Novel fluoroalkylated surfactants in soils following firefighting foam deployment during the Lac-Mégantic railway accident

Similar documents
Determination of Polyfluoroalkyl Substances (PFAS) in Food Products

Per and Polyfluoroalkyl Substances (PFAS) in AFFF Formulations and Groundwater

Supporting Information

A Technique for Determining Total Oxidizable Precursors (TOP) of Perfluoroalkyl Compounds

8 Laboratory of Environmental Pollution Control and Remediation Technology, Sun

Trends of Perfluorinated Alkyl Substances in Herring Gull Eggs from Two Coastal. Colonies in Northern Norway:

Identification of Novel Hydrogen-Substituted Polyfluoroalkyl Ether. Sulfonates in Environmental Matrices near Metal-Plating Facilities

Characterization of Two Passive Air Samplers for Per and Polyfluoroalkyl Substances

Supporting Information. Treatment of Aqueous Film-Forming Foam by Heat-Activated. Persulfate Under Conditions Representative of

Supporting Information

ADVANCES IN POLY- AND PERFLUORALKYL SUBSTANCES (PFAS) ANALYTICAL TECHNIQUES

Closing the Mass Balance on Fluorine on Papers and Textiles

Supporting Information

Naming Conventions and Physical and Chemical Properties of Per- and Polyfluoroalkyl Substances (PFAS)

Coupling Large Volume Injection for Aqueous Samples and Organic Extracts with LC-Tandem Mass Spectrometry

Characterization of the Fate and Biotransformation of Fluorochemicals in AFFF-Contaminated Groundwater at Fire/Crash Testing Military Sites (ER-2128)

Release of Per- and polyfluoroalkyl Substances (PFASs) from Carpet and Clothing in Model Anaerobic Landfill Reactors. Supporting Information

FINAL REPORT. SERDP Project ER-2128

A comparison between HRAM Orbitrap technology and MS/MS for the analysis of polyfluoroalkyl substances by EPA Method 537

Kalinovich, I., Thalheimer. A.H., Loney, B.

CASE STUDY 3: Quantitative and Qualitative Analysis of Perfluoroalkyl Substances (PFASs) in Wildlife Samples Using the Xevo G2-XS Q-Tof GOAL

Supporting Information. Mass Balance of Perfluorinated Alkyl Acids in a Pristine Boreal Catchment

Supplementary Data. Supplementary Table S1.

water, and sediment in many areas of the world. In most of the reports, the increasing trends of perfluoroalkylsulfonate (PFSA) and/or perfluorocalbox

Perfluoroalkyl and polyfluoroalkyl substances (PFASs) in the environment: terminology, classification and origins

ROOT UPTAKE AND TRANSLOCATION OF PERFLUORINATED ALKYL ACIDS BY THREE HYDROPONICALLY GROWN CROPS

Water-to-air transfer of perfluorinated carboxylates and sulfonates in a sea spray simulator

Sorption of Perfluoroalkyl and Polyfluoroalkyl Substances (PFASs) by Natural and Anthropogenic Carbonaceous Sorbents

Rapid Screening and Confirmation of Melamine Residues in Milk and Its Products by Liquid Chromatography Tandem Mass Spectrometry

Determination of Beta-Blockers in Urine Using Supercritical Fluid Chromatography and Mass Spectrometry

Sorptive Remediation of Perfluorooctanoic Acid (PFOA) Using Mixed Mineral and Graphene/Carbon-Based. Materials

Fast Screening and Quantitation of Perfluorinated Sources from Textiles using Chemical Ionization GC-MS

Analysis of per- and polyfluoroalkyl substances (PFASs) in soil from Swedish background sites. Analys av PFAS i mark från bakgrundsområden

Analysis of Illegal Dyes in Food Matrices using Automated Online Sample Preparation with LC/MS

Supporting Information: Persistence of Perfluoroalkyl Acid Precursors in. AFFF-Impacted Groundwater and Soil

Accurate Mass Analysis of Hydraulic Fracturing Waters

Fast and Accurate Quantitation of Perfluorinated Sources from Textiles using Gas Chromatography-Triple Quadrupole Mass Spectrometry

Accurate Mass Analysis of Hydraulic Fracturing Waters: Identification of Polyethylene Glycol Surfactants by LC/Q-TOF-MS

habits on temporal trends of per- and polyfluoroalkyl substances in two Arctic top predators

Salvatore Barreca, Maddalena Busetto, Matteo Vitelli, Luisa Colzani, Laura Clerici, and Pierluisa Dellavedova

Perfluoroalkylated compounds in whole blood and plasma from the Swedish population

Toxicity, Teratogenic and Estrogenic Effects of Bisphenol A and its Alternative. Replacements Bisphenol S, Bisphenol F and Bisphenol AF in Zebrafish.

Simultaneous, Fast Analysis of Melamine and Analogues in Pharmaceutical Components Using Q Exactive - Benchtop Orbitrap LC-MS/MS

Elsevier Editorial System(tm) for Journal of Chromatography A Manuscript Draft

IFE Foam Conference: Foam Under Fire!

GB Translated English of Chinese Standard: GB NATIONAL STANDARD OF THE

Analytical determination of testosterone in human serum using an Agilent Ultivo Triple Quadrupole LC/MS

Maximizing Triple Quadrupole Mass Spectrometry Productivity with the Agilent StreamSelect LC/MS System

Profiling of Diferulates (Plant Cell Wall Cross- Linkers) Using Ultrahigh-performance Liquid. Chromatography-Tandem Mass Spectrometry

EPA Method 535: Detection of Degradates of Chloroacetanilides and other Acetamide Herbicides in Water by LC/MS/MS

Perfluorinated Alkyl Acids (PFAA) in Water by LC/MS/MS - PBM

Quantitation of Ethyl Glucuronide and Ethyl Sulfate in Urine using LC-MS/MS

EPA Method 535: Detection of Degradates of Chloroacetanilides and other Acetamide Herbicides in Water by LC/MS/MS

Applying MRM Spectrum Mode and Library Searching for Enhanced Reporting Confidence in Routine Pesticide Residue Analysis

PFAS TREATMENT AND REMEDIATION WEBINAR: TREATMENT OPTIONS FOR SOIL & GROUNDWATER

Agilent 6460 Triple Quadrupole LC/MS System with an Agilent 1290 Infinity LC For Multi-Plant Growth Regulator Analysis in Grapes

Environmental Mass Spectrometry DR. RALPH N. MEAD

The Quantitation and Identification of Coccidiostats in Food by LC-MS/MS using the AB SCIEX 4000 Q TRAP System

Macrolides in Honey Using Agilent Bond Elut Plexa SPE, Poroshell 120, and LC/MS/MS

Common Chemicals. NYS Department of Environmental Conservation

Methyl 1-[(4-fluorophenyl)methyl]indazole-3-carboxylate

Separation of Enantiomers of Amphetamine-Related Drugs and Their Structural Isomers

Quantification of growth promoters olaquindox and carbadox in animal feedstuff with the Agilent 1260 Infinity Binary LC system with UV detection

Simultaneous Determination of Paraquat and Diquat in Environmental Water Samples by HPLC-MS/MS

Detection of Perfluoroalkyl Acids and Sulphonates in Italian Eel Samples by HPLC- HRMS Orbitrap

Application Note. Gas Chromatography/Mass Spectrometry/Food Safety. Abstract. Authors

Lutz Ahrens,*, Tom Harner,*, Mahiba Shoeib, Douglas A. Lane, and Jennifer G. Murphy INTRODUCTION

Biomagnification of Perfluorinated Compounds in a Remote Terrestrial Food Chain: Lichen-Caribou-Wolf

Identification and Quantitation of Pesticides in Chamomile and Ginger Extracts Using an Agilent 6460 Triple Quadrupole LC/MS system with Triggered MRM

Nexera UC Unified Chromatography

Test method for the determination of NDMA and NDEA by LC-MS/MS in Sartan containing film coated tablets

345 Southgate Drive, Guelph, Ontario, Canada N1G 3M5

The certification of the mass concentration of perfluoroalkyl substances (PFASs) in water: IRMM-428

A Fully Validated LC-MS/MS Method for Analysis of Trace Fluorotelomer Alcohols from Water

Simultaneous analysis for forensic drugs in human blood and urine using ultra-high speed LC-MS/MS

Analysis - HPLC A.136. Primesep 5 µm columns B.136

Determination of pesticides in baby food by UHPLC/MS/MS using the Agilent 1290 Infinity LC system and the Agilent 6460 triple quadrupole LC/MS

Application Note. Author. Abstract. Food Safety. Syed Salman Lateef Agilent Technologies, Inc. Bangalore, India

LC-MS/MS Method for the Determination of Diclofenac in Human Plasma

2-[[2-(4-ethyl-2,5-dimethoxy-phenyl)ethylamino]methyl]phenol

2017 Reaction of cinnamic acid chloride with ammonia to cinnamic acid amide

Overview. Introduction. André Schreiber AB SCIEX Concord, Ontario (Canada)

Determination of Chlorinated Acid Herbicides in Soil by LC/MS/MS Application Note

Fast and Reliable Method for the Analysis of Methylmalonic Acid from Human Plasma

Analysis of Synthetic Cannabinoids and Metabolites: Adding New Compounds to an Existing LC-MS/MS Method

High Sensitivity HPLC Analysis of Perchlorate in Tap Water Using an Agilent 6460 Triple Quadrupole LC/MS System

1-(1,3-benzodioxol-5-yl)-2-(ethylamino)hexan-1-one

Improved Automated Sample Preparation for the Analysis of 25-OH-Vitamin D3 by LC/MS/MS

Highly sensitive quantitative estimation of genotoxic impurities from API and drug formulation using LC/MS/MS

Yun W. Alelyunas, Mark D. Wrona, Russell J. Mortishire-Smith, Nick Tomczyk, and Paul D. Rainville Waters Corporation, Milford, MA, USA INTRODUCTION

Highly sensitive quantitative analysis of Felodipine and Hydrochlorothiazide from plasma using LC/MS/MS

Quantitative Analysis and Identification of Migrants in Food Packaging Using LC-MS/MS

Plasma Metanephrines and 3-Methoxytyramine by LC/MS/MS Using Agilent SimpliQ WCX SPE, 1290 Infi nity LC, and 6460 Triple Quadrupole LC/MS

Determination of Pesticide Residues in Oats by Automated. QuEChERS and LC/QQQ. Application Note. Abstract. Introduction

Application Note. Edgar Naegele. Abstract

Soils, sludges and treated bio-waste Organic constituents - LAS by HPLC with fluorescence detection (LC-FLD) and mass selective detection (LC- MSD)

A Fluorescence Turn-On Sensor for the Detection of Palladium Ions that Operates Through In-Situ Generation of Palladium Nanoparticles

Multi-residue analysis of pesticides by GC-HRMS

4-methyl-1-phenyl-2-pyrrolidin-1-yl-pentan-1-one

AB SCIEX SelexION Technology Used to Improve Mass Spectral Library Searching Scores by Removal of Isobaric Interferences

Transcription:

Supporting Information Novel fluoroalkylated surfactants in soils following firefighting foam deployment during the Lac-Mégantic railway accident Sandra Mejia-Avendaño a, Gabriel Munoz a,b, Sung Vo Duy b, Mélanie Desrosiers c, Paul Benoit d, Sébastien Sauvé b, Jinxia Liu a, * a Department of Civil Engineering, McGill University, Montreal, Quebec, H3A 0C3, Canada b Department of Chemistry, Université de Montréal, Montreal, Quebec, H3C 3J7, Canada c Centre d expertise en analyse environnementale du Québec (CEAEQ), ministère du Développement Durable, de l Environnement, et de la Lutte contre les changements climatiques, Quebec City, Quebec, G1P 3W8, Canada. d Direction générale de l analyse et de l expertise régionales - Estrie et Montérégie, ministère du Développement durable, de l Environnement, et de la Lutte contre les changements climatiques, Longueuil, Québec, J4K 2T5, Canada. *Corresponding author. Tel: +1 514 398 7938; fax: +1 514 398 7361 e-mail address: jinxia.liu@mcgill.ca 48 pages 13 tables 7 figures SI-1

Table of Contents Nomenclature of compounds with authentic standards... 4 Soil sampling... 6 Background soil... 6 Soil collected in 2013... 7 Soil collected in 2015... 8 Soil sampled from biopiles in 2015... 8 Aqueous Film Forming Foams used during the 2013 firefighting at Lac-Mégantic... 9 Hydrocarbons in soil...10 Sample preparation...11 Analytical methods...12 Details on calibration curve...15 Investigated families of PFASs...16 Quantification of PFASs with and without standards...18 Levels of PFASs in the background soil...22 PFASs concentrations - Quantitative analytes...23 Trends of PFASs concentration profiles...30 Short-chain versus long-chain PFASs...31 List of detected PFASs in Full Scan MS mode...32 MS-MS spectra of qualitatively identified PFASs...35 References...48 SI-2

List of Tables Table SI- 1. Nomenclature table of compounds with authentic standards... 4 Table SI- 2. AFFF used during emergency measures... 9 Table SI- 3. Petroleum hydrocarbon (C10-C50) and moisture content in analyzed samples....10 Table SI- 4. Quantitative analytical method...12 Table SI- 5. Monitored transitions for quantitative analytical method...13 Table SI- 6. Qualitative analytical method...14 Table SI- 7. LOD, LOQ and linearity range for each analyte (ng/ml)....15 Table SI- 8. Investigated families of PFASs....16 Table SI- 9. Semiquantitative and indicative analytes and corresponding reference analytes...20 Table SI- 10. Background PFASs concentrations in a clean soil...22 Table SI- 11. Concentrations of quantitative PFASs in soils...23 Table SI- 12. Summary of the statistics of the correlation of several pairs of key components..30 Table SI- 13. Detected PFASs in full scan MS mode...32 List of Figures Figure SI- 1. Location of Lac-Mégantic... 6 Figure SI- 2. Location of background soil collection.... 6 Figure SI- 3. Zoom map of the sampled stations (Picture corresponding to July 10, 2013)... 7 Figure SI- 4. Map of the location of the sampling area.... 7 Figure SI- 5. Map showing the location of the sampling points in July 2015.... 8 Figure SI- 6. Fraction of the long-chain PFASs relative to the total PFASs that were estimated using a semi-quantification approach....31 Figure SI- 7. MS-MS spectra of identified PFASs...35 SI-3

Nomenclature of compounds with authentic standards Table SI- 1. Nomenclature table of compounds with authentic standards Acronym Name Formula PFAA Perfluoroalkyl acid F(CF2)nCOOH F(CF2)nSO3 - PFCA Perfluoroalkyl carboxylic acid F(CF2)nCOOH PFBA Perfluorobutanoic acid F(CF2)3COOH PFPeA Perfluoropentanoic acid F(CF2)4COOH PFHxA Perfluorohexanoic acid F(CF2)5COOH PFHpA Perfluoroheptanoic acid F(CF2)6COOH PFOA Perfluorooctanoic acid F(CF2)7COOH PFNA Perfluorononanoic acid F(CF2)8COOH PFDA Perfluorodecanoic acid F(CF2)9COOH PFUdA Perfluoroundecanoic acid F(CF2)10COOH PFDoA Perfluorodecanoic acid F(CF2)11COOH PFTrDA Perfluorotridecanoic acid F(CF2)12COOH PFTeDA Perfluorotetradecanoic acid F(CF2)13COOH PFSA Perfluoroalkyl sulfonic acid F(CF2)nSO3 - PFBS Perfluorobutane sulfonate F(CF2)4SO3 - PFHxS Perfluorohexane sulfonate F(CF2)6SO3 - PFHpS Perfluoroheptane sulfonate F(CF2)7SO3 - PFOS Perfluorooctane sulfonate F(CF2)8SO3 - PFDS Perfluorodecane sulfonate F(CF2)10SO3 - EtFOSA Ethyl perfluorooctane sulfonamide F(CF2)8SO2NHCH2CH3 FOSAA Perfluorooctane sulfonamidoacetic acid F(CF2)8SO2NHCH2COOH FOSA Perfluorooctane sulfonamide F(CF2)8SO2NH2 n:2 FTSA n:2 Fluorotelomer sulfonate F(CF2)nCH2CH2SO3-4:2 FTSA 4:2 Fluorotelomer sulfonate F(CF2)4CH2CH2SO3-6:2 FTSA 6:2 Fluorotelomer sulfonate F(CF2)6CH2CH2SO3-8:2 FTSA 8:2 Fluorotelomer sulfonate F(CF2)8CH2CH2SO3 - n:2 FTUA n:2 Fluorotelomer unsaturated acid F(CF2)n-1CF=CHCOOH 6:2 FTUA 6:2 Fluorotelomer unsaturated acid F(CF2)5CF=CHCOOH 8:2 FTUA 8:2 Fluorotelomer unsaturated acid F(CF2)7CF=CHCOOH n:3 FTCA n:3 Fluorotelomer carboxylic acid F(CF2)nCH2CH2COOH 5:3 FTCA 5:3 Fluorotelomer carboxylic acid F(CF2)5CH2CH2COOH 7:3 FTCA 7:3 Fluorotelomer carboxylic acid F(CF2)7CH2CH2COOH PFOSAm Perfluorooctanesulfonamide amine F(CF2)8SO2NHCH2CH2CH2N(CH3)2 PFOSAmS Perfluoroctanesulfonamide ammonium salt F(CF2)8SO2NHCH2CH2CH2N + (CH3)3 PFOAAmS Perfluorooctaneamide ammonium salt F(CF2)7CONHCH2CH2CH2N + (CH3)3 PFOSNO Perfluoroctanesulfonamide amine oxide F(CF2)8SO2NH(CH2)3NO(CH3)2 PFOANO Perfluorooctaneamide amine oxide F(CF2)7CONH(CH2)3NO(CH3)2 PFOSB Perfluoroctanesulfonamide betaine F(CF2)8SO2NH(CH2)3N + (CH3)2CH2COOH PFOAB Perfluorooctaneamide betaine F(CF2)7CONH(CH2)3N + (CH3)2CH2COOH 6:2FTAB 6:2 Fluorotelomer sulfonamide betaine F(CF2)6CH2CH2SO2NH(CH2)3N + (CH3)2CH2COOH 6:2FTNO 6:2 Fluorotelomer sulfonamide amine oxide F(CF2)6CH2CH2SO2NH(CH2)3NO(CH3)2 SI-4

Table SI-1 (Continued) Acronym Name Formula MPFBA Perfluoro-n-[1,2,3,4-13 C4]butanoic acid F( 13 CF2)3 13 COOH MPFHxA Perfluoro-n-[1,2-13 C2]hexanoic acid F(CF2)4 13 CF2 13 COOH MPFOA Perfluoro-n-[1,2,3,4-13 C4]octanoic acid F(CF2)4( 13 CF2)3 13 COOH MPFNA Perfluoro-n-[1,2,3,4,5-13 C5]nonanoic acid F(CF2)4( 13 CF2)4 13 COOH MPFDA Perfluoro-n-[1,2-13 C2]decanoic acid F(CF2)8 13 CF2 13 COOH MPFUdA Perfluoro-n-[1,2-13 C2]undecanoic acid F(CF2)9 13 CF2 13 COOH MPFDoA Perfluoro-n-[1,2-13 C2]dodecanoic acid F(CF2)10 13 CF2 13 COOH MPFHxS Perfluoro-1-hexane[ 18 O2]sulfonate F(CF2)6SO 16 O2 - MPFOS Perfluoro-1-[1,2,3,4-13 C4]octanesulfonate F(CF2)4( 13 CF2)4SO3 - d-etfosa-m Ethyl-d5-perfluorooctanesulfonamide F(CF2)8SO2NHCD2CD3 M6:2 FTUA 2H-perfluoro-[1,2-13 C2]-2-octenoic acid F(CF2)5CF= 13 CH 13 COOH M8:2 FTUA 2H-perfluoro-[1,2-13 C2]-1-decenoic acid F(CF2)7CF= 13 CH 13 COOH M6:2 FTSA 1H,1H,2H,2H-perfluoro-1-[1,2-13 C2]-octane sulfonate F(CF2)6 13 CH2 13 CH2SO3 - M8:2 FTSA 1H,1H,2H,2H-perfluoro-1-[1,2-13 C2]-decane sulfonate F(CF2)8 13 CH2 13 CH2SO3 - SI-5

Soil sampling The following map shows the location of Lac-Mégantic, Québec (Canada). Figure SI- 1. Location of Lac-Mégantic Four sets of samples were used for the study: background soil, soil collected in 2013, soil collected in 2015 and soil sampled from treatment biopiles. Details are given below. Background soil This soil was used to investigate the background PFASs levels before the accident, as well as to optimize the extraction method. It was sampled next to Chaudière River, approximately 5km away of the derailment site in Lac-Mégantic (Québec, Canada), on the east shore of the river - opposite side to the river than that of the accident. Figure SI- 2. Location of background soil collection. SI-6

Soil collected in 2013 Soil samples were collected on October 17 th, 2013 from 12 points close to the shore of Chaudière River. The location of the sampling stations is shown in the following aerial view. Figure SI- 3. Zoom map of the sampled stations (Picture corresponding to July 10, 2013). For reference, the following photograph, taken 7 days after the accident, shows the location of the sampling stations and also the site of the derailment (on the top-left corner) Figure SI- 4. Map of the location of the sampling area. SI-7

Soil collected in 2015 After the accident on July, 2013, the most heavily contaminated soil was excavated for offsite treatment. The remediation process is ongoing and some remaining soil was not excavated until 2015. Soil was sampled on July 15, 2013. Figure SI- 5 shows the location of the corresponding sampling points. Figure SI- 5. Map showing the location of the sampling points in July 2015. Soil sampled from biopiles in 2015 The contaminated soil resulting from the derailment was excavated for offsite treatment in biopiles by LVM, with the objective of remediating the high content of petroleum hydrocarbons in soil. Three biopiles constructed between 2013 and 2014 were sampled on July 15, 2015. SI-8

Aqueous Film Forming Foams used during the 2013 firefighting at Lac- Mégantic Golder Associés, 2014 1 Table SI- 2. AFFF used during emergency measures Brand name Product name Composition (according to MSDS) Ansul Ansulite ARC 3x6 Diethylene glycol butyl ether (3 7 %) Other (>60%) Chemguard Angus Fire Chemguard AR- AFFF C363 Niagara 1/3 AR- AFFF Ansul SILV-EX Plus Lauryl alcohol (1 2.5 %) Propylene glycol (2.5 10 %) Other (>90%) Williams Fire Thunderstorm FC- 601A AR-AFFF Unifoam Unifoam A4P 3/6 Foam National Foam Universal Plus 3% / 6% AR-AFFF Diethylene glycol butyl ether (4 7 %) Proprietary hydrocarbon surfactants mixture (% not provided) Proprietary fluorosurfactant mixture (% not provided) Polysaccharide gum (1 2 %) Water (70 80 %) Sodium Chloride (5 10 %) 2-methylpentane-2,4-diol (1 7 %) 1,3,5-tris(2-hydroxyethyl)-hexahydro-1,3,5-triazine (0.1-0.5 %) Iron (II) chloride (< 0.2 %) Water ( balance ) Diethylene glycol butyl ether (4 13 %) Proprietary hydrocarbon surfactants mixture (% not provided) Proprietary fluorosurfactant mixture (% not provided) Polysaccharide gum (1 2 %) Water ( balance ) Diethylene glycol butyl ether (3 7 %) Perfluoroalkylated polymer (< 2%) Dipropylene glycol methyl ether (2-5%) Proprietary mixture of synthetic detergents (4 10 %) Fluoroalkyl surfactant (0.5 2 %) Polysaccharide (0.5 2 %) Water (78 93 %) SI-9

Hydrocarbons in soil The concentration of petroleum hydrocarbon (C10-C50) in soil was investigated according to CEAEQ reference method. 2 Table SI- 3. Petroleum hydrocarbon (C10-C50) and moisture content in analyzed samples. Moisture C10-C50 Soil content (%) (mg/kg) LM2015-1 9.5 <100 LM2015-2 7.8 150 LM2015-3 11 <100 LM2015-4 12 <100 LM2015-5 8.9 <100 LM2015-6 8.2 <100 LM2015-7 7.3 320 LM2015-8 (10 cm) 14 3200 LM2015-8 (20 cm) 15 2500 LM2015-8 (30 cm) 17 2400 LM2015-9 16 3800 RC2013-1 13 2100 RC2013-2 13 1900 RC2013-3 14 240 RC2013-4 12 210 RC2013-5 16 26000 RC2013-6 20 24000 RC2013-7 24 25000 RC2013-8 21 110 RC2013-9 4.1 7100 RC2013-10 23 12000 RC2013-11 12 <100 RC2013-12 23 4900 BP1 11 1400 BP2 14 410 BP2rep 14 570 BP5 12 <100 BP5rep 9.8 270 Class A 300 Class B 700 Class C 3500 SI-10

Sample preparation The extraction method is detailed elsewhere. 3 Approximately 2 grams of soil were placed in a 15mL polypropylene centrifuge tube, 2.5 ml of MeOH with 0.1%NH 4OH were added to each tube and the tubes were sonicated for 30 min and shaken in a rotational shaker for 60 min. They were centrifuged for 15 min at 4000g and the supernatant was pipetted out. The extraction was repeated two more times in the same fashion. The combined extracts were concentrated under a gentle stream of nitrogen at 40-45 C to a volume of 2mL. The concentrated extracts were mixed with 50±5mg of ENVICarb for cleanup, vortexed for 30s and centrifuged at 20,000g for 20 min. The supernatant was pipetted out and stored at -20 C until analysis. Before analysis, the samples were spiked with a mix of all the internal standards for a final concentration of 2ng/mL each. SI-11

Analytical methods Details on the analytical methods are described in tables SI-3 to SI-5. Table SI- 4. Quantitative analytical method Instrument Ionization Acquisition mode Analytical column Delay column Column Temperature 40 C Mobile Phases Shimadzu Nexera UHPLC coupled to an AB Sciex 5500 QTrap mass spectrometer Positive and negative electrospray Multiple reaction monitoring (MRM) Agilent Zorbax SB-C8, 3.5 μm, 100 x 2.1 mm Kinetex EVO C18, 5 μm, 50 x 3.1 mm A: 0.15% acetic acid in LC-MS water B: 0.15% acetic acid in acetonitrile Gradient Profile Time (min) Percentage B Time (min) 1.0 5 1.0 7.0 95 7.0 9.0 95 9.0 9.1 5 9.1 11.5 Stop 11.5 Injection Volume Calibration Quantified compounds 5 μl Linear calibration curve, 1/x weighted Analyte PFBA PFPeA PFHxA PFHpA PFOA PFNA PFDA PFUdA PFDoA PFTrDA PFTeDA PFHxDA PFBS PFHxS PFHpS PFOS PFDS 4:2FTSA RT (min) 1.39 2.89 3.87 4.51 5.04 5.50 5.93 6.32 6.71 7.09 7.45 8.22 3.83 5.04 5.47 5.86 6.54 3.53 Analyte 6:2FTSA 8:2FTSA 6:2FTUA 8:2FTUA 5:3FTCA 7:3FTCA EtFOSA FOSAA FOSA PFOSAm PFOSAmS PFOAAmS PFOSNO PFOANO PFOSB PFOAB 6:2 FTAB 6:2 FTNO RT (min) 4.73 5.61 6.09 7.17 6.27 7.23 8.37 7.19 7.46 7.29 7.44 6.19 7.39 6.21 6.28 5.33 5.27 6.12 SI-12

Table SI- 5. Monitored transitions for quantitative analytical method Compound Ionization mode Quantifying transition Qualifying transition Internal standard IS transition PFBA MRM 213 > 169 MPFBA 217 > 172 PFPeA MRM 263 > 219 MPFHxA 315 > 270 PFHxA MRM 313 > 269 313 > 119 MPFHxA 315 > 270 PFHpA MRM 363 > 319 363 > 169 MPFOA 417 > 372 PFOA MRM 413 > 369 413 > 169 MPFOA 417 > 372 PFNA MRM 463 > 419 463 > 219 MPFNA 468 > 423 PFDA MRM 513 > 469 513 > 169 MPFDA 515 > 470 PFUdA MRM 563 > 519 563 > 169 MPFUdA 565 > 520 PFDoA MRM 613 > 569 613 > 219 MPFDoA 615 > 570 PFTrDA MRM 663 > 619 663 > 219 MPFDoA 615 > 570 PFTeDA MRM 713 > 669 713 > 219 MPFDoA 615 > 570 PFHxDA MRM 813 > 769 813 > 169 MPFDoA 615 > 570 PFBS MRM 299 > 80 299 > 99 MPFHxS 403 > 103 PFHxS MRM 399 > 80 399 > 99 MPFHxS 403 > 103 PFHpS MRM 499 > 80 499 > 99 MPFOS 503 > 80 PFOS MRM 549 > 80 549 > 99 MPFOS 503 > 80 PFDS MRM 599 > 80 599 > 99 MPFOS 503 > 80 EtFOSA MRM 526 > 169 526 > 219 d-etfosa-m 531 > 169 FOSAA MRM 556 > 498 556 > 80 d-etfosa-m 531 > 169 FOSA MRM 498 > 80 498 > 64 d-etfosa-m 531 > 169 4:2 FTSA MRM 327 > 80 327 > 307 M6:2 FTSA 429 > 81 6:2 FTSA MRM 427 > 80 427 > 407 M6:2 FTSA 429 > 81 8:2 FTSA MRM 527 > 80 527 > 507 M8:2 FTSA 529 > 81 6:2 FTUA MRM 357 > 293 357 > 143 M6:2 FTUA 359 > 294 8:2 FTUA MRM 457 > 393 457 > 243 M8:2 FTUA 459 > 394 5:3 FTCA MRM 341 > 237 341 > 217 MPFOA 417 > 372 7:3 FTCA MRM 441 > 237 441 > 317 MPFDA 515 > 470 PFOSAm MRM 583 > 169 599 > 219 MPFOS 503 > 80 PFOSAmS +MRM 599 > 448 599 > 476 MPFOS 503 > 80 PFOAAmS +MRM 513 > 454 513 > 426 MPFOA 417 > 372 PFOSNO MRM 599 > 538 599 > 169 MPFOS 503 > 80 PFOANO MRM 513 > 452 513 > 169 MPFOA 417 > 372 PFOSB MRM 641 > 538 641 > 483 MPFOS 503 > 80 PFOAB MRM 555 > 452 555 > 378 MPFOA 417 > 372 6:2 FTAB +MRM 569 > 446 571 > 120 M6:2 FTSA 429 > 81 6:2 FTNO +MRM 527 > 446 529 > 120 M6:2 FTSA 429 > 81 SI-13

Table SI- 6. Qualitative analytical method Instrument Ionization Dionex UHPLC system coupled to a Q-Exactive Orbitrap mass spectrometer Positive and negative heated electrospray Acquisition mode Full scan MS mode (R: 70,000 at m/z = 200) t-ms 2 mode Analytical Column Column Temperature 40 C Mobile Phases Thermo C18 Hypersil Gold column, 1.9 μm, 100 x 2.1mm A: 0.1% formic acid in LCMS water B: 0.1% formic acid in acetonitrile Gradient Profile: Time (min) Percentage B Flow Rate (ml/min) 0.0 10 0.550 7.0 72.5 0.550 8.5 100 0.550 12.5 100 0.550 12.6 10 0.550 15.5 10 (Stop) 0.550 Injection Volume 5 μl (Full scan) 10 μl (t-ms 2 ) SI-14

Details on calibration curve Details on the calibration of each analyte can be found in Table SI-7. The limit of detection (LOD) is defined as the lowest concentration at which S/N>3; the limit of quantitation (LOQ) is the lowest concentration at which 80%<Accuracy<120%. The concentration expressed in ng/ml is aproximately equivalent to ng/g (dry soil), since 2g of soil were extracted and the final volume of extract brought to 2mL. Table SI- 7. LOD, LOQ and linearity range for each analyte (ng/ml). Analyte LOD LOQ Linearity range PFBA 0.20 0.50 0.50 20 PFPeA 0.05 0.10 0.10 20 PFHxA 0.01 0.05 0.05 20 PFHpA 0.01 0.02 0.02 20 PFOA 0.01 0.02 0.02 20 PFNA 0.02 0.05 0.05 50 PFDA 0.02 0.05 0.05 50 PFUdA 0.05 0.10 0.10 50 PFDoA 0.05 0.10 0.10 50 PFTrDA 0.02 0.05 0.05 50 PFTeDA 0.02 0.05 0.05 50 PFBS 0.02 0.05 0.05 50 PFHxS 0.01 0.02 0.02 50 PFHpS 0.01 0.02 0.02 20 PFOS 0.01 0.02 0.02 20 PFDS 0.01 0.02 0.02 50 EtFOSA 0.02 0.05 0.05 20 FOSAA 0.005 0.01 0.01 20 FOSA 0.01 0.02 0.02 20 4:2 FTSA 0.01 0.02 0.02 50 6:2 FTSA 0.02 0.05 0.05 50 8:2 FTSA 0.02 0.05 0.05 20 6:2 FTUA 0.05 0.10 0.10-20 8:2 FTUA 0.01 0.05 0.05 20 5:3 FTCA 0.20 0.50 0.50 50 7:3 FTCA 0.10 0.20 0.20 50 PFOSNO 0.10 0.20 0.20 100 PFOANO 1.0 1.0 1.0 100 PFOSB 0.10 0.10 0.10 100 PFOAB 0.10 0.20 0.20 100 6:2 FTAB 0.20 1.0 1.0 100 6:2 FTNO 2.0 2.0 2.0 100 PFOSAm 0.20 0.50 0.50 100 PFOSAmS 0.50 1.0 1.0 50 PFOAAmS 0.05 0.10 0.10 50 SI-15

Investigated families of PFASs The structures investigated in a qualitative manner have been previously reported 4-8. All the following structures were scouted qualitatively with high resolution mass spectrometry. Table SI- 8. Investigated families of PFASs. Acronym Name Structure Reference Perfluoroalkyl carboxylic acid Backe et al. 2013 PFCA PFSA FASA Perfluoroalkyl sulfonic acid Perfluoroalkyl sulfonamide Place and Field 2012 Backe et al. 2013 EtFASA Ethyl-perfluoroalkyl sulfonamide FASAA Perfluoroalkyl sulfonamidoacetic acid n:3 FTCA n:3 fluorotelomer carboxylic acid n:2 FTSA n:2 fluorotelomer sulfonic acid Backe et al. 2013 n:2 FTUA n:2 fluorotelomer unsaturated acid PFAAAm Perfluoroalkylamido amine PFASAm Perfluoroalkylsulfonamido amine Place and Field 2012 Backe et al. 2013 D Agostino and Mabury 2013 PFAAAmS Perfluoroalkyl-amido ammonium salt D Agostino and Mabury 2013 PFASAmS Perfluorotalkylsulfonamido ammonium salt SI-16

PFAANO Perfluoroalkyl-amido amine oxide D Agostino and Mabury 2013 PFASNO PFAAB PFASB n:2 FTNO n:2 FTAB Perfluorotalkylsulfinamido amine oxide Perfluoroalkyl-amido betaine Perfluoroalkylsulfonamido betaine n:2 fluorotelomer sulfonamde alkyl amine oxide n:2 fluorotelomer sulfonamide alkyl betaine n:2 fluorotelomer sulfonamide D Agostino and Mabury 2013 Backe et al. 2013 D Agostino and Mabury 2013 Backe et al. 2013 D Agostino and Mabury 2013 Place and Field 2012 Backe et al. 2013 D Agostino and Mabury 2013 Munoz et al. 2017 n:2 FTA n:3 FTB n:1:2 FTB n:2 FTSAS n:2 FTSASsulfoxide n:2 FTSHA n:2 FTSHAsulfoxide n:2:1 FTSC n:2 fluorotelomer sulfonamide amine n:3 fluorotelomer betaine n:1:2 fluorotelomer betaine n:2 fluorotelomermercaptoalkylamido sulfonate n:2 fluorotelomermercaptoalkylamido sulfonate-sulfoxide n:2 fluorotelomerthiohydroxyl ammonium n:2 fluorotelomerthiohydroxyl ammonium-sulfoxide n:2:1 fluorotelomermercaptoalkyl carboxylate Place and Field 2012 Backe et al. 2013 D Agostino and Mabury 2013 Place and Field 2012 Backe et al. 2013 D Agostino and Mabury 2013 Place and Field 2012 Backe et al. 2013 D Agostino and Mabury 2013 Place and Field 2012 Backe et al. 2013 D Agostino and Mabury 2013 Place and Field 2012 Backe et al. 2013 D Agostino and Mabury 2013 D Agostino and Mabury 2013 D Agostino and Mabury 2013 SI-17

n:2:2 FTSC n:2 FTSAB n:2 FTSAAC n:2 FTSAA n:2:2 fluorotelomermercaptoalkyl carboxylate n:2 fluorotelomerthioalkylamido betaine n:2 fluorotelomerthioalkylamido amine carboxylate Fluorotelomer thioalkylamido amine D Agostino and Mabury 2013 D Agostino and Mabury 2013 Place and Field 2012 8 D Agostino and Mabury 2013 n:2 FTSoAAmS PFAAiPrE PFASAC Fluorotelomer sulfinyl alkylamido ammonium D Agostino and Mabury 2013 Perfluoroalkyl-amido amine isopropylester Backe et al. 2013 8 Perfluoroalkylsulfonamido amino carboxylate Place and Field 2012 D Agostino and Mabury 2013 PFASBC Perfluoroalkylsulfonamido betaine carboxylate Place and Field 2012 D Agostino and Mabury 2013 PFACHS Perfluoroalkyl cyclohexane sulfonate Quantification of PFASs with and without standards The quantification of PFASs was classified in three different categories, depending on the quantitation performance: Quantitative (Qn), Semi-quantitative (Sq) and Indicative (Ql), explained below: o o Quantitative (Qn). Only those compound for which there are true standards (see Table SI-1) and that were analyzed in MRM mode are considered quantitative. Semi-quantitative (Sq). For families of compounds for which there is one true standard, the available compound is used to estimate the concentration of the rest of the congeners in the family with different chain lengths. This is accomplished in high resolution full scan MS mode, by assuming an equimolar response when compared to SI-18

o the standard and using the same internal standard for all the compounds in the family and the available native standard. Such is the case of n:2ftsa, n:2ftab and n:2ftno. For instance, 10:2-FTSA was semi-quantified based on the calibration curve of 8:2- FTSA and using M8:2-FTSA as internal standard. Indicative (Ql). For families of compounds for which there is not a true standard, the concentration is estimated by comparison with the calibration curve of a compound with a similar structure. As with the case of the semi-quantitation, an equimolar response is assumed, using the same internal standard as for the available analyte. Alhtough these results are only indicative, they can still be useful to to compare the order of magnitude of the analyte concentration between different types of samples. Table SI-8 shows a list of the proposed analytes with the reference standard used for estimation of the concentration. SI-19

Table SI- 9. Semiquantitative and indicative analytes and corresponding reference analytes. Analyte n Reference compound Internal standard n:2 FTSA 10, 12 8:2 FTSA M8:2 FTSA n:2 FTAB 8, 10, 12, 14 6:2 FTAB M6:2 FTSA n:2 FTNO 8, 10 6:2 FTNO M6:2 FTSA n:2 FTA 4, 6, 8, 10, 12 PFOSAm MPFOS n:3 FTB 5, 7, 9, 11, 13, 15 6:2FTAB M6:2FTS n:1:2 FTB 5, 7, 9, 11, 13, 15 6:2FTAB M6:2FTS n:2 FTSAS 6, 8, 10, 12, 14 8:2FTS M8:2FTS n:2 FTSAS-sulfoxide 6, 8, 10, 12 8:2FTS M8:2FTS n:2 FTSHA 4, 6, 8, 10, 12 PFOSAmS MPFOS SI-20

n:2 FTSHA-sulfoxide 4, 6, 8, 10 PFOSAmS MPFOS n:2 FTSAB 6, 8, 10, 12, 14 6:2FTAB M6:2FTS n:2 FTSAA 6, 8, 10, 12, 14 PFOSAm MPFOS n:2 FTSoAAmS 6, 8, 10 PFOSAmS MPFOS Compounds from Table SI-8 that were not detected in any of the samples have been omitted from Table SI-9. SI-21

Levels of PFASs in the background soil Clean soil collected from upstream Rivière Chaudière was extracted as described previously to establish the background levels of all quantifiable analytes in soil. Background concentrations in soil are presented in Table SI-10. Table SI- 10. Background PFASs concentrations in a clean soil Background concentration in soil ± SD (n=3) ng/g (dw) PFBA 0.507 ± 0.104 PFPeA 0.274 ± 0.048 PFHxA 0.199 ± 0.041 PFHpA 0.196 ± 0.020 PFOA 0.250 ± 0.036 PFNA 0.212 ± 0.021 PFDA 0.117 ± 0.012 PFUdA 0.150 ± 0.011 PFDoA 0.065 ± 0.009 PFTrDA 0.009 ± 0.013 PFTeDA 0.009 ± 0.013 PFBS 0.035 ± 0.008 PFHxS 0.015 ± 0.003 PFHpS 0.002 ± 0.003 PFOS 0.160 ± 0.013 PFDS 0.040 ± 0.004 EtFOSA <LOD FOSA 0.005 ± 0.002 FOSAA 0.012 ± 0.007 4:2 FTSA <LOD 6:2 FTSA <LOD 8:2 FTSA 0.030 ± 0.007 6:2 FTUA 0.167 ± 0.124 8:2 FTUA 0.028 ± 0.002 5:3 FTCA 0.126 ± 0.029 7:3 FTCA <LOD PFOSAm <LOD PFOSAmS <LOD PFOAAmS <LOD PFOSNO <LOD PFOANO <LOD PFOSB 0.120 ± 0.030 PFOAB <LOD 6:2 FTAB <LOD 6:2 FTNO <LOD SI-22

PFASs concentrations - Quantitative analytes Table SI- 11. Concentrations of quantitative PFASs in soils (ng/g) LM2015-1 LM2015-2 LM2015-3 LM2015-4 PFBA 1.06 ± 0.08 0.879 ± 0.203 0.627 ± 0.209 0.565 ± 0.064 PFPeA 3.06 ± 0.23 2.35 ± 0.39 3.46 ± 0.04 1.04 ± 0.09 PFHxA 1.11 ± 0.09 0.759 ± 0.078 1.66 ± 0.04 0.457 ± 0.050 PFHpA 0.648 ± 0.027 0.444 ± 0.050 0.821 ± 0.038 0.214 ± 0.014 PFOA 0.450 ± 0.030 0.320 ± 0.033 0.264 ± 0.020 0.073 ± 0.002 PFNA 0.138 ± 0.032 0.094 ± 0.004 0.048 ± 0.003 0.031 ± 0.023 PFDA 0.058 ± 0.003 0.094 ± 0.024 <LOD <LOD PFUdA 0.045 ± 0.063 0.044 ± 0.062 <LOD <LOD PFDoA <LOD <LOD <LOD <LOD PFTrDA <LOD <LOD 0.015 ± 0.021 <LOD PFTeDA <LOD <LOD <LOD <LOD PFBS 1.25 ± 0.88 <LOD <LOD <LOD PFHxS 0.017 ± 0.012 0.018 ± 0.012 <LOD <LOD PFHpS <LOD <LOD <LOD <LOD PFOS 0.173 ± 0.016 0.220 ± 0.047 0.054 ± 0.012 0.031 ± 0.012 PFDS 0.042 ± 0.010 0.048 ± 0.016 <LOD <LOD 4:2 FTSA 0.066 ± 0.035 0.117 ± 0.093 0.034 ± 0.049 0.029 ± 0.012 6:2 FTSA 0.075 ± 0.053 0.041 ± 0.029 <LOD <LOD 8:2 FTSA 0.071 ± 0.101 <LOD <LOD <LOD EtFOSA <LOD 0.041 ± 0.029 <LOD 0.017 ± 0.024 FOSA 0.033 ± 0.023 0.032 ± 0.007 0.006 ± 0.009 0.024 ± 0.006 FOSAA <LOD <LOD 0.010 ± 0.001 0.007 ± 0.005 5:3 FTCA 0.681 ± 0.179 0.804 ± 0.279 0.327 ± 0.232 0.796 ± 0.391 7:3 FTCA 0.169 ± 0.120 0.290 ± 0.251 0.601 ± 0.314 0.886 ± 0.468 6:2 FTUA 0.341 ± 0.208 0.176 ± 0.249 0.297 ± 0.128 0.180 ± 0.255 8:2 FTUA 0.086 ± 0.028 0.089 ± 0.025 0.041 ± 0.002 0.087 ± 0.037 6:2 FTAB 3.16 ± 1.73 2.05 ± 1.41 1.97 ± 0.43 2.84 ± 0.66 PFOSB <LOD <LOD <LOD <LOD 6:2 FTNO <LOD <LOD <LOD <LOD PFOSNO <LOD <LOD <LOD <LOD PFOANO <LOD <LOD <LOD <LOD PFOSAm <LOD <LOD <LOD <LOD PFOSAmS <LOD <LOD 0.156 ± 0.220 <LOD ΣPFCA 6.58 ± 0.41 4.98 ± 0.79 6.89 ± 0.24 2.38 ± 0.16 ΣPFSA 1.11 ± 1.26 0.286 ± 0.056 0.054 ± 0.012 0.031 ± 0.012 ΣPFAA 7.69 ± 1.56 5.27 ± 0.83 6.95 ± 0.23 2.41 ± 0.17 ΣPFASs 12.4 ± 3.55 8.91 ± 2.22 10.4 ± 0.7 7.28 ± 1.18 TPH <100 150 <100 <100 SI-23

LM2015-5 LM2015-6 LM2015-7 LM2015-8 (10) PFBA 2.42 ± 0.70 0.634 ± 0.154 1.20 ± 0.06 0.731 ± 0.094 PFPeA 13.0 ± 3.3 4.23 ± 0.40 4.66 ± 0.14 3.54 ± 0.09 PFHxA 7.22 ± 1.65 2.05 ± 0.33 1.70 ± 0.04 3.48 ± 0.23 PFHpA 3.31 ± 0.71 1.05 ± 0.15 0.554 ± 0.020 1.22 ± 0.09 PFOA 1.42 ± 0.35 0.728 ± 0.099 0.363 ± 0.040 1.87 ± 0.04 PFNA 0.396 ± 0.228 0.192 ± 0.012 0.111 ± 0.041 0.777 ± 0.342 PFDA 0.121 ± 0.048 0.127 ± 0.024 0.079 ± 0.023 0.550 ± 0.123 PFUdA 0.131 ± 0.110 <LOD <LOD 0.222 ± 0.058 PFDoA 0.059 ± 0.083 <LOD <LOD 0.193 ± 0.047 PFTrDA 0.129 ± 0.017 <LOD <LOD 0.106 ± 0.042 PFTeDA 0.130 ± 0.117 <LOD <LOD 0.078 ± 0.008 PFBS <LOD <LOD <LOD 0.093 ± 0.038 PFHxS 0.011 ± 0.015 0.007 ± 0.010 <LOD 0.129 ± 0.030 PFHpS <LOD <LOD <LOD 0.089 ± 0.079 PFOS 0.121 ± 0.030 0.144 ± 0.018 0.134 ± 0.020 0.376 ± 0.089 PFDS <LOD 0.035 ± 0.009 0.018 ± 0.013 0.221 ± 0.029 4:2 FTSA 0.128 ± 0.033 0.024 ± 0.020 0.033 ± 0.007 0.201 ± 0.166 6:2 FTSA 0.893 ± 0.155 0.495 ± 0.189 0.176 ± 0.122 7.00 ± 0.64 8:2 FTSA 0.772 ± 0.157 0.383 ± 0.089 0.082 ± 0.029 3.98 ± 0.24 EtFOSA 0.038 ± 0.027 0.034 ± 0.024 0.034 ± 0.026 0.073 ± 0.009 FOSA 0.075 ± 0.019 0.030 ± 0.011 0.043 ± 0.024 0.055 ± 0.039 FOSAA 0.129 ± 0.071 <LOD <LOD 0.106 ± 0.038 5:3 FTCA 1.09 ± 0.37 1.51 ± 0.14 1.05 ± 1.09 4.14 ± 1.56 7:3 FTCA 0.861 ± 0.113 0.410 ± 0.269 0.373 ± 0.069 1.05 ± 1.09 6:2 FTUA 0.048 ± 0.069 <LOD 0.103 ± 0.145 0.473 ± 0.382 8:2 FTUA 0.253 ± 0.078 0.044 ± 0.001 0.080 ± 0.038 0.138 ± 0.061 6:2 FTAB 3.17 ± 0.35 2.26 ± 0.52 2.19 ± 1.57 11.3 ± 1.3 PFOSB <LOD <LOD <LOD <LOD 6:2 FTNO <LOD <LOD <LOD <LOD PFOSNO <LOD 0.017 ± 0.025 <LOD <LOD PFOANO <LOD <LOD <LOD 0.477 ± 0.675 PFOSAm <LOD <LOD <LOD <LOD PFOSAmS <LOD <LOD <LOD <LOD ΣPFCA 28.3 ± 7.2 9.01 ± 1.16 8.66 ± 0.28 12.8 ± 0.4 ΣPFSA 0.132 ± 0.043 0.186 ± 0.033 0.152 ± 0.007 0.908 ± 0.145 ΣPFAA 28.4 ± 7.3 9.19 ± 1.19 8.82 ± 0.28 13.7 ± 0.5 ΣPFASs 35.9 ± 8.2 14.4 ± 1.6 13.0 ± 0.8 42.7 ± 2.9 TPH <100 <100 320 3200 SI-24

LM2015-8 (20) LM2015-8 (30) LM2015-9 BP1 PFBA 1.60 ± 0.10 0.872 ± 0.077 0.991 ± 0.079 30.2 ± 2.5 PFPeA 5.27 ± 0.33 2.13 ± 0.22 4.83 ± 0.84 157 ± 28 PFHxA 3.47 ± 0.22 1.54 ± 1.15 3.94 ± 0.82 109 ± 21 PFHpA 1.94 ± 0.39 0.607 ± 0.015 1.44 ± 0.33 15.1 ± 3.0 PFOA 2.97 ± 0.50 0.922 ± 0.034 2.05 ± 0.42 8.59 ± 1.93 PFNA 0.459 ± 0.051 0.200 ± 0.022 0.563 ± 0.220 1.37 ± 0.34 PFDA 0.257 ± 0.013 0.180 ± 0.053 0.275 ± 0.042 1.30 ± 0.33 PFUdA 0.166 ± 0.094 <LOD 0.177 ± 0.160 0.267 ± 0.056 PFDoA 0.072 ± 0.052 <LOD <LOD 0.483 ± 0.109 PFTrDA <LOD 0.050 ± 0.070 0.052 ± 0.038 0.047 ± 0.035 PFTeDA <LOD <LOD <LOD 0.125 ± 0.027 PFBS <LOD 0.123 ± 0.055 0.071 ± 0.052 0.081 ± 0.115 PFHxS 0.085 ± 0.029 0.234 ± 0.021 0.057 ± 0.020 0.058 ± 0.010 PFHpS 0.057 ± 0.041 0.132 ± 0.046 0.032 ± 0.004 0.027 ± 0.023 PFOS 0.219 ± 0.037 0.178 ± 0.017 0.294 ± 0.073 0.195 ± 0.055 PFDS 0.067 ± 0.035 0.119 ± 0.085 0.057 ± 0.041 0.064 ± 0.030 4:2 FTSA 0.405 ± 0.072 0.234 ± 0.106 0.050 ± 0.037 0.120 ± 0.021 6:2 FTSA 1.11 ± 0.55 3.47 ± 0.35 1.58 ± 0.28 71.1 ± 31.8 8:2 FTSA 0.818 ± 0.442 1.54 ± 0.26 2.17 ± 0.36 46.5 ± 9.1 EtFOSA 0.068 ± 0.017 0.132 ± 0.040 0.074 ± 0.010 0.018 ± 0.026 FOSA 0.058 ± 0.055 0.062 ± 0.013 0.051 ± 0.024 0.066 ± 0.023 FOSAA <LOD 0.012 ± 0.009 <LOD <LOD 5:3 FTCA 1.23 ± 0.58 6.62 ± 0.85 2.94 ± 0.56 1.95 ± 0.83 7:3 FTCA 0.213 ± 0.188 0.542 ± 0.168 0.472 ± 0.200 0.158 ± 0.112 6:2 FTUA 0.172 ± 0.243 0.308 ± 0.240 0.275 ± 0.196 0.255 ± 0.190 8:2 FTUA 0.088 ± 0.015 0.142 ± 0.099 0.064 ± 0.009 0.047 ± 0.002 6:2 FTAB 8.18 ± 3.38 10.1 ± 1.4 12.8 ± 1.5 138 ± 33 PFOSB <LOD <LOD <LOD <LOD 6:2 FTNO <LOD <LOD <LOD 0.322 ± 0.228 PFOSNO <LOD 0.116 ± 0.163 <LOD <LOD PFOANO 0.334 ± 0.473 <LOD <LOD 0.266 ± 0.376 PFOSAm <LOD <LOD <LOD <LOD PFOSAmS <LOD <LOD <LOD <LOD ΣPFCA 16.2 ± 1.4 6.50 ± 1.20 14.3 ± 2.6 323 ± 55 ΣPFSA 0.428 ± 0.030 0.786 ± 0.108 0.511 ± 0.104 0.425 ± 0.211 ΣPFAA 16.6 ± 1.3 7.28 ± 1.11 14.8 ± 2.5 323 ± 55 ΣPFASs 29.3 ± 5.3 30.6 ± 3.3 35.3 ± 3.7 582 ± 128 TPH 2500 2400 3800 1400 SI-25

BP2 BP22 BP5 BP52 PFBA 6.74 ± 0.38 5.38 ± 0.24 12.0 ± 8.9 0.639 ± 0.177 PFPeA 48.9 ± 1.30 34.1 ± 2.7 31.2 ± 42.7 1.92 ± 0.27 PFHxA 20.3 ± 0.7 15.2 ± 1.2 26.7 ± 37.3 0.759 ± 0.095 PFHpA 8.29 ± 0.45 6.33 ± 0.34 6.17 ± 8.43 0.382 ± 0.057 PFOA 4.27 ± 0.32 3.06 ± 0.06 3.88 ± 5.33 0.230 ± 0.037 PFNA 0.566 ± 0.061 0.506 ± 0.068 0.581 ± 0.764 0.092 ± 0.029 PFDA 0.174 ± 0.021 0.148 ± 0.005 0.492 ± 0.696 0.019 ± 0.027 PFUdA 0.024 ± 0.034 <LOD 0.096 ± 0.135 <LOD PFDoA <LOD <LOD 0.206 ± 0.292 <LOD PFTrDA <LOD <LOD 0.020 ± 0.028 <LOD PFTeDA <LOD <LOD 0.046 ± 0.066 <LOD PFBS 0.015 ± 0.021 <LOD 0.053 ± 0.075 <LOD PFHxS 0.016 ± 0.002 0.034 ± 0.018 0.039 ± 0.030 0.034 ± 0.016 PFHpS <LOD <LOD 0.013 ± 0.018 <LOD PFOS 0.151 ± 0.043 0.148 ± 0.006 0.157 ± 0.082 0.146 ± 0.032 PFDS 0.020 ± 0.003 0.022 ± 0.001 0.049 ± 0.045 0.023 ± 0.001 4:2 FTSA 0.067 ± 0.022 0.081 ± 0.044 0.084 ± 0.083 0.113 ± 0.065 6:2 FTSA 1.37 ± 0.28 0.986 ± 0.123 17.5 ± 24.7 0.082 ± 0.025 8:2 FTSA 0.647 ± 0.178 0.597 ± 0.095 14.6 ± 20.7 0.129 ± 0.021 EtFOSA <LOD 0.016 ± 0.023 <LOD 0.036 ± 0.026 FOSA 0.026 ± 0.010 0.053 ± 0.022 0.013 ± 0.018 0.040 ± 0.013 FOSAA <LOD <LOD <LOD <LOD 5:3 FTCA 0.887 ± 0.229 1.00 ± 0.28 0.990 ± 0.820 1.48 ± 0.71 7:3 FTCA 0.263 ± 0.252 0.249 ± 0.044 0.368 ± 0.062 0.276 ± 0.252 6:2 FTUA 0.225 ± 0.165 0.412 ± 0.307 0.050 ± 0.071 <LOD 8:2 FTUA 0.033 ± 0.004 0.104 ± 0.020 0.084 ± 0.037 0.068 ± 0.014 6:2 FTAB 13.0 ± 2.9 13.1 ± 0.6 68.9 ± 96.0 1.70 ± 0.66 PFOSB <LOD <LOD <LOD <LOD 6:2 FTNO <LOD <LOD 0.171 ± 0.241 <LOD PFOSNO <LOD <LOD <LOD <LOD PFOANO 0.344 ± 0.487 <LOD <LOD <LOD PFOSAm <LOD <LOD <LOD <LOD PFOSAmS <LOD <LOD <LOD <LOD ΣPFCA 89.2 ± 3.1 64.7 ± 4.1 78.3 ± 98.1 4.04 ± 0.49 ΣPFSA 0.202 ± 0.024 0.203 ± 0.025 0.312 ± 0.249 0.203 ± 0.025 ΣPFAA 89.4 ± 3.1 64.9 ± 4.1 78.7 ± 98.1 4.25 ± 0.50 ΣPFASs 106 ± 6 81.5 ± 4.6 181 ± 251 8.18 ± 0.76 TPH 410 570 <100 270 SI-26

RC2013-1 RC2013-2 RC2013-3 RC2013-4 PFBA 3.22 ± 0.15 2.10 ± 0.17 6.25 ± 0.25 1.56 ± 0.03 PFPeA 21.6 ± 1.1 14.1 ± 0.9 27.2 ± 0.8 7.02 ± 0.38 PFHxA 25.9 ± 0.9 11.1 ± 0.7 12.6 ± 0.4 3.22 ± 0.16 PFHpA 3.45 ± 0.18 2.13 ± 0.10 4.51 ± 0.08 1.33 ± 0.03 PFOA 3.45 ± 0.19 2.19 ± 0.10 2.96 ± 0.11 1.36 ± 0.03 PFNA 0.543 ± 0.068 0.649 ± 0.049 1.11 ± 0.07 0.444 ± 0.037 PFDA 0.371 ± 0.027 0.417 ± 0.018 0.478 ± 0.027 0.197 ± 0.021 PFUdA 0.144 ± 0.002 0.162 ± 0.005 0.133 ± 0.003 0.118 ± 0.007 PFDoA 0.164 ± 0.030 0.162 ± 0.005 0.133 ± 0.003 <LOD PFTrDA <LOD 0.076 ± 0.002 0.062 ± 0.001 0.055 ± 0.003 PFTeDA 0.067 ± 0.001 0.051 ± 0.036 0.020 ± 0.028 <LOD PFBS 0.094 ± 0.037 0.049 ± 0.035 0.103 ± 0.104 <LOD PFHxS 0.051 ± 0.030 0.042 ± 0.013 0.044 ± 0.045 0.008 ± 0.011 PFHpS 0.025 ± 0.019 0.021 ± 0.015 0.030 ± 0.005 <LOD PFOS 0.178 ± 0.010 0.291 ± 0.022 0.241 ± 0.057 0.182 ± 0.015 PFDS 0.044 ± 0.022 0.071 ± 0.021 0.024 ± 0.018 0.018 ± 0.013 4:2 FTSA 0.292 ± 0.270 0.114 ± 0.036 0.107 ± 0.124 0.046 ± 0.004 6:2 FTSA 40.6 ± 1.5 30.2 ± 1.0 53.9 ± 2.2 1.23 ± 0.07 8:2 FTSA 9.58 ± 0.19 9.46 ± 0.07 11.2 ± 0.4 1.71 ± 0.06 EtFOSA <LOD <LOD <LOD <LOD FOSA 0.024 ± 0.018 0.031 ± 0.024 0.046 ± 0.015 0.007 ± 0.010 FOSAA <LOD <LOD <LOD <LOD 5:3 FTCA 2.25 ± 0.29 2.02 ± 0.75 1.02 ± 0.29 0.735 ± 0.288 7:3 FTCA 0.347 ± 0.080 0.398 ± 0.115 0.400 ± 0.196 0.384 ± 0.208 6:2 FTUA 0.095 ± 0.067 0.214 ± 0.303 0.043 ± 0.061 0.039 ± 0.055 8:2 FTUA 0.074 ± 0.023 0.104 ± 0.029 0.150 ± 0.073 0.095 ± 0.011 6:2 FTAB 149 ± 11 92.1 ± 11.8 442 ± 73 40.6 ± 2.8 PFOSB <LOD <LOD <LOD <LOD 6:2 FTNO <LOD <LOD <LOD <LOD PFOSNO <LOD <LOD <LOD <LOD PFOANO <LOD <LOD <LOD <LOD PFOSAm <LOD <LOD <LOD <LOD PFOSAmS <LOD <LOD <LOD 0.172 ± 0.243 ΣPFCA 58.9 ± 2.5 33.1 ± 1.9 55.4 ± 1.7 15.3 ± 0.6 ΣPFSA 0.392 ± 0.065 0.474 ± 0.055 0.442 ± 0.140 0.208 ± 0.033 ΣPFAA 59.3 ± 2.5 33.6 ± 1.9 55.9 ± 1.9 15.5 ± 0.6 ΣPFASs 261 ± 16 168 ± 13 565 ± 78 60.6 ± 3.4 TPH 2100 1900 240 210 SI-27

RC2013-5 RC2013-6 RC2013-7 RC2013-8 PFBA 3.04 ± 0.55 4.77 ± 0.81 6.04 ± 1.35 2.87 ± 0.14 PFPeA 4.86 ± 0.57 13.5 ± 0.6 8.95 ± 0.56 11.3 ± 0.5 PFHxA 18.2 ± 1.8 49.3 ± 2.2 37.8 ± 3.2 5.37 ± 0.33 PFHpA 10.8 ± 1.0 7.51 ± 0.22 15.0 ± 1.1 2.70 ± 0.17 PFOA 21.6 ± 0.5 13.3 ± 0.5 29.0 ± 1.9 2.04 ± 0.11 PFNA 16.1 ± 1.5 9.26 ± 0.25 19.0 ± 1.1 0.698 ± 0.077 PFDA 24.5 ± 1.1 18.2 ± 0.5 30.5 ± 2.7 0.327 ± 0.027 PFUdA 7.94 ± 0.71 4.23 ± 0.17 8.59 ± 0.89 0.255 ± 0.059 PFDoA 13.9 ± 1.1 9.44 ± 0.65 18.6 ± 0.9 <LOD PFTrDA 3.14 ± 0.29 1.41 ± 0.06 3.53 ± 0.14 0.066 ± 0.047 PFTeDA 7.17 ± 1.00 5.41 ± 0.17 9.83 ± 0.64 <LOD PFBS 2.37 ± 1.14 0.475 ± 0.040 3.15 ± 1.72 <LOD PFHxS 0.622 ± 0.150 0.747 ± 0.197 0.697 ± 0.203 0.053 ± 0.075 PFHpS 0.801 ± 0.302 0.080 ± 0.017 0.626 ± 0.117 <LOD PFOS 8.476 ± 0.73 6.39 ± 0.16 9.34 ± 0.40 0.509 ± 0.036 PFDS 0.597 ± 0.165 0.321 ± 0.081 0.687 ± 0.245 0.058 ± 0.011 4:2 FTSA 0.771 ± 0.420 0.511 ± 0.414 1.22 ± 0.79 0.106 ± 0.078 6:2 FTSA 1302 ± 29 402 ± 46 1903 ± 223 231 ± 19 8:2 FTSA 304 ± 27 214 ± 25 376 ± 36 163 ± 12 EtFOSA <LOD 0.043 ± 0.030 0.055 ± 0.039 <LOD FOSA 0.741 ± 0.080 0.536 ± 0.033 0.983 ± 0.041 0.052 ± 0.014 FOSAA 0.025 ± 0.002 0.022 ± 0.002 0.015 ± 0.011 <LOD 5:3 FTCA 5.38 ± 0.68 16.1 ± 0.2 6.02 ± 1.16 2.40 ± 1.66 7:3 FTCA 8.96 ± 0.90 8.28 ± 0.18 14.5 ± 1.7 0.280 ± 0.198 6:2 FTUA 3.01 ± 0.47 4.02 ± 0.18 1.42 ± 0.16 0.458 ± 0.246 8:2 FTUA 2.38 ± 0.25 3.42 ± 0.06 2.26 ± 0.25 0.120 ± 0.049 6:2 FTAB 1828 ± 28 1122 ± 136 1908 ± 70 35.2 ± 5.8 PFOSB 0.424 ± 0.047 0.306 ± 0.079 0.344 ± 0.115 <LOD 6:2 FTNO <LOD <LOD <LOD <LOD PFOSNO <LOD <LOD 0.027 ± 0.039 <LOD PFOANO 0.760 ± 0.557 2.08 ± 2.94 1.97 ± 2.79 <LOD PFOSAm 4.57 ± 1.00 4.78 ± 0.57 8.20 ± 0.49 <LOD PFOSAmS <LOD <LOD <LOD <LOD ΣPFCA 131 ± 9 136 ± 4 187 ± 14 25.6 ± 1.3 ΣPFSA 12.9 ± 1.9 8.01 ± 0.08 14.5 ± 2.3 0.619 ± 0.079 ΣPFAA 144 ± 11 144 ± 4 201 ± 16 26.2 ± 1.2 ΣPFASs 3606 ± 75 1923 ± 201 4425 ± 310 459 ± 31 TPH 26000 24000 25000 110 SI-28

RC2013-9 RC2013-10 RC2013-11 RC2013-12 PFBA 0.527 ± 0.052 0.957 ± 0.182 0.622 ± 0.053 11.5 ± 0.7 PFPeA 1.73 ± 0.14 3.27 ± 0.14 1.06 ± 0.14 49.9 ± 2.2 PFHxA 4.10 ± 0.08 9.34 ± 0.28 0.581 ± 0.096 29.3 ± 1.7 PFHpA 1.02 ± 0.06 1.39 ± 0.06 0.307 ± 0.026 12.5 ± 0.6 PFOA 2.06 ± 0.17 2.81 ± 0.13 0.326 ± 0.029 7.19 ± 0.46 PFNA 1.14 ± 0.08 0.905 ± 0.180 0.138 ± 0.009 2.92 ± 0.33 PFDA 6.00 ± 0.21 1.56 ± 0.11 0.018 ± 0.026 1.53 ± 0.04 PFUdA 2.36 ± 0.04 0.690 ± 0.055 <LOD 0.772 ± 0.074 PFDoA 4.20 ± 0.15 1.56 ± 0.09 <LOD 0.622 ± 0.129 PFTrDA 0.695 ± 0.040 0.170 ± 0.022 <LOD 0.256 ± 0.031 PFTeDA 2.05 ± 0.14 0.704 ± 0.085 <LOD 0.290 ± 0.059 PFBS 0.115 ± 0.067 0.174 ± 0.079 <LOD 0.502 ± 0.242 PFHxS 0.040 ± 0.012 0.055 ± 0.039 <LOD 0.139 ± 0.068 PFHpS 1.62 ± 2.20 0.064 ± 0.006 <LOD 0.033 ± 0.026 PFOS 1.88 ± 0.19 0.945 ± 0.079 0.097 ± 0.017 0.616 ± 0.070 PFDS 12.2 ± 8.72 0.049 ± 0.017 <LOD 0.267 ± 0.076 4:2 FTSA 0.162 ± 0.045 0.324 ± 0.226 0.013 ± 0.018 0.085 ± 0.083 6:2 FTSA 106 ± 5 57.2 ± 1.8 0.202 ± 0.017 89.7 ± 5.2 8:2 FTSA 65.3 ± 1.7 40.4 ± 0.6 0.479 ± 0.060 35.4 ± 1.7 EtFOSA <LOD 0.019 ± 0.027 <LOD <LOD FOSA 0.135 ± 0.015 0.495 ± 0.564 0.103 ± 0.066 0.080 ± 0.011 FOSAA <LOD <LOD <LOD <LOD 5:3 FTCA 1.75 ± 0.27 3.75 ± 1.15 0.439 ± 0.310 12.7 ± 3.1 7:3 FTCA 0.599 ± 0.102 2.01 ± 0.34 0.340 ± 0.307 1.61 ± 0.53 6:2 FTUA 0.182 ± 0.091 0.181 ± 0.128 0.309 ± 0.261 0.263 ± 0.250 8:2 FTUA 0.146 ± 0.006 0.215 ± 0.050 0.053 ± 0.005 0.204 ± 0.054 6:2 FTAB 142 ± 7 62.7 ± 11.6 2.77 ± 0.44 1226 ± 155 PFOSB 0.034 ± 0.048 0.051 ± 0.072 <LOD <LOD 6:2 FTNO 0.452 ± 0.044 1.18 ± 0.08 <LOD <LOD PFOSNO <LOD 0.024 ± 0.034 <LOD <LOD PFOANO <LOD <LOD <LOD <LOD PFOSAm 0.527 ± 0.052 0.663 ± 0.066 <LOD <LOD PFOSAmS 0.159 ± 0.225 0.237 ± 0.335 <LOD <LOD ΣPFCA 25.9 ± 0.7 23.4 ± 1.0 3.05 ± 0.27 117 ± 5 ΣPFSA 12.4 ± 14.3 1.29 ± 0.08 0.097 ± 0.017 1.56 ± 0.24 ΣPFAA 38.3 ± 13.9 24.7 ± 1.1 3.15 ± 0.26 118 ± 6 ΣPFASs 356 ± 13 194 ± 11 7.86 ± 0.78 1485 ± 144 TPH 7100 12000 <100 4900 SI-29

Trends of PFASs concentration profiles Table SI- 12. Summary of the statistics of the correlation of several pairs of key components. Independent Dependent Sample type Slope Tau p-value TPH ΣPFASs 2013 0.112 0.533 4.60E-06 2015 0.00700 0.436 1.48E-04 Biopile 0.265 0.495 9.72E-03 ΣPFASs ΣPFCAs 2013 0.0468 0.751 1.28E-10 2015 0.408 0.631 2.64E-07 Biopile 0.569 0.943 1.16E-06 ΣPFASs ΣFTSAs 2013 0.442 0.808 4.51E-12 2015 0.139 0.714 5.20E-09 Biopile 0.100 0.905 2.94E-06 ΣPFASs 6:2 FTAB 2013 0.512 0.778 2.73E-11 2015 0.294 0.600 9.74E-07 Biopile 0.225 0.790 4.95E-05 ΣFTSAs ΣPFCAs 2013 0.0769 0.606 2.10E-07 2015 1.47 0.438 3.52E-04 Biopile 3.77 0.876 5.72E-06 SI-30

Short-chain versus long-chain PFASs 1.0 RC2013-1 RC2013-2 RC2013-3 RC2013-4 RC2013-5 RC2013-6 RC2013-7 RC2013-8 RC2013-9 RC2013-10 RC2013-11 RC2013-12 BP1 BP2 BP22 BP5 BP52 LM2015-1 LM2015-2 LM2015-3 LM2015-4 LM2015-5 LM2015-6 LM2015-7 LM2015-8 (10) LM2015-8 (20) LM2015-8 (30) LM2015-9 Fraction of long chain PFAS, estimation 0.8 0.6 0.4 0.2 0.0 Figure SI- 6. Fraction of the long-chain PFASs relative to the total PFASs that were estimated using a semi-quantification approach. SI-31

List of detected PFASs in Full Scan MS mode The list of all detected PFASs in full scan MS mode is presented in the following table, along with theoretical and observed m/z, error and retention time. Table SI- 13. Detected PFASs in full scan MS mode Acronym M +, [M+H] + or [M-H] - Theoretical m/z Observed m/z Error (ppm) Retention time min) MPFBA [ 13 C4F7O2] - 216.99262 216.99244-0.830 2.19 MPFHxA [ 13 C2C4F1102] - 314.97952 314.98013 1.937 4.01 MPFOA [ 13 C4C4F15O2] - 416.97985 416.98049 1.535 5.27 MPFNA [ 13 C5C4F17O2] - 467.98001 467.98056 1.175 5.83 MPFDA [ 13 C2C8F19O2] - 514.96675 514.96704 0.563 6.36 MPFUdA [ 13 C2C9F21O2] - 564.96356 564.96413 1.009 8.86 MPFDoA [ 13 C2C10F23O2] - 614.96036 614.96072 0.585 7.33 MPFHxS [C6F13S 18 O2O] - 402.94510 402.94560 1.241 5.38 MPFOS [ 13 C4C4F17SO3] - 502.94364 502.94431 1.332 6.46 d-etfosa-m [ 13 C2C6F13H4SO3] - 428.97462 428.97518 1.305 4.96 M6:2 FTUA [ 13 C2C8F17H4SO3] - 528.96823 528.96895 1.361 6.02 M8:2 FTUA [ 13 C2C6F12HO2] - 358.98575 358.98617 1.170 6.29 M6:2 FTSA [ 13 C2C8F16HO2] - 458.97937 458.97973 0.784 7.39 M8:2 FTSA [C10F17D5NSO2] - 531.00847 531.00923 1.431 8.27 PFBA [C4F7O2] - 212.97920 212.97898-1.033 2.15 PFPeA [C5F9O2] - 262.97601 262.97643 1.597 3.16 PFHxA [C6F11O2] - 312.97281 312.97340 1.885 3.96 PFHpA [C7F13O2] - 362.96962 362.97024 1.708 4.61 PFOA [C8F15O2] - 412.96643 412.96711 1.647 5.20 PFNA [C9F17O2] - 462.96323 462.96398 1.620 5.73 PFDA [C10F19O2] - 512.96004 512.96042 0.741 6.24 PFUdA [C11F21O2] - 562.95685 562.95735 0.888 6.74 PFDoA [C12F23O2] - 612.95365 612.95438 1.191 7.19 PFTrDA [C13F25O2] - 662.95046 662.95155 1.644 7.66 PFTeDA [C14F27O2] - 712.94727 712.94820 1.304 8.05 PFBS [C4F9SO3] - 298.94299 298.94343 1.472 3.96 PFHxS [C6F13SO3] - 398.93661 398.93709 1.203 5.30 PFHpS [C7F15SO3] - 448.93341 448.93409 1.515 5.94 PFOS [C8F17SO3] - 498.93022 498.93128 2.125 6.37 PFDS [C10F21SO3] - 598.92383 598.92441 0.968 7.29 EtFOSA [C10F17H5NSO2] - 525.97750 525.97819 1.312 8.27 FOSAA [C10F17H3NSO4] - 555.95168 555.95195 0.486 7.33 FOSA [C8F17HNSO2] - 497.94620 497.94774 3.093 7.45 4:2 FTSA [C6F9H4SO3] - 326.97429 326.97478 1.499 3.68 6:2 FTSA [C8F13H4SO3] - 426.96791 426.96840 1.148 4.90 8:2 FTSA [C10F17H4SO3] - 526.96152 526.96196 0.835 5.94 6:2 FTUA [C8F12HO2] - 356.97904 356.97961 1.597 6.29 8:2 FTUA [C10F16HO2] - 456.97266 456.97306 0.875 7.39 5:3 FTCA [C8F11H4O2] - 341.00411 341.00454 1.261 6.17 7:3 FTCA [C10F15 H4 O2] - 440.99773 440.99812 0.884 7.25 PFOSAm [C13F17H14N2SO2] + 585.04990 585.04893-1.658 6.25 PFOSAmS C14F17H16N2SO2 + 599.06555 599.06435-2.003 6.31 SI-32

Acronym M +, [M+H] + or [M-H] - Theoretical m/z Observed m/z Error (ppm) Retention time min) PFOSNO [C13F17H14N2SO3] + 601.04482 601.04393-1.481 6.31 PFOANO [C13F15H14N2O2] + 515.08103 515.08023-1.553 5.39 PFOSB [C15F17H16N2SO4] + 643.05538 643.05483-0.855 6.19 6:2FTAB [C15F13H20N2SO4] + 571.09307 571.09239-1.191 5.21 6:2FTNO [C13F13H18N2SO3] + 529.08251 529.08146-1.985 5.33 10:2 FTSA a [C12F21H4SO3] - 626.95513 626.95742 3.653 6.90 12:2 FTSA [C14F25H4SO3] - 726.94875 726.95183 4.237 7.79 8:2 FTAB b [C17F17H20N2SO4] + 671.08668 671.08681 0.194 6.22 10:2 FTAB [C19F21H20N2SO4] + 771.08030 771.08071 0.532 7.11 12:2 FTAB [C21F25H20N2SO4] + 871.07391 871.07470 0.907 7.91 14:2 FTAB [C23F29H20N2SO4] + 971.06752 971.06832 0.824 8.46 8:2 FTNO c [C 15F 17H 18N 2SO 3] + 629.07612 629.07589-0.366 6.36 10:2 FTNO [C17F21H18N2SO3] + 729.06973 729.07226 3.470 7.20 4:2 FTA [C11F9H18N2SO2] + 413.09398 413.09444 1.114 4.13 6:2 FTA d [C13F13H18N2SO2] + 513.08759 513.08784 0.487 5.31 8:2 FTA [C15F17H18N2SO2] + 613.08120 613.08204 1.370 6.30 10:2 FTA [C17F21H18N2SO2] + 713.07482 713.07578 1.346 7.17 12:2 FTA [C19F25H18N2SO2] + 813.06843 813.06939 1.181 7.93 5:3 FTB [C12F11H15NO2] + 414.09216 414.09261 1.087 4.37 7:3 FTB e [C14F15H15NO2] + 514.08578 514.08631 1.031 5.51 9:3 FTB [C16F19H15NO2] + 614.07939 614.07963 0.391 6.50 11:3 FTB [C18F23H15NO2] + 714.07300 714.07404 1.456 7.40 13:3 FTB [C20F27H15NO2] + 814.06662 814.06737 0.921 8.17 15:3 FTB [C22F31H15NO2] + 914.06023 914.06066 0.470 8.66 5:1:2 FTB [C12F12H14NO2] + 432.08274 432.08349 1.736 4.45 7:1:2 FTB f [C14F16H14NO2] + 532.07636 532.07632-0.075 5.57 9:1:2 FTB [C16F20H14NO2] + 632.06997 632.06920-1.218 6.55 11:1:2 FTB [C18F24H14NO2] + 732.06358 732.06365 0.096 7.46 13:1:2 FTB [C20F28H14NO2] + 832.05719 832.05796 0.925 8.21 15:1:2 FTB [C22F32H14NO2] + 932.05081 932.05144 0.676 8.68 6:2 FTSAS g [C15F13H17NS2O4] - 586.03969 586.04171 3.447 5.81 8:2 FTSAS [C17F17H17NS2O4] - 686.03330 686.03566 3.440 6.74 10:2 FTSAS [C19F21H17NS2O4] - 786.02692 786.03024 4.224 7.61 12:2 FTSAS [C21F25H17NS2O4] - 886.02053 886.02386 3.758 8.32 14:2 FTSAS [C23F29H17NS2O4]- 986.01414 986.01769 3.600 8.86 6:2 FTSAS sulfoxide [C16F13H22N2SO2] - 602.03461 602.03624 2.707 4.75 8:2 FTSAS sulfoxide h [C18F17H22N2SO2] - 702.02822 702.03105 4.031 5.76 10:2 FTSAS sulfoxide [C20F21H22N2SO2] - 802.02183 802.02448 3.304 6.67 12:2 FTSAS sulfoxide [C22F25H22N2SO2] - 902.01545 902.01931 4.279 7.70 4:2 FTSHA C12F9H19NSO + 396.10381 396.10410 0.732 4.49 6:2 FTSHA i C14F13H19NSO + 496.09743 496.09779 0.726 5.65 8:2 FTSHA C16F17H19NSO + 596.09104 596.08952-2.550 6.36 10:2 FTSHA C18F21H19NSO + 696.08465 696.08333-1.896 7.26 12:2 FTSHA C20F25H19NSO + 796.07827 796.07743-1.055 8.07 4:2 FTSHA sulfoxide C12F9H19NSO2 + 412.09873 412.09921 1.165 3.51 6:2 FTSHA sulfoxide C14F13H19NSO2 + 512.09234 512.09223-0.215 4.77 8:2 FTSHA sulfoxide j C16F17H19NSO2 + 612.08595 612.08662 1.095 5.80 10:2 FTSHA sulfoxide C18F21H19NSO2 + 712.07957 712.07959 0.028 6.73 6:2 FTSAB k [C17F13H22N2SO3] + 581.11381 581.11420 0.671 5.33 8:2 FTSAB [C19F17H22N2SO3] + 681.10742 681.10832 1.321 6.30 10:2 FTSAB [C21F21H22N2SO3] + 781.10103 781.10216 1.447 7.19 SI-33

Acronym M +, [M+H] + or [M-H] - Theoretical m/z Observed m/z Error (ppm) Retention time min) 12:2 FTSAB [C23F25H22N2SO3] + 881.09464 881.09520 0.636 7.99 14:2 FTSAB [C25F29H22N2SO3] + 981.08826 981.08920 0.958 8.52 6:2 FTSAA l [C15F13H20N2SO] + 523.10943 523.10889-1.032 5.45 8:2 FTSAA [C17F17H20N2SO] + 623.10304 623.10253-0.818 6.42 10:2 FTSAA [C19F21H20N2SO] + 723.09665 723.09615-0.691 7.28 12:2 FTSAA [C21F25H20N2SO] + 823.09026 823.09024-0.024 8.03 14:2 FTSAA [C23F29H20N2SO] + 923.08388 923.08311-0.834 8.48 6:2 FTSoAAmS C16F13H22N2SO2 + 553.11889 553.11846-0.777 4.75 8:2 FTSoAAmS m C18F17H22N2SO2 + 653.11250 653.11290 0.612 5.76 10:2 FTSoAAmS C20F21H22N2SO2 + 753.10612 753.10655 0.571 6.67 a b c d e f g h i j k l m MS-MS spectrum in Figure SI-7a MS-MS spectrum in Figure SI-7b MS-MS spectrum in Figure SI-7c MS-MS spectrum in Figure SI-7d MS-MS spectrum in Figure SI-7e MS-MS spectrum in Figure SI-7f MS-MS spectrum in Figure SI-7g MS-MS spectrum in Figure SI-7h MS-MS spectrum in Figure SI-7i MS-MS spectrum in Figure SI-7j MS-MS spectrum in Figure SI-7k MS-MS spectrum in Figure SI-7l MS-MS spectrum in Figure SI-7m SI-34

MS-MS spectra of qualitatively identified PFASs Figure SI- 7a. MS-MS spectrum of 10:2 FTSA

Figure SI- 7b. MS-MS spectrum of 8:2 FTAB SI-36

Figure SI- 7c. MS-MS spectrum of 8:2 FTNO SI-37

Figure SI- 7d. MS-MS spectrum of 6:2 FTA SI-38

Figure SI- 7e. MS-MS spectrum of 7:3 FTB SI-39

Figure SI- 7f. MS-MS spectrum of 7:1:2 FTB SI-40

Figure SI- 7g. MS-MS spectrum of 6:2 FTSAS SI-41

Figure SI- 7h. MS-MS spectrum of 8:2 FTSAS-sulfoxide SI-42

Figure SI- 7i. MS-MS spectrum of 6:2 FTSHA SI-43

Figure SI- 7j. MS-MS spectrum of 8:2 FTSHA-sulfoxide SI-44

Figure SI- 7k. MS-MS spectra of 6:2 FTSAB

Figure SI- 7l. MS-MS spectrum of 6:2 FTSAA

Figure SI- 7m. MS-MS spectrum of 8:2 FTSoAAmS SI-47

References 1. Golder Associés, Rapport de caractérisation de la Rivière Chaudière. In Rapport présenté au Ministère Développement Durable, de l Environnement, de la Faune et des Parcs, Direction régionale du Centre de contrôle environnemental de la Capitale-Nationale et de la Chaudière-Appalaches, 2014; p 75p. 2. CEAEQ, Détermination des hydrocarbures pétroliers (C10 à C50) : dosage par chromatographie en phase gazeuse couplée à un étecteur à ionisation de flamme. In MA. 400 - HYD. 1.1. Rev. 3, Ministère du Développement durable, de l;environnement, et Lutte contre les changements climatiques du Québec, Centre d'expertise en analyse environnementale du Québec.: 2016; p 17. 3. Mejia-Avendaño, S.; Munoz, G.; Sauvé, S.; Liu, J., Assessment of the influence of soil characteristics and hydrocarbon fuel co-contamination on the solvent extraction of per- and polyfluoroalkyl substances. Analytical Chemistry 2017, 89, (4), 2539-2546. 4. Backe, W. J.; Day, T. C.; Field, J. A., Zwitterionic, Cationic, and Anionic Fluorinated Chemicals in Aqueous Film Forming Foam Formulations and Groundwater from U.S. Military Bases by Nonaqueous Large-Volume Injection HPLC-MS/MS. Environmental Science & Technology 2013, 47, (10), 5226-5234. 5. Place, B. J.; Field, J. A., Identification of Novel Fluorochemicals in Aqueous Film- Forming Foams Used by the US Military. Environmental Science & Technology 2012, 46, (13), 7120-7127. 6. Munoz, G.; Vo Duy, S.; Labadie, P.; Botta, F.; Budzinski, H.; Lestremau, F.; Liu, J.; Sauvé, S., Analysis of zwitterionic, cationic, and anionic poly- and perfluoroalkyl surfactants in sediments by liquid chromatography polarity-switching electrospray ionization coupled to high resolution mass spectrometry. Talanta 2016, 152, 447-456. 7. D Agostino, L. A.; Mabury, S. A., Identification of Novel Fluorinated Surfactants in Aqueous Film Forming Foams and Commercial Surfactant Concentrates. Environmental Science & Technology 2013, 48, (1), 121-129. 8. Munoz, G.; Desrosiers, M.; Duy, S. V.; Labadie, P.; Budzinski, H.; Liu, J.; Sauvé, S., Environmental Occurrence of Perfluoroalkyl Acids and Novel Fluorotelomer Surfactants in the Freshwater Fish Catostomus commersonii and Sediments Following Firefighting Foam Deployment at the Lac-Mégantic Railway Accident. Environmental Science & Technology 2017, 51, (3), 1231-1240.