REGULAR CUBIC LANGUAGE AND REGULAR CUBIC EXPRESSION

Similar documents
CS311 Computational Structures Regular Languages and Regular Grammars. Lecture 6

Prefix-Free Regular-Expression Matching

The University of Nottingham SCHOOL OF COMPUTER SCIENCE A LEVEL 2 MODULE, SPRING SEMESTER MACHINES AND THEIR LANGUAGES ANSWERS

Regular languages refresher

CS 573 Automata Theory and Formal Languages

Technische Universität München Winter term 2009/10 I7 Prof. J. Esparza / J. Křetínský / M. Luttenberger 11. Februar Solution

Chapter 4 Regular Grammar and Regular Sets. (Solutions / Hints)

Previously on GLT. Basic technologies. Lexical analysis. Basic technologies ASF+SDF. Concepts of programming languages

First Midterm Examination

Regular expressions, Finite Automata, transition graphs are all the same!!

MCA-205: Mathematics II (Discrete Mathematical Structures)

Nondeterministic Automata vs Deterministic Automata

The Schur-Cohn Algorithm

Interval Valued Neutrosophic Soft Topological Spaces

NON-DETERMINISTIC FSA

Formal Languages and Automata

Chapter Five: Nondeterministic Finite Automata. Formal Language, chapter 5, slide 1

Finite State Automata and Determinisation

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC

= state, a = reading and q j

Let's start with an example:

Fuzzy Rings and Anti Fuzzy Rings With Operators

5. (±±) Λ = fw j w is string of even lengthg [ 00 = f11,00g 7. (11 [ 00)± Λ = fw j w egins with either 11 or 00g 8. (0 [ ffl)1 Λ = 01 Λ [ 1 Λ 9.

Myhill-Nerode Theorem

Harvard University Computer Science 121 Midterm October 23, 2012

Nondeterministic Finite Automata

First Midterm Examination

The Number of Rows which Equal Certain Row

Theory of Computation Regular Languages. (NTU EE) Regular Languages Fall / 38

On Implicative and Strong Implicative Filters of Lattice Wajsberg Algebras

Abhilasha Classes Class- XII Date: SOLUTION (Chap - 9,10,12) MM 50 Mob no

AUTOMATA AND LANGUAGES. Definition 1.5: Finite Automaton

Finite-State Automata: Recap

Formal languages, automata, and theory of computation

Nondeterminism and Nodeterministic Automata

Closure Properties of Regular Languages

Homework 3 Solutions

Minimal DFA. minimal DFA for L starting from any other

Complement of an Extended Fuzzy Set

CSCI 340: Computational Models. Kleene s Theorem. Department of Computer Science

Assignment 1 Automata, Languages, and Computability. 1 Finite State Automata and Regular Languages

CHAPTER 1 Regular Languages. Contents

Chapter 2 Finite Automata

Compression of Palindromes and Regularity.

Theory of Computation Regular Languages

Grammar. Languages. Content 5/10/16. Automata and Languages. Regular Languages. Regular Languages

Intermediate Math Circles Wednesday, November 14, 2018 Finite Automata II. Nickolas Rollick a b b. a b 4

CS241 Week 6 Tutorial Solutions

Module 3: Element Properties Lecture 5: Solid Elements

Fundamentals of Computer Science

CS 373, Spring Solutions to Mock midterm 1 (Based on first midterm in CS 273, Fall 2008.)

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

VECTORS VECTORS VECTORS VECTORS. 2. Vector Representation. 1. Definition. 3. Types of Vectors. 5. Vector Operations I. 4. Equal and Opposite Vectors

Partially Observable Systems. 1 Partially Observable Markov Decision Process (POMDP) Formalism

CMPSCI 250: Introduction to Computation. Lecture #31: What DFA s Can and Can t Do David Mix Barrington 9 April 2014

CS 330 Formal Methods and Models

NFAs continued, Closure Properties of Regular Languages

Homework 4. 0 ε 0. (00) ε 0 ε 0 (00) (11) CS 341: Foundations of Computer Science II Prof. Marvin Nakayama

1. For each of the following theorems, give a two or three sentence sketch of how the proof goes or why it is not true.

Talen en Automaten Test 1, Mon 7 th Dec, h45 17h30

Instructions. An 8.5 x 11 Cheat Sheet may also be used as an aid for this test. MUST be original handwriting.

Lecture 08: Feb. 08, 2019

New Algorithms: Linear, Nonlinear, and Integer Programming

In-depth introduction to main models, concepts of theory of computation:

CMSC 330: Organization of Programming Languages

The University of Nottingham SCHOOL OF COMPUTER SCIENCE A LEVEL 2 MODULE, SPRING SEMESTER LANGUAGES AND COMPUTATION ANSWERS

Converting Regular Expressions to Discrete Finite Automata: A Tutorial

CS 310 (sec 20) - Winter Final Exam (solutions) SOLUTIONS

NFAs continued, Closure Properties of Regular Languages

A Study on the Properties of Rational Triangles

Convert the NFA into DFA

Controller Design for Networked Control Systems in Multiple-packet Transmission with Random Delays

CS 275 Automata and Formal Language Theory

1.4 Nonregular Languages

Matrix. Definition 1... a1 ... (i) where a. are real numbers. for i 1, 2,, m and j = 1, 2,, n (iii) A is called a square matrix if m n.

NFA DFA Example 3 CMSC 330: Organization of Programming Languages. Equivalence of DFAs and NFAs. Equivalence of DFAs and NFAs (cont.

Table of contents: Lecture N Summary... 3 What does automata mean?... 3 Introduction to languages... 3 Alphabets... 3 Strings...

Name Ima Sample ASU ID

11.1 Finite Automata. CS125 Lecture 11 Fall Motivation: TMs without a tape: maybe we can at least fully understand such a simple model?

PYTHAGORAS THEOREM WHAT S IN CHAPTER 1? IN THIS CHAPTER YOU WILL:

State Complexity of Union and Intersection of Binary Suffix-Free Languages

Designing finite automata II

Non Deterministic Automata. Linz: Nondeterministic Finite Accepters, page 51

CSE 401 Compilers. Today s Agenda

Non-deterministic Finite Automata

Types of Finite Automata. CMSC 330: Organization of Programming Languages. Comparing DFAs and NFAs. NFA for (a b)*abb.

Types of Finite Automata. CMSC 330: Organization of Programming Languages. Comparing DFAs and NFAs. Comparing DFAs and NFAs (cont.) Finite Automata 2

CS 330 Formal Methods and Models

Running an NFA & the subset algorithm (NFA->DFA) CS 350 Fall 2018 gilray.org/classes/fall2018/cs350/

Scanner. Specifying patterns. Specifying patterns. Operations on languages. A scanner must recognize the units of syntax Some parts are easy:

Al-Zangana Iraqi Journal of Science, 2016, Vol. 57, No.2A, pp:

CS103B Handout 18 Winter 2007 February 28, 2007 Finite Automata

Project 6: Minigoals Towards Simplifying and Rewriting Expressions

CSE : Exam 3-ANSWERS, Spring 2011 Time: 50 minutes

CS 330 Formal Methods and Models Dana Richards, George Mason University, Spring 2016 Quiz Solutions

Data Structures and Algorithm. Xiaoqing Zheng

KULLBACK-LEIBLER DISTANCE BETWEEN COMPLEX GENERALIZED GAUSSIAN DISTRIBUTIONS

Thoery of Automata CS402

CS375: Logic and Theory of Computing

Regular Languages and Applications

Transcription:

Advnes n Fuzzy ets nd ystems 05 Pushp Pulshng House Allhd nd Pulshed Onlne: Novemer 05 http://dx.do.org/0.7654/afde05_097_3 Volume 0 Numer 05 Pges 97-3 N: 0973-4X REGUAR CUBC ANGUAGE AND REGUAR CUBC EXPREON Thr Mhmood leem Adullh nd Qsr Khn Deprtment of Mthemts nterntonl slm Unversty slmd Pkstn e-ml: thrkht@yhoo.om qsrkhn4@gml.om Deprtment of Mthemts Qud--Azm Unversty slmd Pkstn e-ml: sleemdullh8@yhoo.om Astrt n ths pper usng u set we ntrodue u lnguge regulr u grmmr regulr u lnguge fnte stte utomt wth u trnstons fnte stte utomt wth u fnl sttes Myhll- Nerode theorem for u lnguges nd defne n lgorthm for mnmzton of fnte stte utomt wth u fnl stte nd progrmme n Mtl.. ntroduton n 965 Zdeh ntrodued the onept of fuzzy set [7] whh s the generlzton of mthemtl log. Fuzzy set s new mthemtl tool to Reeved: Jnury 3 05; Revsed: Mrh 0 05; Aepted: Aprl 6 05 00 Mthemts ujet Clssfton: 68Q70 68Q45 03D05 65Y04 08A70. Keywords nd phrses: u lnguge regulr u grmmr fnte stte utomt regulr u expresson Myhll-Nerode theorem for u lnguge.

98 Thr Mhmood leem Adullh nd Qsr Khn desre the unertnty. n [5 6] Zdeh mde n extenson of the onept of fuzzy sets y n ntervl-vlued fuzzy set.e. fuzzy set wth n ntervlvlued memershp funton. n trdtonl fuzzy log to represent e.g. the expert s degree of ertnty n dfferent sttements numers from the ntervl [ 0 ] re used. After ths Atnssov ntrodued the ntutonst fuzzy set n 986 [ ] n whh he gve the onept of memershp funton nd nonmemershp funton to represent the unertnty. And then Gu nd Buehrer ntrodued the onept of vgue set n 993 nd Bustne nd Burllo proved tht vgue set s n ntutonst fuzzy set [9 3]. t s often dffult for n expert to extly quntfy hs or her ertnty; therefore nsted of rel numer t s more dequte to represent ths degree of ertnty y n ntervl or even y fuzzy set. n the frst se we get n ntervl-vlued fuzzy set. n the seond se we get seond order fuzzy set. ntervl-vlued fuzzy sets hve een tvely used n rel-lfe pplton. n 0 Jun et l. [0] ntrodued the onept of u set. Cu set s n ordered pr of ntervl-vlued fuzzy set nd fuzzy set. These ll re mthemtl modelng to solve the prolems n our dly lfe. These tools hve ts own nherent prolems to solve these types of unertnty whle the u set s more nformtve tool to solve ths unertnty. Fuzzy grmmr nd fuzzy lnguges were ntrodued y ee nd Zdeh n 969 []. ne Wee [4] n 967 ntrodued the onept of fuzzy utomt followng ee nd Zdeh [] fuzzy utomt theory hs een developed y mny reserhers. After the ntroduton of fuzzy lnguge nd fuzzy utomt there re mny generlztons of fuzzy lnguge nd fuzzy utomt. ntervl-vlued fuzzy vgue nd ntutonst fuzzy regulr lnguges were ntrodued y Chouey nd Rv [4 6 7]. Mteesu et l. ntrodued fnte fuzzy utomt wth fuzzy trnston nd fnte fuzzy utomt wth fuzzy fnl stte nd fuzzy regulr expresson n 995 [3]. n 009 Chouey nd Rv ntrodued ntutonst fuzzy utomt nd ntutonst fuzzy regulr expressons [5]. n 03 Chouey nd Rv ntrodued the onept of mnmzng fnte stte utomt wth vgue fnl stte nd ntutonst fuzzy fnl sttes [8].

Regulr Cu nguge nd Regulr Cu Expresson 99 The rest of the pper s dvded n the followng setons. Prelmnres re dsussed n eton. n eton 3 u regulr lnguge u grmmr some lger operton on u regulr lnguge nd relted results re dsussed. n eton 4 we dsussed fnte utomt wth u trnston fnte utomt wth u fnl stte u regulr expresson nd relted results. n eton 5 we gve Myhll-Nerode theorem for u lnguges nd defned n lgorthm for mnmzton of fnte stte utomt wth u fnl stte nd progrmme n Mtl. Also the lst seton onssts of onluson nd referenes.. Prelmnres Defnton. [3]. et U e n lphet set nd ω ( ) : U [ 0 ] s funton. Then the set of the form = { ω ( ) U } s lled fuzzy lnguge over U nd ω ( ) the memershp funton of. Defnton. [3]. et e fuzzy lnguge over U the fnte lphet set wth ω ( ) : U [ 0 ] s ts memershp funton. Then s lled fuzzy regulr lnguge f; () the set { [ 0 ] M ( ) } s fnte nd () for eh [ 0 ] the strng M ( ) s regulr. Defnton.3 [0]. et X e non-empty set. Then the set of the form A = { x A( x) λ( x) } s u set n whh A ( x) s ntervl-vlued fuzzy set nd λ ( x) s fuzzy set n X. For smplty we wrte A = A λ nsted of A = { x A( x) λ( x) x X}. Defnton.4 [0]. For ny A = { A ( x) λ ( x) x X} we defne P-unon P-nterseton R-unon nd R-nterseton s follows:

00 Thr Mhmood leem Adullh nd Qsr Khn A B { x ( A )( x) ( λ ) ( x) x X} (P-unon) p = Λ Λ A B { x ( A )( x) ( λ ) ( x) x X} (p-nterseton) p = Λ Λ A B { x ( A )( x) ( λ ) ( x) x X} (R-unon) R = Λ Λ A B { x ( A )( x) ( λ ) ( x) x X} (R-nterseton). R = Λ Λ 3. Cu Regulr nguge Defnton 3.. et U e non-empty set of lphets. A u lnguge over U s n ojet of the form n whh A ( x) : U [] = {( x A ( x) λ ( x) x U )} nd λ ( x) : U represent respetvely ntervl-vlued fuzzy nd fuzzy memershp funtons of for ll x U. Here [] represents the set of ll losed su-ntervl n [ 0 ] nd represents the losed ntervl [ 0 ]. A ( x) ssgns ntervl-vlue nd λ ( x) ssgns rel numers n the losed ntervl [ 0 ] to eh strng of the lnguge. et e u lnguge over the lphet U nd A ( x) : U [] nd λ ( x) : U re respetvely ntervl-vlued fuzzy nd fuzzy memershp funtons of. Then for eh [ ] [ ] denoted y ([ ] ) the set ([ ] ) = { x x U nd A ( x) = [ ]} nd for eh the set { x x U nd λ ( x) = } s denoted y ( ). Note tht s n nverse funton of memershp funtons. Exmple 3.. et U = { x y} nd A ( x) : U []. Then nd λ ( x ): U

Regulr Cu nguge nd Regulr Cu Expresson 0 = {( x [ 0.4 0.5 ] 0.4)( x y [ 0.3 0.6 ] 0.5) x x y U } represent u lnguge. Cu lnguge s generted y u grmmr. The defnton of u grmmr s gven elow. Defnton 3.3. A four-tuple G = ( UT U N P ) s lled u grmmr where () The elements of U T represent termnl symols. U N () The elements of =. U N represent non-termnl symols nd U T () The elements of P re lled produtons. s the strtng symol nd U N. The elements of P re expressons of the form α ( β γ) = ([ ϑ ρ] δ) for [ ϑ ρ] [ ] nd δ where β nd γ re strngs n ( U ) nd T U N [ ϑ ρ] δ represents the grde of memershps of γ for gven β. For smplty the ove expresson n lso e wrtten s α ( β γ) = ([ ϑ ρ] δ) to [ ϑ ρ] \ δ β γ or β γ. The produtons of P re of the form C [ ϑ ρ] \ δ D or C [ ϑ ρ] \ δ C D U N U T s llowed n u regulr grmmr nd lso the produton Λ s llowed wth memershp vlues nd 0 respetvely. Cu grmmr s generlzton of fuzzy grmmr. For termnl strng x s sd to e n ( G) f nd only f x s dervle from strtng symol.

0 Thr Mhmood leem Adullh nd Qsr Khn Defnton 3.4. Two u lnguges nd re sd to e equl nd wrtten s A ( x) = A ( x) f nd only f λ ( x) = λ( x) for ll x U. Defnton 3.5. A u lnguge s suset of u lnguge denoted y f nd only f A ( x) A ( x) nd λ ( x) λ( x) for ll x U. n the ove defnton A ( x) A ( x) nd λ ( x) λ ( x) represent respetvely the ntervl-vlued fuzzy nd fuzzy memershp funtons of nd. These lnguges re onstruted over n lphet U. 3.6. ome lger opertons over u lnguges et nd e two u lnguges over n lphet U. et A A nd λ λ e the memershps funtons of nd respetvely. Then the followng s opertons suh s unon omplement nterseton ontenton str on the lnguges nd wll hold. () Unon. The unon of the lnguges nd s denoted nd defned s = = {( x { A ( x) A ( x) } { λ ( x) λ ( x) } x U )}. () nterseton. The nterseton of the lnguges nd s denoted nd defned s = = {( x { A ( x) A ( x) } { λ ( x) λ ( x) } x U )}. () Complement. The omplement of the lnguges s denoted nd defned s = {( A ( x) λ ( x)) x U } x U = {( x [ A ( x) A ( x)] λ ( x)) x U }.

Regulr Cu nguge nd Regulr Cu Expresson 03 (d) Contenton. The ontenton of the lnguges nd s denoted nd defned s = = {( x { ( A ( ) A ( ) )} { ( λ ( ) λ ( ) )} x = U nd x U )}. s (e) tr. The str operton of the lnguges s denoted nd defned = ( x { ( A ( ) A ( )... A ( ))} { ( λ ( ) λ ( )... λ ( ))}) x = (f)... n... n U n n 0} x U. + denotes the lnguge for the operton + on nd defned s = ( x { ( A ( ) A ( )... A ( n ))} { ( λ( ) λ( )... λ( n ))}) x =... n... n U n } x U. Defnton 3.7. et e u lnguge over the lphet U nd A ( x) : U [] nd λ ( x) : U re respetvely ntervl-vlued fuzzy nd fuzzy memershp funtons of. Then we ll u regulr lnguge f () the sets {[ ] [ ] [ ] nd ([ ] ) φ} nd { nd ( ) φ} re fnte nd () for eh [ ] [ ] ([ ] ) nd ( ) s regulr. Exmple 3.8. et e u lnguge over the lphet U = { x y} nd the memershp funtons A nd λ re gven elow: n

04 Thr Mhmood leem Adullh nd Qsr Khn f x 0 f x A ( x) = [ 0.5 0.6] f x yx nd λ ( x) = 0.5 f x yx 0 otherwse otherwse. Then = {( x 0) ( x yx [ 0.4 0.6 ] 0.5) x x yx U } s u regulr lnguge s ts strngs re regulr wth memershp funtons re fnte vlues. Theorem 3.9. Cu regulr lnguges re losed under nterseton unon omplement ontenton nd str opertons. Proof. et nd e two u lnguges over n lphet U. et A : U [] A : U [] nd λ : U λ : U e the ntervl-vlued fuzzy nd fuzzy memershp funtons of nd respetvely. et e the resultng u lnguge fter the opertons (unon nterseton str) wth A U : [] nd λ : U s ts ntervlvlued fuzzy nd fuzzy memershp funtons respetvely. Then lerly [] [] [] nd (n the se of unon nterseton ontenton nd str opertons) or [ ] = {[ ] [ ] [ ] } nd = { } (n se of omplement) re fnte for whh the orrespondng strngs re regulr. et [ ] nd e fnte vlues n [ ] nd respetvely. Then ([ ] ) nd ( ) re defned s follows: Unon [ ] [ ] [ ] [ ] [ ] [ ] f > [ ] [ ] [ ] [ ] [ ] [ ] [ ] f > [ ] ([ ] ) = ( [ ] [ ]) [ ] [ ] > [ ] [ ] [ ] [ ] [ ] [ ] f > [ ]

Regulr Cu nguge nd Regulr Cu Expresson 05 ( ) ( ) ( ) ( ) ( ) (( ( ) ( )) ( ) ( ) ( ) = < < < <. f f f nterseton [ ] ( ) [ ] [ ] [ ] [ ] [ ] [] [] [ ] [ ] [ ] [ ] [ ] [] [] (( [ ] [ ]) [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] = < < < < f f f nd ( ) ( ) ( ) ( ) ( ) (( ( ) ( )) ( ) ( ) ( ) = > > > >. f f f Complementton [] [ ][ ] [ ] { } = nd { } = [ ] ( ) [ ] ( ) = nd ( ) ( ). = Contenton [ ] ( ) [ ] [ ] ( ) [ ] [ ] [ ] [ ] [ ] [ ] ( ) [ ] ( ) = = [ ] [ ] ( ) [ ] [ ] [ ] [ ] [ ] [ ] ( ) [ ] ( ) 4 4 3 3 4 4 3 3 4 4 3 3 >

06 Thr Mhmood leem Adullh nd Qsr Khn nd ([ ] ) = ( ) ( ) ( ) ( ) tr Assumng tht 3 4. ( ) = ( ) < [] = {[ ][ ]... [ k ]} k 3 4 3 4 [ ] [ ] > [ ] > > [ k ] [ 0 0] k {... } 0 < < < = k k ([ ] ) = ( ([ ] ) f [ ] = [ ] ([ ] ) = { Λ} + ([ ]) = ( ([ ]) { Λ} f [ ] [ ] ([ m m ]) = ([ ]) ([ ] ) { Λ} n m n n l< m l + f m k nd ( ) = ( ( ) f = 0 ( 0) = { Λ} nd + ( ) = ( ) { Λ} f 0 + ( m ) = ( ) ( ) { Λ} n m n l > m l f m k. Therefore Kleene losure s stsfed.

4.. Defnton Regulr Cu nguge nd Regulr Cu Expresson 07 4. Fnte Automt wth Cu Trnstons A nondetermnst fnte utomt wth u trnstons s 5-tuple M = ( M U A s F ) where the elements of M re fnte set of sttes. The elements of U re fnte set of nput symols A = A λ s u set n M U M A : M U M nd λ : M U M re ntervl-vlued fuzzy nd fuzzy memershp funtons of M respetvely s denotes the ntl stte nd F M s the set of fnl stte. tht s [ ] For U nd r s M defne the exted memershp funtons of stte trnstons s 0 f = Λ nd r s f = Λ nd r = s A ( r s) = u M { A ( r u) A( u s)} = for ll U U otherwse nd 0 λ ( r s) = u M { λ ( r u) λ( u r)} = for ll U U f = Λ nd f = Λ nd otherwse. r r = s s Then we sy tht d[ ] M ( ) nd d M ( ) where d U s reognzed y M wth degrees of memershp [ ] M ( ) = { A ( s u) u F} nd d M ( ) = { λ ( s u) u F}. We denote the lnguge epted y M s ( M) nd s gven to e the set ( M) = {( d[ ] ( ) d ( )) X }. M M

08 Thr Mhmood leem Adullh nd Qsr Khn 4.. Exmple et M = ( M U A s F ) e nondetermnst fnte utomt wth u trnston s shown n the fgure elow where M = { s r u} U = { x y} ntl stte = s fnl stte = {u}. Also u trnstons re defned s follows: A ( s x r) = [ 0. 0.4] λ( s x r) = 0.3 A( s x u) = [ 0.3 0.5 ] λ( s x u) = 0.4 A ( r y r) = [ 0.4 0.6] λ( r y r) = 0.5 A( r x u) = [ 0.5 0.7] λ( r x u) = 0.6 A ( u y u) = [ 0.6 0.8 ] λ( u y u) = 0.7. The u regulr lnguge epted y the non-determnst fnte utomt wth u trnstons s ( M) = {( [ 0. 0.4 ] 0.7) xy xy } {( [ 0.3 0.5 ] 0.7) xy }. The trnston dgrm of the ove non-determnst fnte utomt wth u trnston s gven y Defnton 4.3. A determnst fnte utomt wth u trnstons s non-determnst fnte utomt wth u trnston wth the ondton tht for eh r u M nd for eh x U f A( r x u) > 0 λ( r x u) < nd A( r x v) > 0 λ( r x v) < then u = v. Theorem 4.4. e u regulr lnguge f nd only f t s reognzed y non-determnst fnte utomton wth u trnston wth the reognton of Λ the empty word.

Regulr Cu nguge nd Regulr Cu Expresson 09 Proof. et e u regulr lnguge over n lphet U. et A : U [] nd λ : U e ntervl-vlued fuzzy nd fuzzy memershp funtons of respetvely. et [] = {... k } nd = {... k } e the fnte sets of ntervl-vlued fuzzy nd fuzzy memershp funtons of respetvely. As s u regulr lnguge so for eh [ ] we hve ( ) nd ( ) re regulr where k. ( ) ( ) = nd ( ) ( ) = for j sne re funtons. nd Also note tht A nd et M = ( M U A s F ) e determnst fnte utomton wth u trnston (or non-determnst fnte utomton wth u trnston) suh tht ( ) = ( M ) nd ( ) = ( M ) where k. Now we onstrut M ι = ( M U A s F ) where λ A ( r x u) = 0 f ( r x u) A otherwse nd ( ) λ λ f r x u ( r x u) = otherwse represent the ntervl-vlued fuzzy nd fuzzy memershp funtons of respetvely. We suppose tht ( M U A s F ) suh tht M M j = for j. et us defne M =

0 Thr Mhmood leem Adullh nd Qsr Khn M = { s} s M M M M M M n n F = F F Fn A( r x u) Aι ( r x u) A ( s x u) 0 = ι f r u M k f r = s u M k otherwse λι( r x u) f r u M k λ( r x u) = λι( s x u) f r = s u M k otherwse. Hene M reognzes wth the exepton of Λ the empty strng. Conversely let M = ( M U A s F ) e non-determnst fnte utomt wth u trnston. et us defne u lnguge wth A ( x) = d[ ] ( x) nd λ ( x) = d M ( x) s ts ntervl-vlued fuzzy nd fuzzy memershp funtons respetvely ( A ( Λ) = 0 nd λ ( Λ) = ). M Now we hve to prove tht s u regulr lnguge. et [ ]= {[ ] A( r x u) = [ ] r u M x U } nd = { λ( r x u) = r u M x U }. Then [] nd re fnte. Now suppose tht [ ] = {... k } wth > > > k k nd = {... k } wth < < < k k. et us defne M = ( M U A s F ) e non-determnst fnte utomton where A = {( r x u) A( r x u) } nd λ = {( r x u) λ( r x u) }. Now defne the lnguges of s for k for the nresng sequene

Regulr Cu nguge nd Regulr Cu Expresson = ( M ) = ( M ) ( ) M = ( M ) ( ( M ) ( )) 3 3 M ( ) = M ( M ). j= j Therefore ( ) = nd s u regulr lnguge for every k. Theorem 4.5. et e u regulr lnguge. Then s reognzed y determnst fnte utomton wth u trnston f nd only f t + + stsfes the followng xoms for eh U U = nd A ( ) > 0 λ( ) < mply tht A( ) A( ) nd λ ( ) λ( ). Proof. et M = ( M U A s F ) e determnst fnte utomton wth u trnstons whh reognzed the u regulr lnguge. We prove tht stsfes the ove ondton. + et U + U suh tht =. f d[ ] ( ) = 0 M nd ( ) = then A( ) A( ) nd λ ( ) λ( ) re true otherwse lso A( ) = d ( ) = { A ( r) A( r u) r u F} M A ( r) = d[ ] ( ) = A( ) M λ( ) = d ( ) = { λ ( r) λ( r u) r u F} M λ ( r) = d ( ) = λ( ). M d M

Thr Mhmood leem Adullh nd Qsr Khn λ Conversely let e u regulr lnguge nd A : U [] nd : U e ntervl-vlued fuzzy nd fuzzy memershp funtons of respetvely stsfyng the gven ondton. uppose tht [ ] = {... k } nd = {... k }. Construt determnst fnte utomton M = ( M U A s F ) suh tht ( ) = ( M ) nd ( ) = ( M ) where k. ( M ) ( M ) = ( ) ( ) = nd ( M ) ( M ) ( ) ( ) = for every j. j j = j Now we defne determnst fnte utomton M = ( M U A s F ) where M = M M M s = { s s... s } A : M U M s defned y k k A( ( p p... p ) x) ( A ( p x) A ( p x)... A ( p x)) k = k k j nd λ : M U M s defned y λ (( p p... p ) x) = ( λ ( p x) λ ( p x)... ( p )) k λ k k x nd F = F F F where k Fk = {( p p... p ) ( p p... p ) k k M p F nd p j Fj for j} j = n. Note tht F F = for j nd j ( ) = { x x U nd A ( s x) F } nd ( ) = { x x U nd λ ( s x) F }.

Regulr Cu nguge nd Regulr Cu Expresson 3 Bsed on the ove determnst fnte utomton M we n defne determnst fnte utomt wth u trnston M s M = ( M U A s F ) suh tht A ( r x u) = 0 f A( r x) = u F f A ( r x) = u F otherwse nd λ( r x u) = 0 f λ( r x) = u F f λ ( r x) = u F otherwse. We re now only to prove tht [ ] ( x) = A ( x) nd ( x) = λ ( x) + for ll x U. d M et us show tht M hs the followng property. d M For ll + x U wth x = for eh U U d [ ] ( x) = > 0 ff A ( s r) nd A( r u) = M for some u F k nd d ( x) = < ff λ ( s r) nd λ( r u) = M for some u F k. (E) Then f prt n e proved esly. For the only f prt t holds trvlly when = Λ. For Λ we re ssumng the ontrry tht s A ( s r) = nd A ( r u) = j > for k j. Also λ ( s r) = nd λ ( r u) = j < for k j. Then there exsts deomposton of = def for ll suh tht d f U nd e U

4 Thr Mhmood leem Adullh nd Qsr Khn A ( d v) A( v e z) = nd A( z f r) lso λ ( d v) λ( v e z) = nd λ ( z f r). By the defnton of M we know tht z nd u. F F j Thus we hve A ( de) = nd A ( x) = j lso λ ( de ) = nd λ ( x ) = j. ne we ssume tht gven ondton. Hene (E) holds. > nd < ths ontrdton to the j j Agn (E) mples ( ) tht s A ( x) = nd ( ) tht s λ ( x ) =. Hene the theorem s proved. Fnte utomt wth u (fnl) sttes Defnton 4.6. A 7-tuple M = ( M U A λ q F [ ] F ) s lled fnte utomt wth u fnl sttes where the elements of U re fnte set of sttes the elements of re fnte set of nput letters nd M A λ : M U re the trnston funtons q s the u ntl stte nd F [ ] : M [] M M M F M : M re the ntervl-vlued fuzzy nd fuzzy memershp funtons of the u (fnl) sttes set respetvely. Defne d [ ] ( ) = { F [ ] ( q r) A } M M nd d ( ) = { F ( q r) λ } M M M where A λ : M U respetvely denotes the reflexve nd trnstve losure A of λ. The strng s epted y M wth the ntervlvlued fuzzy nd fuzzy degrees of memershp d [ ] M ( ) nd d M ( ).

Regulr Cu nguge nd Regulr Cu Expresson 5 The u regulr lnguge epted y M s denoted y ( M ) defned s ( ) {( [ ] ( ) M = d d ( )) U }. M M nd Defnton 4.7. A determnst fnte utomton wth u fnl sttes s 7-tuple M = ( M U A λ q F [ ] F ) M M s non-determnst utomton wth u fnl stte wth A λ : M U M s funtons. For eh U d [ ] ( ) = F [ ] ( r ) where r = A ( q ) M M nd ( ) = F ( ) where r = λ ( q 0 ). d r M M Defne d [ ] M ( ) = 0 nd d M ( ) = f A ( q0 ) not defned. nd λ ( q ) re 0 Theorem 4.8. et e u lnguge. Then s u regulr lnguge f nd only f t s reognzed y determnst fnte utomton wth u fnl stte. A Proof. et e u regulr lnguge over n lphet U wth : U [] nd λ : U s ts ntervl-vlued fuzzy nd fuzzy memershp funtons where [ ] represents the set of ll losed su-ntervls n the losed ntervl [ 0 ] nd represents the losed ntervl [ 0 ]. ne s u regulr lnguge so for every [ ] nd the sets ( ) nd ( ) re regulr. uppose tht = {... k } nd = {... k } where k. Now we defne determnst fnte utomton wth u fnl stte M = ( M U A λ s F [ ] M F ) ι M suh ι tht ( M ) = ( ) nd ( M ) ( ). =

6 Thr Mhmood leem Adullh nd Qsr Khn Now we onstrut determnst fnte utomton wth u fnl sttes M = ( M U A λ s F [ ] F ) M M to e the ross produt of M k wth F [ ] ( p ( ) p ( )... p ( ) ) M k () ( ) j p F [ ] for some k nd p F = M M 0 j j otherwse nd F ( p () p ( )... p ( ) ) M k () ( ) j p F for some k nd p F j = M M j otherwse. k Now f ( p () p ( )... p ( ) ) s rehle from ( s s... s k ) for every k n M then t s not possle to get ( p ) ( F [ ] F ) nd M M ( j p ) ( F [ ] F ) for j euse ( M ) ( ) = for j k. Mj M j M j Hene M reognzes. Conversely let M = ( M U A λ s F [ ] F ) e determnst fnte utomt wth u fnl stte. Defne nd M M [] = { F [ ] ( p) = for some p M} M = { F ( p) = for some p M}. M Thus [ ] nd re fnte sets. For eh [ ] nd defne M = ( M U A λ s F F )

Regulr Cu nguge nd Regulr Cu Expresson 7 where F = { p F [ ] ( p) } M nd F = { p F ( p ) = }. = M et = ( M) tht s A = d [ nd λ = d. ]M M Hene for eh [] the set ( ) nd the set ( ) re regulr. Therefore s u regulr lnguge. Theorem 4.9. A u regulr lnguge s reognzed y nondetermnst fnte utomton wth u fnl stte f nd only f t s reognzed y determnst fnte utomton wth u fnl stte. Proof. et M e u lnguge. Here we hve to prove f M s non-determnst fnte utomt wth u fnl stte nd = ( M) then = ( M ) where M s determnst fnte utomt wth u fnl stte. et M = ( M U A λ s F [ ] F ) represent non-determnst M M fnte utomt wth u fnl stte. We defne determnst fnte utomton wth u fnl stte M = ( M U A λ s F [ ] M F M ) usng the method of stndrd suset onstruton nd for eh Q M ( Q M ) defne nd F [ ] ( Q) = { F [ ] ( p) = p Q} mx M M ( Q) = mn { F ( p) = p } F Q M M where nd represent respetvely the ntervl-vlued fuzzy nd fuzzy memershp vlues of the strng n the lnguge. Therefore = ( M ).

8 Thr Mhmood leem Adullh nd Qsr Khn Cu regulr expresson Eh strng n u regulr lnguge hs fnte ntervl-vlued fuzzy nd fuzzy memershp vlues. The set of fnte words ssoted wth these vlues forms regulr lnguge. Therefore u regulr lnguge my e represented y modfed u regulr expresson. et U = { x y} e n lphet. f { Λ x xx xxx...} [ 0.4 0.6 ] 0.5 { y xy yx xyx...} [ 0.3 0.5 ] 0. 4 represents u regulr lnguge then we n represent t y u regulr expresson s x [ 0.4 0.6 ] 0.5 + x yx [ 0.3 0.5 ] 0.4. The forml defnton of u regulr expresson s defned elow s. Defnton 4.0. et U e n lphet nd [ ] e fnte sets of ntervlvlued fuzzy nd fuzzy vlues n [ 0 ]. et e regulr expresson over U nd [ d] [ ] nd. Then we ll = [ d] n u regulr expresson where [ d] nd respetvely represent ntervl-vlued fuzzy nd fuzzy vlues of. et nd e two u regulr expressons over n lphet U. Then the followng hold: () elongs to u regulr expresson wth memershp vlues nd 0 () Λ elongs to u regulr expresson wth memershp vlues nd 0 (3) elongs to u regulr expresson wth ntervl-vlued fuzzy nd fuzzy memershp vlues n [ 0 ] for ll X (4) for ll nd elong to u regulr expressons ( + ) elongs to u regulr expressons ( ) elongs to u regulr expressons ( ) elongs to u regulr expressons.

Regulr Cu nguge nd Regulr Cu Expresson 9 By pplyng the ove mentoned steps (() nd ()) fnte numer of tmes we otned u regulr expresson. Defnton 4.. et e u regulr expresson over n lphet U. Then the orrespondng lnguge tht s u regulr lnguge ( ) s defned y ( ) = {( [ d e] h) ( )}. Here ( ) represents the lnguge for regulr expresson. f ( ) ( ) ( ) ( = + = = ) then ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ( = = = )) respetvely. Defnton 4.. A u regulr expresson over n lphet U s sd to e normlzed u regulr expresson f t s of the form... k k k where... k re regulr expressons over U nd... k nd... k re ntervl-vlued fuzzy nd fuzzy memershp vlues n [ 0 ]. Note tht f = nd = 0 then n smply e wrtten s. We ssumed nd hs hgher prortes thn /. o ertn prs of prenthess n e omtted. Exmple 4.3. The followng re ll vld u regulr expressons: () x y [ 0.3 0.5 ] 0.4 + x yx [ 0.4 0.6] 0. 45 () xy [ 0. 0.4 ] 0.3 + x [ 0.3 0.4 ] 0. 35 (3) ( x + y) xx( x + y) [ 0.4 0.7] 0. 6 (4) ( y + Λ)( x + xy) [ 0.35.49] 0. 47

0 Thr Mhmood leem Adullh nd Qsr Khn (5) ( x + xy) [ 0.5 0.4 ] 0. 39 (6) ( y xy [ 0.65 0.75 ] 0.6) ( x yx [ 0.55 0.64 ] 0.59) + x + y. The ove from () to (5) re normlzed nd (6) s not normlzed. The followng re not vld u regulr expressons: () x y [ 0.34 0.54 ] 0.49 [ 0.55 0.67] 0.6 + zy [ 0.3 0.33 ] 0. 3 () ( x [ 0.4 0.5 ] 0.46) [ 0.47 0.57] 0.53 + x yx [ 0.7 0.76 ] 0. Defnton 4.4. A u regulr expresson over n lphet s strtly normlzed u regulr expresson f t s normlzed: =... k k k nd for ny j nd j ( ) ( ) =. j Exmple 4.5. () xy [ 0.33 0.44 ] 0.38 + xz [ 0.45 0.55 ] 0.48 + yz [ 0.56.0.66] 0.59 () (( yy + yyx) [ 0.4 0.6 ] 0.5 + ({ x y} { yx}} [ 0.5 0.7] 0.6 () x y [ 0.5 0.35 ] 0.3 + ( x + y) x( x + y) y [ 0. 0.9 ] 0.7 (v) x x [ 0.35 0.55 ] 0.4 + ( x + y) y( x + ) x [ 0.5 0.59] 0.57. 5. Myhll-Nerode Theorem For Cu Regulr nguge Theorem 5.. The followng three sttements re equvlent to one nother: () A u regulr lnguge over n lphet U s epted y some determnst fnte utomton wth u (fnl) sttes. () s the unon of some of the equvlene lsses of rght nvrnt equvlene relton of fnte ndex.

A Regulr Cu nguge nd Regulr Cu Expresson (3) The relton U U E s defned y E ff for ll U ( ) = A ( ) nd λ ( ) = λ ( ) then of fnte ndex. E s n equvlene relton Proof. () () et e u regulr lnguge over n lphet U. uppose tht s reognzed y some determnst fnte utomton wth u fnl stte M = ( M U A λ s F [ ] M F M ). et E M e the equvlene relton E M f nd only f A ( ) = A( ) nd λ ( ) = λ( ). ne E M s rght nvrnt so for ny A ( ) = A( ) f A ( ) = A( ) nd λ ( ) = λ( ) f λ ( ) = λ( ). Then the ndex of E M s fnte sne the ndex s t most the numer of sttes n M. Furthermore s the unon of those equvlene lsses hvng strng suh tht A ( ) nd λ ( ) re respetvely n F [ ]M nd F M. Tht s the equvlene lsses orrespondng to the fnl sttes. () () We prove tht ny equvlene relton R stsfyng () s refnement of E ; tht s some equvlene lsses of E wll e superset of every equvlene lss R. Thus the ndex of E nnot e greter thn the ndex of R nd so s fnte. Assume tht R for eh X R nd thus ( ) = ( ) sne R s rght nvrnt. Hene E. We onlude tht eh equvlene lss of R s the suset of some equvlene lsses of E. () () To prove tht E s rght nvrnt ssume E nd let U we must show tht E ; tht s for ny d ( d ) = ( d ). ne E for ny e ( e) = ( e) (y the defnton of E ). uppose e = d to show E s rght nvrnt.

Thr Mhmood leem Adullh nd Qsr Khn Now we present the mnmzed determnst fnte utomt wth u fnl stte y defnng equvlene lsses of E. et M e fnte set of equvlene lsses of ontnng. E nd M Defne A ( h) = h nd λ ( h) = h. Ths defnton s onsstent s E s rght nvrnt. f we hoose nsted of from then we wll hve A ( h) = h nd λ ( ) = h. But E so ( ) = ( d ). n prtulr f d = hd ( h d ) = ( hd ) so he h nd h = h. et s = Λ F [ ] = { } nd F = { }. M M The fnte utomton M = ( M U A λ s F [ ] F ) epts therefore A ( s ) = A ( Λ ) = nd λ ( s ) = λ ( Λ ) =. Hene ( M ) = ( M). 5.. Algorthm for mnmzng determnst fnte stte utomton wth u fnl stte et M = ( M U A λ s F [ ] F ) e determnst fnte utomton M M wt u fnl sttes. uppose tht M = { s m m... mk } k 0 nd let P = {( m m j ) m m j M nd 0 < j k}. egn tep : for eh pr ( m m j ) P nd F [ ] M( m ) F[ ] M( m j ) or ( m ) F ( m ) FM M j M M

Regulr Cu nguge nd Regulr Cu Expresson 3 do mrk ( m m j ); tep : for eh unmrked pr ( m m ) P do j f for some U ( A( m ) A( m j )) nd ( λ ( m ) λ ( m j )) s mrked then tep.: mrk ( m m j ); tep.. reursvely mrked ll unmrked prs on the lst of ( m m j ) nd the lst of other prs tht re mrked on ths step. else tep.3: for ll nput symols do put ( m m j ) on the lst for ( A( m ) A( m j )) nd ( λ ( m ) λ( m )) unless ( A( m ) A( m )) nd j ( λ ( m ) λ( m )) j j tep 3: Equvlene lsses of M re onstruted s follows; For = 0 to k do For j = + to k do tep 4: Defne mnmum determnst fnte stte utomton wth u fnl stte M = ( M U A λ s F F ) s follows;. M M M = { m m M} A ( m x) = A( m x) nd λ ( m x) = λ( m x) nd F ( m ) = F ( m ). A A s F [ ] A( m ) = F [ ] A( m ) s =

4 Thr Mhmood leem Adullh nd Qsr Khn Exmple 5.3. et M = ( M U A λ s F[ ] F ) e determnst M M fnte utomton wth u fnl sttes. M = { s u v w y z} U = { } u ntl stte s s wth ntervl-vlued fuzzy memershp vlue F[ ] M ( s) = [ 0. 0.4] nd fuzzy memershp vlue F M ( s) = 0.3 A λ : M U M re the trnston funtons gven elow: A ( s ) = v A( s ) = u A( u ) = w A( u ) = s A( v ) = z A( v ) = y A ( w ) = z A( w ) = y A( y ) = z A( y ) = y A( z ) = z A( z ) = z λ ( s ) = v λ( s ) = u λ( u ) = w λ( u ) = s λ( v ) = z λ( v ) = y λ ( w ) = z λ( w ) = y λ( y ) = z λ( y ) = y λ( z ) = z λ( z ) = z nd FM ( u) = [ 0.3 0.5 ] FM ( u) = 0.4 F[ ] M( v) = [ 0.4 0.6 ] FM ( v) = 0.5 F[ ] M ( w) = [ 0.4 0.6 ] FM ( w) = 0.5 F[ ] M( y) = [ 0.5 0.7] FM ( v) = 0.6 F[ ] M ( z) = [ 0.6 0.8 ] FM ( z) = 0. 7 show the ntervl-vlued fuzzy nd fuzzy memershp funtons of { u } { v } { w } { y} { z} respetvely. The trnston dgrm of determnst fnte stte utomton s gven elow:

Regulr Cu nguge nd Regulr Cu Expresson 5 The trnston dgrm of the mnmzed determnst fnte stte utomton wth u fnl stte: The lnguge reognzed y the ove determnst fnte utomton wth u fnl stte nd mnmzed fnte utomton wth u fnl stte s gven elow: ( M) = {( ) \[ 0. 0.4] 0.3 ( ) \[ 0.3 0.5] 0.4 [ 0.4 0.6] 0.5 + + \[ 0.5 0.7] 0.6 ( + ) [ 0.6 0.8] 0.7 ( + ) \[ 0.6 0.8] 0.7}. 5.4. Progrmme n Mtl for mnmzng determnst fnte utomton wth u fnl stte noofsttes=nput( Enter the numer of sttes of DFA-CF... ); sttes=[noofsttes]; lower=[noofsttes]; upper=[noofsttes]; fuzzy=[noofsttes]; sttes()=nput('enter the ntl stte nme...''s'); lower()=nput('enter lower ound of ntervl for ntl stte...');

6 Thr Mhmood leem Adullh nd Qsr Khn upper()=nput('enter upper ound of ntervl for ntl stte...'); fuzzy()=nput('enter fuzzy vlue for ntl stte...'); for k=:noofsttes sttes(k)=nput(strt('enter the stte nme...'strt(numstr(k)'...'))'s'); lower(k)=nput(strt('enter lower ound of ntervl for stte...'strt(numstr(k)'...'))); upper(k)=nput(strt('enter upper ound of ntervl for stte...'strt(numstr(k)'...'))); fuzzy(k)=nput(strt('enter fuzzy vlue for stte...'strt(numstr(k)'...'))); noofnputs=nput('enter the numer of nput symols of DFA-CF...'); nputsymols=[noofnputs]; for k=:noofnputs nputsymols(k)=nput(strt('enter the nme of nput symol...' strt (numstr(k)'...'))'s'); trnstons=[noofsttesnoofnputs]; for k=:noofsttes for p=:noofnputs trnstons(kp)=nput(strt(strt(strt('enter trget stte for stte...' sttes(k))'... nd for nput symol...')strt(nputsymols(p)'...'))'s'); for =:noofsttes f (sttes()==trnstons(kp)) trnstons(kp)=;

Regulr Cu nguge nd Regulr Cu Expresson 7 ps=[noofsttesnoofsttes]; lst=[noofsttesnoofsttesnoofsttesnoofsttes]; for k=:noofsttes for j=:noofsttes for l=:noofsttes for m=:noofsttes lst(kjlm)=0; for k=:noofsttes for j=:noofsttes ps(kj)=3; f (k<j) ps(kj)=0; f(lower(k)=lower(j)&&upper(k)=upper(j)&&fuzzy(k)=fuzzy(j)) ps(kj)=;

8 Thr Mhmood leem Adullh nd Qsr Khn for k=:noofsttes for j=:noofsttes f (ps(kj)==0) temp=0; for =:noofnputs f (ps(trnstons(k)trnstons(j))==) ps(kj)=; lstout=[noofsttes]; [lstout ur]=lstmrk(kjlstnoofstteslstout); for m=:ur- ps(lstout(m)lstout(m))=; temp=; f temp==0 for =:noofnputs f trnstons(k)=trnstons(j)&&k<j lst(kjtrnstons(k)trnstons(j))=;

Regulr Cu nguge nd Regulr Cu Expresson 9 eqlsses=[noofsttes*noofsttes]; urr=; for k=:noofsttes- for j=k+:noofsttes f(ps(kj)==0) eqlsses(urr)=k; eqlsses(urr)=j; urr=urr+; fprntf('the nput symols re...\n') for k=:noofnputs fprntf('%...'nputsymols(k)); fprntf('\nthe output sttes re...\n') for k=:noofsttes for l=:urr- f k=eqlsses(l) fprntf('%...%f...%f...%f...'sttes(k)lower(k)upper(k)fuzzy(k)); fprntf('\nthe trget sttes re...\n') for k=:noofsttes

30 Thr Mhmood leem Adullh nd Qsr Khn for l=:urr- f k=eqlsses(l) for j=:noofnputs f trnstons(kj)==eqlsses(l) fprntf('for the stte...%...nd nput...%...trget stte s...%...'sttes(k) nputsymols(j)eqlsses(l)); else fprntf('for the stte...%...nd nput...%...trget stte s...%...' sttes(k) nputsymols(j)trnstons(kj)); eond progrm funton [lstouturrent ] = lstmrk(kjlststteslstouturrent) for =:sttes for l=:sttes f(lst(kjl)==) lstout(urrent)=; lstout(urrent)=l; urrent=urrent+; lstmrk(llststteslstouturrent);

Regulr Cu nguge nd Regulr Cu Expresson 3 6. Conluson We ntrodued u lnguge whh s the generlzton of fuzzy lnguge. We lso ntrodue u grmmr nd u regulr lnguge nd show tht u regulr lnguge s losed under unon nterseton ontenton nd str opertons. We ntrodue fnte stte utomton wth u trnstons nd fnte stte utomton wth u fnl sttes. We lso gve Myhll-Nerode theorem for u regulr lnguge. We lso ntrodue lgorthm for mnmzton of fnte stte utomton wth u fnl sttes nd onstrut progrmme n Mtl. Referenes [] K. T. Atnssov ntutonst fuzzy sets Fuzzy ets nd ystems 0() (986) 87-96. [] K. T. Atnssov More on ntutonst fuzzy sets Fuzzy ets nd ystems 33() (989) 37-45. [3] H. Bustne nd P. Burllo Vgue sets re ntutonst fuzzy sets Fuzzy ets nd ystems 79(3) (996) 403-405. [4] A. Chouey nd K. M. Rv ntutonst fuzzy regulr lnguge Proeedngs of nterntonl Conferene on Modellng nd multon CTCOM 007 007 pp. 659-664. [5] A. Chouey nd K. M. Rv ntutonst fuzzy utomt nd ntutonst fuzzy regulr expressons J. Appl. Mth. nformts 7(-) (009) 409-47. [6] A. Chouey nd K. M. Rv Vgue regulr lnguge Advnes n Fuzzy Mthemts 4() (009) 49-65. [7] A. Chouey ntervl-vlued fuzzy regulr lnguge J. Appl. Mth. nformts 8(3-4) (00) 639-649. [8] A. Chouey nd K. M. Rv Mnmzton of determnst fnte utomt wth vgue fnl stte nd ntutonst fuzzy fnl stte rnn Journl of Fuzzy ystems 0() (03) 75-88. [9] W.. Gu nd D. J. Buehrer Vgue sets EEE Trnstons on ystems Mn nd Cyernets 3() (993) 60-64. [0] Y. B. Jun C.. Km nd K. O. Yng Cu sets Ann. Fuzzy Mth. nform. 4 (0) 83-98.

3 Thr Mhmood leem Adullh nd Qsr Khn [] Edwrd T. ee nd otf A. Zdeh Note on fuzzy lnguges nform.. 4 (969) 4-434. [] Y. nd W. Pedryz Fuzzy fnte utomt nd fuzzy regulr expressons wth memershp vlues n ltte-ordered monods Fuzzy ets nd ystems 56() (005) 68-9. [3] A. Mteesu A. lom K. lom nd. Yu exl nlyss wth smple fnte-fuzzy-utomton model The Journl of Unversl Computer ene (995) 9-3. [4] Wllm Go Wee On Generlztons of Adptve Algorthms nd Applton of the Fuzzy ets Conept to Pttern Clssfton Pulsher Purdue Unversty West fyette UA 967 64 pp. [5] otf A. Zdeh Fuzzy sets nformton nd Control 8(3) (965) 338-353. [6] otf A. Zdeh The onept of lngust vrle nd ts pplton to pproxmte resonng- nform.. 8(3) (975) 99-49. [7] otf A. Zdeh The onept of lngust vrle nd ts pplton to pproxmte resonng- nform.. 8(4) (975) 30-357.