CPE/EE 427, CPE 527 VLSI Design I L18: Circuit Families. Outline

Similar documents
CPE/EE 427, CPE 527 VLSI Design I Pass Transistor Logic. Review: CMOS Circuit Styles

Lecture 14: Circuit Families

CPE/EE 427, CPE 527 VLSI Design I L07: CMOS Logic Gates, Pass Transistor Logic. Review: CMOS Circuit Styles

Lecture 6: Circuit design part 1

CMPEN 411 VLSI Digital Circuits Spring 2011 Lecture 07: Pass Transistor Logic

Dynamic Combinational Circuits. Dynamic Logic

Dynamic Combinational Circuits. Dynamic Logic

Miscellaneous Lecture topics. Mary Jane Irwin [Adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.]

Digital Integrated Circuits A Design Perspective

Digital Integrated Circuits Designing Combinational Logic Circuits. Fuyuzhuo

EE141Microelettronica. CMOS Logic

COMBINATIONAL LOGIC. Combinational Logic

CPE/EE 427, CPE 527 VLSI Design I Delay Estimation. Department of Electrical and Computer Engineering University of Alabama in Huntsville

9/18/2008 GMU, ECE 680 Physical VLSI Design

Pass-Transistor Logic

COMP 103. Lecture 16. Dynamic Logic

EECS 141 F01 Lecture 17

Digital Integrated Circuits A Design Perspective

Digital EE141 Integrated Circuits 2nd Combinational Circuits

CPE/EE 427, CPE 527 VLSI Design I L06: CMOS Inverter, CMOS Logic Gates. Course Administration. CMOS Inverter: A First Look

CMOS Inverter: CPE/EE 427, CPE 527 VLSI Design I L06: CMOS Inverter, CMOS Logic Gates. Course Administration. CMOS Properties.

Properties of CMOS Gates Snapshot

ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ Εαρινό Εξάμηνο 2018

Static CMOS Circuits. Example 1

Topics. Dynamic CMOS Sequential Design Memory and Control. John A. Chandy Dept. of Electrical and Computer Engineering University of Connecticut

Static CMOS Circuits

Digital Integrated Circuits A Design Perspective

Logical Effort: Designing for Speed on the Back of an Envelope David Harris Harvey Mudd College Claremont, CA

Digital Integrated Circuits A Design Perspective

VLSI Design I; A. Milenkovic 1

5.0 CMOS Inverter. W.Kucewicz VLSICirciuit Design 1

EEE 421 VLSI Circuits

Topics. CMOS Design Multi-input delay analysis. John A. Chandy Dept. of Electrical and Computer Engineering University of Connecticut

VLSI Design I; A. Milenkovic 1

VLSI Design I; A. Milenkovic 1

CMOS Inverter (static view)

VLSI Design I; A. Milenkovic 1

CMOS logic gates. João Canas Ferreira. March University of Porto Faculty of Engineering

Power Dissipation. Where Does Power Go in CMOS?

Digital Integrated Circuits A Design Perspective

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Sciences

THE INVERTER. Inverter

Lecture 5: DC & Transient Response

CMOS Digital Integrated Circuits Lec 10 Combinational CMOS Logic Circuits

CMPEN 411 VLSI Digital Circuits. Lecture 04: CMOS Inverter (static view)

EE213, Spr 2017 HW#3 Due: May 17 th, in class. Figure 1

Integrated Circuits & Systems

EE141. Administrative Stuff

Based on slides/material by. Topic 3-4. Combinational Logic. Outline. The CMOS Inverter: A First Glance

EEC 118 Lecture #6: CMOS Logic. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: 1st Order RC Delay Models. Review: Two-Input NOR Gate (NOR2)

EEC 116 Lecture #5: CMOS Logic. Rajeevan Amirtharajah Bevan Baas University of California, Davis Jeff Parkhurst Intel Corporation

Lecture 6: DC & Transient Response

ENGR890 Digital VLSI Design Fall Lecture 4: CMOS Inverter (static view)

Lecture 16: Circuit Pitfalls

MOS Transistor Theory

The CMOS Inverter: A First Glance

Lecture 5: DC & Transient Response

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

DC and Transient Responses (i.e. delay) (some comments on power too!)

MOSFET and CMOS Gate. Copy Right by Wentai Liu

CHAPTER 15 CMOS DIGITAL LOGIC CIRCUITS

EECS 427 Lecture 8: Adders Readings: EECS 427 F09 Lecture 8 1. Reminders. HW3 project initial proposal: due Wednesday 10/7

EE5780 Advanced VLSI CAD

Topics to be Covered. capacitance inductance transmission lines

Lecture 8: Logic Effort and Combinational Circuit Design

MODULE 5 Chapter 7. Clocked Storage Elements

CMOS Transistors, Gates, and Wires

VLSI Design I; A. Milenkovic 1

EE241 - Spring 2000 Advanced Digital Integrated Circuits. Announcements

Lecture 4: Implementing Logic in CMOS

B.Supmonchai August 1st, q In-depth discussion of CMOS logic families. q Optimizing gate metrics. q High Performance circuit-design techniques

Lecture 8: Combinational Circuit Design

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Topic 4. The CMOS Inverter

Name: Answers. Grade: Q1 Q2 Q3 Q4 Q5 Total. ESE370 Fall 2015

Lecture 4: DC & Transient Response

Delay and Power Estimation

VLSI Design I; A. Milenkovic 1

Digital Integrated Circuits A Design Perspective

C.K. Ken Yang UCLA Courtesy of MAH EE 215B

CARNEGIE MELLON UNIVERSITY DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING DIGITAL INTEGRATED CIRCUITS FALL 2002

ENEE 359a Digital VLSI Design

! Charge Leakage/Charge Sharing. " Domino Logic Design Considerations. ! Logic Comparisons. ! Memory. " Classification. " ROM Memories.

Where Does Power Go in CMOS?

Name: Grade: Q1 Q2 Q3 Q4 Q5 Total. ESE370 Fall 2015

and V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS )

ECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter

Objective and Outline. Acknowledgement. Objective: Power Components. Outline: 1) Acknowledgements. Section 4: Power Components

ECE 342 Electronic Circuits. Lecture 34 CMOS Logic

Andrei Vladimirescu Homework #6 EECS141 Due Friday, April 1 st, Cory. X A B C D E F G using complementary

Lecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS

EE371 - Advanced VLSI Circuit Design

EE5311- Digital IC Design

5. CMOS Gate Characteristics CS755

Digital Integrated Circuits 2nd Inverter

Chapter 5 CMOS Logic Gate Design

ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals

! Memory. " RAM Memory. ! Cell size accounts for most of memory array size. ! 6T SRAM Cell. " Used in most commercial chips

Transcription:

CPE/EE 47, CPE 57 VLI Design I L8: Circuit Families Department of Electrical and Computer Engineering University of labama in Huntsville leksandar Milenkovic ( www.ece.uah.edu/~milenka ) www.ece.uah.edu/~milenka/cpe57-05f Outline Pseudo-nMO Logic Dynamic Logic Pass Transistor Logic 0/4/005 VLI Design I;. Milenkovic VLI Design I;. Milenkovic

Introduction What makes a circuit fast? I C dv/dt -> t pd (C/I) V low capacitance high current small swing 4 Logical effort is proportional to C/I 4 pmo are the enemy! High capacitance for a given current Can we take the pmo capacitance off the input? Various circuit families try to do this 0/4/005 VLI Design I;. Milenkovic 3 Pseudo-nMO In the old days, nmo processes had no pmo Instead, use pull-up transistor that is always ON In CMO, use a pmo that is always ON Ratio issue Make pmo about ¼ effective strength of pulldown network.8 load I ds P/.5. V out 0.9 P 4 V out V in 6/ 0.6 0.3 P 4 P 4 0 0 0.3 0.6 0.9..5.8 V in 0/4/005 VLI Design I;. Milenkovic 4 VLI Design I;. Milenkovic

Pseudo-nMO Gates Design for unit current on output to compare with unit inverter. pmo fights nmo inputs f Inverter NND NOR g u g d g avg p u p d p avg g u g d g avg p u p d p avg g u g d g avg p u p d p avg 0/4/005 VLI Design I;. Milenkovic 5 Pseudo-nMO Gates Design for unit current on output to compare with unit inverter. pmo fights nmo inputs f Inverter NND NOR /3 4/3 g u g d g avg p u p d p avg /3 8/3 8/3 g u g d g avg p u p d p avg /3 4/3 4/3 g u g d g avg p u p d p avg 0/4/005 VLI Design I;. Milenkovic 6 VLI Design I;. Milenkovic 3

Pseudo-nMO Gates Design for unit current on output to compare with unit inverter. pmo fights nmo inputs f Inverter NND NOR /3 4/3 g u 4/3 g d 4/9 g avg 8/9 p u p d p avg /3 8/3 8/3 g u 8/3 g d 8/9 g avg 6/9 p u p d p avg /3 4/3 4/3 g u 4/3 g d 4/9 g avg 8/9 p u p d p avg 0/4/005 VLI Design I;. Milenkovic 7 Pseudo-nMO Gates Design for unit current on output to compare with unit inverter. pmo fights nmo inputs f Inverter NND NOR /3 4/3 g u 4/3 g d 4/9 g avg 8/9 p u 6/3 p d 6/9 p avg /9 /3 8/3 8/3 g u 8/3 g d 8/9 g avg 6/9 p u 0/3 p d 0/9 p avg 0/9 /3 4/3 4/3 g u 4/3 g d 4/9 g avg 8/9 p u 0/3 p d 0/9 p avg 0/9 0/4/005 VLI Design I;. Milenkovic 8 VLI Design I;. Milenkovic 4

Pseudo-nMO Design Ex: Design a k-input ND gate using pseudonmo. Estimate the delay driving a fanout of H G F P N D In In k Pseudo-nMO H 0/4/005 VLI Design I;. Milenkovic 9 Pseudo-nMO Design Ex: Design a k-input ND gate using pseudonmo. Estimate the delay driving a fanout of H G * 8/9 8/9 F GH 8H/9 P + (4+8k)/9 (8k+3)/9 N D NF /N + P 4 H 8k + 3 + 3 9 In In k Pseudo-nMO H 0/4/005 VLI Design I;. Milenkovic 0 VLI Design I;. Milenkovic 5

Pseudo-nMO Power Pseudo-nMO draws power whenever 0 Called static power P I V DD few m / gate * M gates would be a problem This is why nmo went extinct! Use pseudo-nmo sparingly for wide NORs Turn off pmo when not in use en C 0/4/005 VLI Design I;. Milenkovic Dynamic Logic Dynamic gates uses a clocked pmo pullup Two modes: precharge and evaluate /3 4/3 tatic Pseudo-nMO Dynamic Precharge Evaluate Precharge 0/4/005 VLI Design I;. Milenkovic VLI Design I;. Milenkovic 6

The Foot What if pulldown network is ON during precharge? Use series evaluation transistor to prevent fight. precharge transistor inputs f inputs f foot footed unfooted 0/4/005 VLI Design I;. Milenkovic 3 Logical Effort Inverter NND NOR unfooted g d p d g d p d g d p d footed 3 3 g d g d p d 3 p d g d p d 0/4/005 VLI Design I;. Milenkovic 4 VLI Design I;. Milenkovic 7

Logical Effort Inverter NND NOR unfooted g d /3 p d /3 g d /3 p d 3/3 g d /3 p d 3/3 footed 3 3 g d /3 g d 3/3 p d 3/3 3 p d 4/3 g d /3 p d 5/3 0/4/005 VLI Design I;. Milenkovic 5 Monotonicity Dynamic gates require monotonically rising inputs during evaluation 0 -> 0 0 -> -> ut not -> 0 violates monotonicity during evaluation Precharge Evaluate Precharge Output should rise but does not 0/4/005 VLI Design I;. Milenkovic 6 VLI Design I;. Milenkovic 8

Monotonicity Woes ut dynamic gates produce monotonically falling outputs during evaluation Illegal for one dynamic gate to drive another! X Precharge Evaluate X Precharge 0/4/005 VLI Design I;. Milenkovic 7 Monotonicity Woes ut dynamic gates produce monotonically falling outputs during evaluation Illegal for one dynamic gate to drive another! X Precharge Evaluate X Precharge X monotonically falls during evaluation should rise but cannot 0/4/005 VLI Design I;. Milenkovic 8 VLI Design I;. Milenkovic 9

Domino Gates Follow dynamic stage with inverting static gate Dynamic / static pair is called domino gate Produces monotonic outputs domino ND Precharge Evaluate W Precharge W X Z C X Z dynamic NND static inverter W X H C H X Z C Z 0/4/005 VLI Design I;. Milenkovic 9 Domino Optimizations Each domino gate triggers next one, like a string of dominos toppling over Gates evaluate sequentially but precharge in parallel Thus evaluation is more critical than precharge HI-skewed static stages can perform logic 0 D0 D D 3 D3 H 4 D4 5 D5 6 D6 7 D7 0/4/005 VLI Design I;. Milenkovic 0 VLI Design I;. Milenkovic 0

Dual-Rail Domino Domino only performs noninverting functions: ND, OR but not NND, NOR, or XOR Dual-rail domino solves this problem Takes true and complementary inputs Produces true and complementary outputs sig_h 0 0 sig_l 0 0 Meaning Precharg 0 ed invalid _l inputs f f _h 0/4/005 VLI Design I;. Milenkovic Example: ND/NND Given _h, _l, _h, _l Compute _h *, _l ~( * ) 0/4/005 VLI Design I;. Milenkovic VLI Design I;. Milenkovic

Example: ND/NND Given _h, _l, _h, _l Compute _h *, _l ~( * ) Pulldown networks are conduction complements _l * _h _h * _l _l _h 0/4/005 VLI Design I;. Milenkovic 3 Example: XOR/XNOR ometimes possible to share transistors _l xnor _h _l _l _h _h xor _l _h 0/4/005 VLI Design I;. Milenkovic 4 VLI Design I;. Milenkovic

Leakage Dynamic node floats high during evaluation Transistors are leaky (I OFF 0) Dynamic value will leak away over time Formerly miliseconds, now nanoseconds! Use keeper to hold dynamic node Must be weak enough not to fight evaluation weak keeper k X H 0/4/005 VLI Design I;. Milenkovic 5 Charge haring Dynamic gates suffer from charge sharing 0 x C x C x 0/4/005 VLI Design I;. Milenkovic 6 VLI Design I;. Milenkovic 3

Charge haring Dynamic gates suffer from charge sharing 0 x C x C Charge sharing noise x V x V 0/4/005 VLI Design I;. Milenkovic 7 Charge haring Dynamic gates suffer from charge sharing 0 x C x C Charge sharing noise x C V V V x DD Cx + C 0/4/005 VLI Design I;. Milenkovic 8 VLI Design I;. Milenkovic 4

econdary Precharge olution: add secondary precharge transistors Typically need to precharge every other node ig load capacitance C helps as well x secondary precharge transistor 0/4/005 VLI Design I;. Milenkovic 9 Noise ensitivity Dynamic gates are very sensitive to noise Inputs: V IH V tn Outputs: floating output susceptible noise Noise sources Capacitive crosstalk Charge sharing Power supply noise Feedthrough noise nd more! 0/4/005 VLI Design I;. Milenkovic 30 VLI Design I;. Milenkovic 5

Domino ummary Domino logic is attractive for high-speed circuits.5 x faster than static CMO ut many challenges: Monotonicity Leakage Charge sharing Noise Widely used in high-performance microprocessors 0/4/005 VLI Design I;. Milenkovic 3 NMO Transistors in eries/parallel Primary inputs drive both gate and source/drain terminals NMO switch closes when the gate input is high X X if and X X if or Remember NMO transistors pass a strong 0 but a weak 0/4/005 VLI Design I;. Milenkovic 3 VLI Design I;. Milenkovic 6

PMO Transistors in eries/parallel Primary inputs drive both gate and source/drain terminals PMO switch closes when the gate input is low X X if and + X X if or Remember PMO transistors pass a strong but a weak 0 0/4/005 VLI Design I;. Milenkovic 33 Pass Transistor (PT) Logic 0 F 0 F Gate is static a low-impedance path exists to both supply rails under all circumstances N transistors instead of N No static power consumption Ratioless idirectional (versus undirectional) 0/4/005 VLI Design I;. Milenkovic 34 VLI Design I;. Milenkovic 7

VTC of PT ND Gate.5/0.5 0 0.5/0.5 0.5/0.5 0.5/0.5 F V out, V 0 V DD, 0 V DD V DD, 0 V DD 0 V DD 0 V in, V Pure PT logic is not regenerative - the signal gradually degrades after passing through a number of PTs (can fix with static CMO inverter insertion) 0/4/005 VLI Design I;. Milenkovic 35 NMO Only PT Driving an Inverter In V DD V x V G V V DD DD -V Tn D M M V x does not pull up to V DD, but V DD V Tn Threshold voltage drop causes static power consumption (M may be weakly conducting forming a path from V DD to GND) Notice V Tn increases of pass transistor due to body effect (V ) 0/4/005 VLI Design I;. Milenkovic 36 VLI Design I;. Milenkovic 8

Voltage wing of PT Driving an Inverter V DD In 0 V DD D 0.5/0.5 x.5/0.5 0.5/0.5 Out Voltage, V 3 0 Out In x.8v 0 0.5.5 Time, ns ody effect large V at x - when pulling high ( is tied to GND and charged up close to V DD ) o the voltage drop is even worse V x V DD -(V Tn0 + γ( ( f + V x ) - f )) 0/4/005 VLI Design I;. Milenkovic 37 Cascaded NMO Only PTs V DD V DD G M C V DD x V DD -V Tn G y M V DD Out V DD C V DD M x M y Out wing on y V DD -V Tn -V Tn wing on y V DD -V Tn Pass transistor gates should never be cascaded as on the left Logic on the right suffers from static power dissipation and reduced noise margins 0/4/005 VLI Design I;. Milenkovic 38 VLI Design I;. Milenkovic 9

olution : Level Restorer Level Restorer M Out0 0 M n M r x 0 For correct operation M r must be sized correctly (ratioed) on off M Out Full swing on x (due to Level Restorer) so no static power consumption by inverter No static backward current path through Level Restorer and PT since Restorer is only active when is high 0/4/005 VLI Design I;. Milenkovic 39 Transient Level Restorer Circuit Response 3 W/L.50/0.5 W/L n 0.50/0.5 W/L 0.50/0.5 Voltage, V W/L r.75/0.5 W/L r.50/0.5 node x never goes below V M of inverter so output never switches 0 W/L r.0/0.5 W/L r.5/0.5 0 00 00 300 400 500 Time, ps Restorer has speed and power impacts: increases the capacitance at x, slowing down the gate; increases t r (but decreases t f ) 0/4/005 VLI Design I;. Milenkovic 40 VLI Design I;. Milenkovic 0

olution : Multiple V T Transistors Technology solution: Use (near) zero V T devices for the NMO PTs to eliminate most of the threshold drop (body effect still in force preventing full swing to V DD ) low V T transistors In 0V.5V on Out In.5V off but leaking 0V sneak path Impacts static power consumption due to subthreshold currents flowing through the PTs (even if V G is below V T ) 0/4/005 VLI Design I;. Milenkovic 4 olution 3: Transmission Gates (TGs) Most widely used solution C C C C C GND C GND V DD GND C V DD C V DD Full swing bidirectional switch controlled by the gate signal C, if C 0/4/005 VLI Design I;. Milenkovic 4 VLI Design I;. Milenkovic

olution 3: Transmission Gates (TGs) Most widely used solution C C C C C GND C GND V DD GND C V DD C V DD Full swing bidirectional switch controlled by the gate signal C, if C 0/4/005 VLI Design I;. Milenkovic 43 Resistance of TG 30 5 R n W/L p 0.50/0.5 0V R p Resistance, kω 0 5 0 5 R p.5v V out R n.5v R eq W/L n 0.50/0.5 0 0 V out, V 0/4/005 VLI Design I;. Milenkovic 44 VLI Design I;. Milenkovic

Pass Transistor Circuits Use pass transistors like switches to do logic Inputs drive diffusion terminals as well as gates CMO + Transmission Gates: -input multiplexer Gates should be restoring 0/4/005 VLI Design I;. Milenkovic 45 TG Multiplexer F V DD In F In F!(In + In ) GND In In 0/4/005 VLI Design I;. Milenkovic 46 VLI Design I;. Milenkovic 3

Transmission Gate XOR 0/4/005 VLI Design I;. Milenkovic 47 Transmission Gate XOR weak 0 if! 0 on off on off!! weak if an inverter 0/4/005 VLI Design I;. Milenkovic 48 VLI Design I;. Milenkovic 4

TG Full dder C in um C out 0/4/005 VLI Design I;. Milenkovic 49 Differential TG Logic (DPL) GND F F GND V DD F F V DD ND/NND XOR/XNOR 0/4/005 VLI Design I;. Milenkovic 50 VLI Design I;. Milenkovic 5

CPL Complementary Pass-transistor Logic Dual-rail form of pass transistor logic voids need for ratioed feedback Optional cross-coupling for rail-to-rail swing L L 0/4/005 VLI Design I;. Milenkovic 5 Differential PT Logic (CPL) PT Network F F Inverse PT Network F F F F+ F ND/NND F OR/NOR F+ XOR/XNOR F 0/4/005 VLI Design I;. Milenkovic 5 VLI Design I;. Milenkovic 6

CPL Properties Differential so complementary data inputs and outputs are always available (so don t need extra inverters) till static, since the output defining nodes are always tied to V DD or GND through a low resistance path Design is modular; all gates use the same topology, only the inputs are permuted. imple XOR makes it attractive for structures like adders Fast (assuming number of transistors in series is small) dditional routing overhead for complementary signals till have static power dissipation problems 0/4/005 VLI Design I;. Milenkovic 53 CPL Full dder C in C in!um um C in C in C in C in!c out C out 0/4/005 VLI Design I;. Milenkovic 54 VLI Design I;. Milenkovic 7

CPL Full dder C in C in!um um C in C in C in C in!c out C out 0/4/005 VLI Design I;. Milenkovic 55 VLI Design I;. Milenkovic 8