Results from Borexino 26th Rencontres de Blois

Similar documents
Neutrinos from the Sun and other sources: Results from the Borexino experiment

LOW ENERGY SOLAR NEUTRINOS WITH BOREXINO. Lea Di Noto on behalf of the Borexino collaboration

Results on geoneutrinos at Borexino experiment. Heavy Quarks and Leptons Yamagata Davide Basilico

192 days of Borexino. Neutrino 2008 Christchurch, New Zeland May 26, Cristiano Galbiati on behalf of Borexino Collaboration

Rivelazione di neutrini solari - Borexino Lino Miramonti 6 Giugno 2006 Gran Sasso

Search for Sterile Neutrinos with the Borexino Detector

BOREXINO: A MULTI-PURPOSE DETECTOR FOR THE STUDY OF SOLAR AND TERRESTRIAL NEUTRINOS

Low Energy Neutrino Astronomy and Results from BOREXINO

Results from Borexino on solar (and geo-neutrinos) Gemma Testera

Solar Neutrinos in Large Liquid Scintillator Detectors

The SOX experiment. Stefano Davini (on behalf of the Borexino-SOX collaboration) Brussels, December 1 st 2017

Recent results from Borexino Gemma Testera INFN Genova TAUP 2015 September 7th, 2015

Borexino. Gioacchino Ranucci INFN - Milano. On behalf of the Borexino Collaboration. LNGS Scientific Committee 29 April 2015

Water Purification in Borexino

Recent results from Borexino. Sandra Zavatarelli, INFN Genoa (Italy) on behalf of the Borexino Collaboration

Solar Neutrinos: Status and Prospects. Marianne Göger-Neff

Muons in Borexino. SFB Block Meeting. Daniel Bick Universität Hamburg. D. Bick (Uni HH) Muons in Borexino

Borexino and status of the project Aldo Ianni INFN, Gran Sasso Laboratory on behalf of the Borexino collaboration

New results of the Borexino experiment: pp solar neutrino detection

Neutrino Physics with SNO+ Freija Descamps for the SNO+ collaboration

Neutrino Experiments: Lecture 2 M. Shaevitz Columbia University

KamLAND. Introduction Data Analysis First Results Implications Future

Solar spectrum. Nuclear burning in the sun produce Heat, Luminosity and Neutrinos. pp neutrinos < 0.4 MeV

DarkSide-50: performance and results from the first atmospheric argon run

Recent solar and geo-ν results from Borexino

Review of Solar Neutrinos. Alan Poon Institute for Nuclear and Particle Astrophysics & Nuclear Science Division Lawrence Berkeley National Laboratory

Correlated Background measurement in Double Chooz experiment

arxiv: v1 [hep-ex] 22 Jan 2009

UNIT1: Experimental Evidences of Neutrino Oscillation Atmospheric and Solar Neutrinos

Daya Bay and joint reactor neutrino analysis

Solar Neutrino Oscillations

arxiv:hep-ex/ v1 15 Aug 2006

14-th Lomonosov conference on elementary particle physics Moscow, August 19-25,2009 BNO INR V.N. Gavrin. The Solar Neutrinos

KamLAND. Studying Neutrinos from Reactor

The Daya Bay Reactor Neutrino Experiment

Scintillator phase of the SNO+ experiment

Contents. General Introduction Low background activities Pixel activities Summary and Outlook. Kai Zuber

The Daya Bay Reactor Neutrino Experiment

Observation of Reactor Antineutrinos at RENO. Soo-Bong Kim for the RENO Collaboration KNRC, Seoul National University March 29, 2012

arxiv: v1 [hep-ex] 14 May 2015

Proton decay and neutrino astrophysics with the future LENA detector

Studies of the XENON100 Electromagnetic Background

BOREXINO - Status and Calibration

A Large Liquid Scintillator Detector for Neutrino Mass Hierarchy : RENO-50

USING NEUTRINOS TO STUDY THE EARTH. Nikolai Tolich University of Washington

NEUTRINO OSCILLATION EXPERIMENTS AT NUCLEAR REACTORS

Neutrinos. Why measure them? Why are they difficult to observe?

PoS(ICHEP2016)474. SoLid: Search for Oscillations with a Lithium-6 Detector at the SCK CEN BR2 reactor

The reactor antineutrino anomaly & experimental status of anomalies beyond 3 flavors

A multipurpose detector for low energy

The Double Chooz reactor neutrino experiment

Sterile Neutrinos with WbLS! detector. Jelena Maricic! University of Hawaii at Manoa! May 17, 2014

Metallicities in stars - what solar neutrinos can do

GERDA experiment A search for neutrinoless double beta decay. Roberto Santorelli (Physik-Institut der Universität Zürich)

1. Introduction on Astroparticle Physics Research options

Neutrino Geophysics at Baksan I: Possible Detection of Georeactor Antineutrinos

the DarkSide project Andrea Pocar University of Massachusetts, Amherst

Solar Neutrinos and the Borexino experiment

1. Neutrino Oscillations

The GERmanium Detector Array

New results from RENO and prospects with RENO-50

PoS(ICHEP2012)392. Solar neutrino results with Borexino I

The Double Chooz Project

Monte Carlo Study of the Fast Neutron Background in LENA

The LENA Neutrino Observatory

PoS(EPS-HEP2017)074. Darkside Status and Prospects. Charles Jeff Martoff Temple University

Neutrino Oscillations

Borexino Source Experiment

章飞虹 ZHANG FeiHong INTERNATIONAL SCHOOL OF SUBNUCLEAR PHYSICS Ph.D. student from Institute of High Energy Physics, Beijing

Precise measurement of reactor antineutrino oscillations at Daya Bay

Background Characterization and Rejection in the LZ Detector. David Malling Brown University IDM 2012 July 25, 2012

Neutrino Experiments with Reactors

Status of 13 measurement in reactor experiments

Daya Bay Neutrino Experiment

Neutrino physics. Evgeny Akhmedov. Max-Planck-Institut für Kernphysik, Heidelberg & Kurchatov Institute, Moscow

Aldo Ianni, LNGS for the Borexinocollaboration Sept. 29th, 2011

Recent Discoveries in Neutrino Physics

Status of Solar Neutrino Oscillations

The Search for θ13 : First Results from Double Chooz. Jaime Dawson, APC

Particle Physics: Neutrinos part I

E15. Background suppression in GERDA Phase II. and its study in the LARGE low background set-up

DarkSide. Bianca Bottino Università di Genova and INFN Sezione di Genova on behalf of the DarkSide collaboration 1

Measurement of q 13 in Neutrino Oscillation Experiments. Stefan Roth, RWTH Aachen Seminar, DESY, 21 st /22 nd January 2014

Workshop Towards Neutrino Technologies July Prospects and status of LENA

Neutrino Physics. Neutron Detector in the Aberdeen Tunnel Underground Laboratory. The Daya Bay Experiment. Significance of θ 13

Neutrino mixing II. Can ν e ν µ ν τ? If this happens:

Neutrino detectors. V. Lozza,

Two Neutrino Double Beta (2νββ) Decays into Excited States

Analysis of Neutrino Oscillation experiments

Status of Cuore experiment and last results from Cuoricino

Dark matter search with the SABRE experiment

Sterile Neutrinos & Neutral Current Scattering

arxiv: v1 [hep-ex] 22 Nov 2012

arxiv: v1 [hep-ex] 1 Oct 2015

Neutrinos: Yesterday, Today and Tomorrow. Stanley Wojcicki SLAC Summer Institute 2010 August 13, 2010

Neutron flux measurement using fast-neutron activation of 12 B and 12 N isotopes in hydrocarbonate scintillators

The Daya Bay Reactor Neutrino Oscillation Experiment

ν?? Solar & Atmospheric Oscillation Experiments Greg Sullivan University of Maryland Aspen Winter Conference January 21, 1999 )Past )Present )Future

Discovery of the Neutrino Mass-I. P1X* Frontiers of Physics Lectures October 2004 Dr Paul Soler University of Glasgow

Observation of Mixing Angle 13

Transcription:

Results from Borexino 26th Rencontres de Blois - 2014 Marco G. Giammarchi Istituto Nazionale di Fisica Nucleare Via Celoria 16 20133 Milano (Italy) marco.giammarchi@mi.infn.it http://pcgiammarchi.mi.infn.it/giammarchi/ On behalf of the BOREXINO Collaboration Reporting on the Solar Results only 1. BOREXINO 2. Be-7 flux measurement 3. B-8 measurement 4. pep detection and CNO limit 5. Future 1

Milano München Heidelberg Hamburg Mainz Gran Sasso Perugia Genova Napoli TU Dresden Jagiellonian Kraków the Borexino Collaboration JINR Dubna Virginia Tech Houston Paris Moscow Los Angeles Princeton UMass Amherst St. Petersburg Kurchatov Moscow 2

We believe we understand the Sun pp-cycle >99% energy production 5 ν species CNO-cycle <1% energy production 3 ν species Neutrinos are produced in several reactions in both cycles 3

1. BOREXINO Borexino is a low background Neutrino Detector for sub-mev solar Neutrino (and other) studies Detecting Solar Neutrinos, Geo-neutrinos and other rare phenomena 1. BOREXINO 2. Be-7 flux measurement 3. B-8 measurement 4. pep detection and CNO limit 5. Future Main detection reaction: elastic scattering in a scintillator ν e ν e Low interaction rates: 0.1/1 event/day/ton of target mass Low energy (mostly <10 MeV, better if <2 MeV) Low threshold and low background (radiopurity) Underground location to shield from cosmic rays (10 6 reduction of muon flux) 4

Experimental site External Labs Abruzzo, Italy 120 Km from Rome Laboratori Nazionali del Gran Sasso Assergi (AQ) Italy 1400m of rock shielding ~3800 m.w.e. Borexino Detector and Plants 5

The Borexino Detector Neutrino electron scattering ν e > ν e Scintillator: 270 t PC+PPO (1.4 g/l) Stainless Steel Sphere: 2212 PMTs ~ 1000 m 3 buffer of pc+dmp (light queched) Nylon vessels: (125 μm thick) Inner: 4.25 m Outer: 5.50 m (radon barrier) Water Tank: γ and n shield μ water Č detector 208 PMTs in water 2100 m 3 Carbon Steel Plates 2020 legs legs 6

Filling phase of the Borexino detector (2007, Laboratorio del Gran Sasso) 11 m Scintillator Photomultipliers Water Nylon Vessels 7

Solar Neutrinos: the predicted spectrum,borexino 8

Study of Solar Neutrinos Solar Neutrino Problem Neutrino Oscillations 9

Neutrino Oscillation Solution (W. Hiroko s talk at Neutel 2013) Large Mixing Angle + MSW mechanism in the Sun Global, 3-lepton flavor analysis m sin sin 2 12 2 2 θ θ = 12 13 ( + 0.26 7.54 ) 0.22 = 0.307 10 + 0.018 0.016 5 ev = 0.0241± 0.0025 2 10

However: before Borexino, only radiochemical experiments could observe solar neutrinos below 1 MeV. Real-time experiments were sensible mostly to > 5 MeV Open Issues 11

2. Be-7 flux measurement E ν = 862 kev (monoenergetic) Φ SSM = 4.8 10 9 ν s -1 cm 2 7 Be + e 7 Li + ν e 1. BOREXINO 2. Be-7 flux measurement 3. B-8 measurement 4. pep detection and CNO limit 5. Future ν e ν x Electron recoil spectrum ν x + e ν x + e ( x = e, µ, τ ) Cross Section 10-44 cm 2 (@ 1 MeV) 12

46.0 ± 1.5 + 1.6 stat c / d 100 1.5 t Digitare l'equazione qui. = 0.001 ± 0.0012 ± 0. st 007 syst Φ = LMA 9 2 1 ( 4.84 ± 0.24) 10 cm s 13

3. B-8 measurement Analysis with 3 MeV threshold Borexino rate : 0.2 cpd / (100 tons) Backgrounds: Muons, Neutrons External background Fast cosmogenics C-10, Be-11 Tl-208,Bi-214 1. BOREXINO 2. Be-7 flux measurement 3. B-8 measurement 4. pep detection and CNO limit 5. Future 14

R = 0.22± 0.04( stat) ± 0.01( syst) cpd /100t ( above 3 MeV ) 15

4. pep detection and CNO limit Pep reaction p + e - + p d + ν e 1. BOREXINO 2. Be-7 flux measurement 3. B-8 measurement 4. pep detection and CNO limit 5. Future Monoenergetic 1.44 MeV neutrinos 16

17

C-11 reduction strategy: Threefold coincidence (muon,neutron,c11) Pulse shape discrimination electron/gamma/positron (Ps formation) Multivariate fit with also energy and position First pep measurement and the best CNO limit Φ pep ( MSW LMA) = (1.6 ± 0.3) 10 8 cm 2 s 1 Φ CNO ( MSW LMA) < 7.7 10 8 cm 2 s 1 (95% CL) 18

Solar neutrino components measured by Borexino,Borexino 19

Neutrino Oscillations properties measured by Borexino Vacuum Regime Matter Regime Solar electron neutrino survival probability as a function of neutrino energy LMA-MSW with standard neutrino interactions 20

6. Future (summary) Borexino Phase II (solar neutrinos): pp detection CNO study 1. BOREXINO 2. Be-7 flux measurement 3. B-8 measurement 4. pep detection and CNO limit 5. Future Cycles of Purification (Water Extraction) : Reduce 85 Kr and 210 Bi affecting the pep and CNO analyses Kr background reduced to a negligible rate Bi-210 reduced (tens of counts/day 100 tons) and possibly studied by means of the time evolution of Po-210 rate. 21

CNO detection CNO reactions are responsible for less than 1% of the Sun energy generation However, this cycle should be dominant for higher mass stars (higher temperatures) Given their small flux and low energy, neutrinos from CNO have never been measured directly. pp detection They make up more than 90% of the total flux and have never been directly observed. Main source of background is C-14 and its pileup effect. C-14 spectral shape and pileup 22

Thank you for your attention (& selected bibliography) G. Alimonti et al., Nucl. Instr. & Methods A600 (2009) 568 Detector C. Arpesella et al., Phys. Lett. B 568 (2008) 101 C. Arpesella et al., Phys. Rev. Lett. 101 (2008) 091302 G. Bellini et al., Phys. Rev. Lett. 107 (2011) 141302 G. Bellini et al., Phys. Lett. B 707 (2012) 22 Be-7 G. Bellini et al., Phys. Rev. D 82 (2010) 033006 B-8 G. Bellini et al., Phys. Lett. B 687 (2010) 299 G. Bellini et al., Phys. Lett. B 722 (2013) 295 G. Bellini et al., Phys. Rev. Lett 108 (2012) 051302 Geo ν pep 23

Backup Slides 24

5. Geoneutrinos AntiNeutrinos emitted in beta decays of naturally occurring radioactive isotopes in the Earth s crust and mantle Moderate Nuclear Reactors bkgd at LNGS Detection by Inverse Beta Decay (1.8 MeV thr.) ν e + p n + e + 1. BOREXINO 2. Be-7 flux measurement 3. B-8 measurement 4. pep detection and CNO limit 5. Geoneutrinos 6. Future Unoscillated Geo-nu and nuclear reactor nu Unoscillated Geo-nu Positron-Gamma (2.2 MeV) delayed coincidence 25

Search for positron/neutron-capturedelayed coincidences in the Borexino detector Main background sources: Li-9, He-8, untagged muons, accidentals And of course nuclear reactors First observation published in 2010 New analysis based on 1353 days of data Phys. Lett. B 722 (2013) 295 Reactor antineutrinos at LNGS 26

1353 days in Borexino: antineutrino geo analysis Nuclear Reactor component : Found : 21 events above geo endpoint Expected : 22.0 +- 1.6 Geoneutrinos vs Reactor neutrinos: Free parameters - Weight of Geo nu - Weight Reactor nu Th/U = 3.9 fixed (condhritic value) 68.27%, 95.45%, 99.73% Confidence level contour plots for geo and reactor neutrinos Extreme expectations of BSE (Bulk Silicate Earth) model Reactor signal expectation (1 TNU = 1 Terrestrial Neutrino Unit = 1 event/year/10 32 protons) 27

Best fit values: N geo = ( 14.3± 4.4) S geo = (38.8 ± 12.0) TNU N reac = 31.2 S + 7.0 + 19.3 6.1 rea = 84. 5 16.9 TNU Geofluxes Φ ( U ) = ( 2.4 ± 0.7) 10 6 cm 2 s 1 Φ ( Th) = 6 2 1 ( 2.0 ± 0.6) 10 cm s If U,Th contributions are left free: 6 Φ ( U ) = ( 2.1± 1.5) 10 2 1 cm s 6 Φ ( Th) = ( 2.6 ± 3.1) 10 2 1 cm s 28

Going for pep and CNO: 11 C tagging µ + 12 11 C µ + C + n The main background for pep and CNO analysis is 11 C, a long τ (n capture): ~250μs lived (τ=30min) cosmogenic β + emitter with ~1MeV end-point μ d n + p + γ 2. 2MeV (shifted to 1-2MeV range) γ n β 11 C 11 B + e + + ν e 11 C Production Channels: [Galbiati et al., Phys. Rev. C71, 055805, 2005] 1. 95.5% with n: (X,X+n) X = γ, n, p, π ±, e ±, μ. 2. 4.5% invisible : τ ( 11 C): ~30min (p,d); (π +,π 0 +p). 11 C rate = (28.5 ± 0.5) cpd exp. pep rate ~ 3cpd 29

Going for pep and CNO: positronium Electron/Positron discrimination due to Ps formation in positron events (D. Franco, G. Consolati and D. Trezzi, Phys. Rev. C 83 (2011) 015504 30

A. The Cr-51 source, with an activity of ~10 Mci Obtained by irradiation of Cr-50. 3-months experiment to be performed in 2015 B. A Ce-144 antineutrino source can be used. Due to the antineutrino tag, the activity could be much smaller, in the 80 kci range. C. The Ce-144 source positioned at the center of the detector 31

Short distance neutrino Oscillations with BoreXino (SOX) Experimental anomalies which are difficult to accomodate in a simple 3-flavor scenario A fourth (sterile) neutrino? («Gallium», «Reactor», «LSND-MiniBoone» anomalies) Borexino can be used to perform a short baseline experiment with neutrino source 2 Exploration of parameters in the plane m,sin 2 14 2ϑ ) L/E of the order of ev 2 ( 14 32

Neutrino Oscillations PMNS neutrino mixing matrix, analogous to CKM matrix for quarks Solution of the Solar Neutrino Problem is neutrino oscillation with matter (MSW) effect at Large Mixing Angle (LMA) 33