibration and resolution of the CMS e.m. calorimeter J.Inst. 8 P09009, 2013. [12] CMS Collaboration Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC Phys. Lett. B 716 30, 2012. [13] ATLAS Collaboration Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC Phys. Lett. B 716 1, 2012. 12