Magnetic Resonance at the quantum limit and beyond

Similar documents
Circuit-QED-enhanced magnetic resonance

Electrical quantum engineering with superconducting circuits

Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble

arxiv: v1 [quant-ph] 24 Jul 2015

Dynamical Casimir effect in superconducting circuits

The SQUID-tunable resonator as a microwave parametric oscillator

Amplification, entanglement and storage of microwave radiation using superconducting circuits

Cavity Quantum Electrodynamics (QED): Coupling a Harmonic Oscillator to a Qubit

Strongly Driven Semiconductor Double Quantum Dots. Jason Petta Physics Department, Princeton University

Shallow Donors in Silicon as Electron and Nuclear Spin Qubits Johan van Tol National High Magnetic Field Lab Florida State University

Lecture 2: Double quantum dots

Controlling spin relaxation with a cavity

QIC 890/891, Module 4: Microwave Parametric Amplification in Superconducting Qubit Readout experiments

Electrical quantum engineering with superconducting circuits

Last Name _Piatoles_ Given Name Americo ID Number

Optical pumping and the Zeeman Effect

Towards quantum simulator based on nuclear spins at room temperature

LONG-LIVED QUANTUM MEMORY USING NUCLEAR SPINS

(1) Correspondence of the density matrix to traditional method

Electrical Quantum Engineering with Superconducting Circuits

Coherent oscillations in a charge qubit

Photons in the universe. Indian Institute of Technology Ropar

arxiv: v3 [cond-mat.mes-hall] 25 Feb 2011

Single Microwave-Photon Detector based on Superconducting Quantum Circuits

Interaction between surface acoustic waves and a transmon qubit

Theory for investigating the dynamical Casimir effect in superconducting circuits

Quantum optics and squeezed states of light

The Quantum Limit and Beyond in Gravitational Wave Detectors

Superconducting Qubits

Photoelectric readout of electron spin qubits in diamond at room temperature

Quantum Reservoir Engineering

Distributing Quantum Information with Microwave Resonators in Circuit QED

Lecture 7 MOS Capacitor

Elastic light scattering

Quantum Optics with Electrical Circuits: Circuit QED

Superconducting Qubits Coupling Superconducting Qubits Via a Cavity Bus

Quantum Optics in Wavelength Scale Structures

Quantum magnonics with a macroscopic ferromagnetic sphere

Exploring parasitic Material Defects with superconducting Qubits

Mechanical Quantum Systems

Let's Build a Quantum Computer!

Supplemental Material to the Manuscript Radio frequency magnetometry using a single electron spin

Quantum Computation with Neutral Atoms Lectures 14-15

Squeezed Light and Quantum Imaging with Four-Wave Mixing in Hot Atoms

Routes towards quantum information processing with superconducting circuits

Tunable Resonators for Quantum Circuits

Strong tunable coupling between a charge and a phase qubit

Dispersive Readout, Rabi- and Ramsey-Measurements for Superconducting Qubits

Metastable states in an RF driven Josephson oscillator

Quantum Computing with Superconducting Circuits

Remote entanglement of transmon qubits

Synthesizing arbitrary photon states in a superconducting resonator

Resonantly Enhanced Microwave Photonics

Quantum enhanced magnetometer and squeezed state of light tunable filter

Experimental Quantum Computing: A technology overview

Josephson qubits. P. Bertet. SPEC, CEA Saclay (France), Quantronics group

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED

Driving Qubit Transitions in J-C Hamiltonian

Quantum Mechanics. An essential theory to understand properties of matter and light. Chemical Electronic Magnetic Thermal Optical Etc.

Superconducting quantum bits. Péter Makk

PHL424: Nuclear fusion

Nanomechanics II. Why vibrating beams become interesting at the nanoscale. Andreas Isacsson Department of Physics Chalmers University of Technology

Dipole-coupling a single-electron double quantum dot to a microwave resonator

Non-linear driving and Entanglement of a quantum bit with a quantum readout

Electron spin qubits in P donors in Silicon

Quantum Optics with Propagating Microwaves in Superconducting Circuits. Io-Chun Hoi 許耀銓

Manipulating and characterizing spin qubits based on donors in silicon with electromagnetic field

Parity-Protected Josephson Qubits

Magnetic Resonance in Quantum Information

The Bose Einstein quantum statistics

Quantum Microwave Photonics:

Developing Quantum Logic Gates: Spin-Resonance-Transistors

Superconducting qubits (Phase qubit) Quantum informatics (FKA 172)

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris

The Dark Matter Radio. Kent Irwin for the DM Radio Collaboration. DM Radio Pathfinder

Nanoscale magnetic imaging with single spins in diamond

Superconducting Qubits. Nathan Kurz PHYS January 2007

Sensing the quantum motion of nanomechanical oscillators

Do we need quantum light to test quantum memory? M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky

10.5 Circuit quantum electrodynamics

Electron spin coherence exceeding seconds in high-purity silicon

Day 3: Ultracold atoms from a qubit perspective

Squeezed Light for Gravitational Wave Interferometers

Electron spins in nonmagnetic semiconductors

OBE solutions in the rotating frame

Atomic fluorescence. The intensity of a transition line can be described with a transition probability inversely

Quantum manipulation of NV centers in diamond

Acceleration to higher energies

Charge carrier density in metals and semiconductors

Electron counting with quantum dots

2015 AMO Summer School. Quantum Optics with Propagating Microwaves in Superconducting Circuits I. Io-Chun, Hoi

Doppler Correction after Inelastic Heavy Ion Scattering 238 U Ta system at the Coulomb barrier

Gravitational-Wave Detectors

Microwaves for quantum simulation in superconducting circuits and semiconductor quantum dots

arxiv: v2 [cond-mat.mes-hall] 24 Jan 2011

Superconducting Flux Qubits: The state of the field

From SQUID to Qubit Flux 1/f Noise: The Saga Continues

arxiv: v1 [quant-ph] 21 Mar 2014

Quantum optics of many-body systems

Florent Lecocq. Control and measurement of an optomechanical system using a superconducting qubit. Funding NIST NSA/LPS DARPA.

Transcription:

Magnetic Resonance at the quantum limit and beyond Audrey BIENFAIT, Sebastian PROBST, Xin ZHOU, Denis VION, Daniel ESTEVE, & Patrice BERTET Quantronics Group, SPEC, CEA-Saclay, France Jarryd J. Pla, Cheuk C. Lo & John J.L. Morton London Centre for Nanotechnology, University of College London Brian Julsgaard, Klaus Moelmer Aarhus University, Danemark

Motivation : quantum-enhanced magnetic resonance Conventional magnetic resonance spectroscopy Low sensitivity, room-temperature operation, Macroscopic samples, Spin-Field interaction classical Quantum technologies Superconducting circuits and resonators Superconducting amplifiers Quantum-enhanced magnetic resonance High sensitivity, millikelvin operation, nanoscale samples Spin-Field interaction in the quantum regime Towards single-spin detection

Pulsed Inductive Detection Electron Spin Resonance (ESR) Excite spins Echo emission B 0 Sensitivity Minimal number of spins NN mmmmmm detected with a SNR = 1 in a single echo? τ τ π/2 π echo time π π/2

Sensitivity of an inductive detection spectrometer gg resonator ωω 0, QQ TT EE B 0 τ τ π/2 π echo time L.O. I NN mmmmmm = nnnnnnnnnn SSSSSSSSSSSS ffffffff oooooo ssssssss Q

Sensitivity of an inductive detection spectrometer gg resonator ωω 0, QQ TT EE B 0 τ τ π/2 π echo time L.O. I NN mmmmmm = nnnnnnnnnn SSSSSSSSSSSS ffffffff oooooo ssssssss = CC Q Single-spin cooperativity CC = QQQQ2 TT EE ωω 0

Sensitivity of an inductive detection spectrometer nn eeee gg resonator ωω 0, QQ 50Ω @ T nn aaaaaa TT EE B 0 τ τ π/2 π echo time L.O. I NN mmmmmm = nnnnnnnnnn SSSSSSSSSSSS ffffffff oooooo ssssssss = nn II CC Q Number of noise photons in the detected quadrature bandwidth nn II = SS II(ωω) ħωω = nn eeee,ii + nn aaaaaa,ii Single-spin cooperativity CC = QQQQ2 TT EE ωω 0

Sensitivity of an inductive detection spectrometer nn eeee gg resonator ωω 0, QQ 50Ω @ T nn aaaaaa TT EE B 0 τ τ π/2 π echo time L.O. I Q NN mmmmmm = nnnnnnnnnn SSSSSSSSSSSS ffffffff oooooo ssssssss = nn II pp CC A.Bienfait et al., Nature Nano (2015) Spin polarization For spin ½ at T pp = tanh ħωω 0 2kkkk Number of noise photons in the detected quadrature bandwidth nn II = SS II(ωω) ħωω = nn eeee,ii + nn aaaaaa,ii Single-spin cooperativity CC = QQQQ2 TT EE ωω 0

EPR sensitivity : state-of-the-art 1000 NN mmmmmm 10 13 Commercial ESR spectrometer (300K) 100 nn II 10 1 NN mmmmmm 10 7 Sigillito et al., APL 2014 (1.7K) 0.1 1E-12 1E-10 1E-8 1E-6 1E-4 0.01 pp CC

Equilibrium thermal noise and quantum limit 1.5 1.0 nn eeee,ii = ΔII 2 = 1 2 coth ħωω 0 2kkkk nn eeee,ii 0.5 0.0 0 1 2 3 TT/(ħωω 0 /kk)

Equilibrium thermal noise and quantum limit 1.5 nn eeee,ii = ΔII 2 = 1 2 coth ħωω 0 2kkkk 1.0 Q I nn eeee,ii 0.5 ΔII 2 kkkk 2ħωω 0.0 0 1 2 3 TT/(ħωω 0 /kk)

Equilibrium thermal noise and quantum limit 1.5 nn eeee,ii = ΔII 2 = 1 2 coth ħωω 0 2kkkk 1.0 ΔΔII 22 = 11 22 Q I nn eeee,ii 0.5 Q I ΔII 2 kkkk 2ħωω 0 QUANTUM LIMIT 0.0 0 1 2 3 ωω 0 /2ππ = 7.3GHz TT = 20mmmm TT/(ħωω 0 /kk)

Josephson Parametric Amplifier in out Input SQUID array X. Zhou et al., PRB (2014) M. Castellanos-Beltran et al., APL (2007) C. Eichler et al., PRL (2010) N. Bergeal et al., Nature (2010) 12/61

Josephson Parametric Amplifier in out ωω 0 (Φ) DC bias SQUID array ΦΦ ΦΦ ΦΦ ΦΦ X. Zhou et al., PRB (2014) 13/61

Josephson Parametric Amplifier in out ωω 0 (Φ) Working ΦΦ DC bias AC pump tone ωω pp 2ωω 0 X. Zhou et al., PRB (2014) 14/61

JPA in non-degenerate mode signal ωω in DC bias AC pump tone ωω pp 2ωω in Quantum-limited (ωω iiii ωω pp /22)/2222 (MHz) nn aaaaaa = 1/4 X. Zhou et al., PRB (2014) 15/61

JPA in degenerate mode signal ωω in Pump phase DC bias AC pump tone ωω pp = 2ωω in Noiseless amplifier X. Zhou et al., PRB (2014) 16/61

Quantum limited ESR with Parametric Amplifier ωω 0 π/2 π B 0 φφ ππ/2 φφ LLLL φφ pppppppp π/2

Quantum limited ESR with Parametric Amplifier 2D lumped element Superconducting Al resonator ω 0 /2π = 7.24 GHz, Q = 3 10 5

Quantum limited ESR with Parametric Amplifier B 0 Q = 3 10 5 5 µm Spins 100 nm B 0 28 Si 2D lumped element Superconducting Al resonator

Quantum limited ESR with Parametric Amplifier B 0 Q = 3 10 5 5 µm Spins 100 nm B 0 28 Si 2D lumped element Superconducting Al resonator Spin-resonator coupling gg 2222 = 55555555

The Spins: bismuth donors in silicon e - 209 Bi Bi +

The Spins: bismuth donors in silicon e - 209 Bi e - Bi + HH ħ = AAII SS + BB 00 ( γγ ee SS γγ nn II) HYPERFINE ZEEMAN EFFECT Electronic spin = 1/2 20 electro-nuclear states! Nuclear spin I=9/2 Large hyperfine coupling AA = 1.4754GHz 2ππ

The Spins: Bi donors in 28 Si At low-field B 0 =0 B 0 0 F = 5 m F 5 5 A/2π 7.37 GHz F = 4 m F -5 m F 4 m F -4 209 Bi HH ħ = AAII SS + BB 00 ( γγ ee SS γγ nn II) HYPERFINE ZEEMAN EFFECT Nuclear spin I=9/2 Electronic spin S=1/2 Large hyperfine coupling AA 2ππ = 1.48 GHz RE George et al., Phys Rev Lett 105 067601 (2010); GW Morley et al. Nature Materials 9 725 (2010)

The Spins: bismuth donors in silicon 10 allowed ESR-like transitions @ low B 0 28 Si Magnetic field B 0 (mt) Implanted Bismuth mf = 4 mf = 5, @~5 mt

Sensitivity of the setup? How many spins? SNR? JPA off : SNR = 0.7 JPA on : SNR = 7 A. Bienfait et al., Nature Nanotechnology 11, 253 257 (2016)

Spectrometer single-shot sensitivity ΔSS zz = 1.2 10 4 + SNR = 7 Estimated sensitivity per echo : NN mmmmmm = 1.2 104 7 = 1.7 10 3 spins Quantitative agreement with expected sensitivity A. Bienfait et al., Nature Nanotechnology 11, 253 257 (2016)

Absolute sensitivity and spin relaxation time TT 1 Repetition rate?? Limited by time TT 1 needed for spins to reach thermal equilibrium TT = 0 TT T 1 = 0.35 s A Q Spectrometer absolute sensitivity : 1700 spin/ HHHH «Short» T 1 due to spontaneous emission in the cavity (Purcell effect)

Spin relaxation dependence on detuning ωω 0, QQ gg γγ PP 11 TT 11 = γγ PP + ΓΓ NNNN γγ PP = 4QQgg2 ωω 0 1 1 + 4QQ 2 ωω ss ωω 0 ωω 0 2 A. Bienfait et al., Nature (2016)

EPR sensitivity : summary 1000 NN mmmmmm 10 13 Commercial ESR spectrometer (300K) nn II 100 10 1 QUANTUM LIMIT NN mmmmmm 10 7 Sigillito et al., APL 2014 (1.7K) NN mmmmmm = 22 1111 33 10 4 improvement over state-of-the-art A.Bienfait et al., Nature Nano (2015) 0.1 1E-12 1E-10 1E-8 1E-6 1E-4 0.01 pp CC C. Eichler et al., arxiv(2016)

Increasing sensitivity with narrower wire B 0 1 mm 100 um width: 500nm π π/2 π T 1 = 21 ms gg/2ππ = 440 Hz

EPR sensitivity : summary 1000 NN mmmmmm 10 13 Commercial ESR spectrometer (300K) B 0 nn II 100 10 1 QUANTUM LIMIT NN mmmmmm 10 7 Sigillito et al., APL 2014 (1.7K) C. Eichler et al., arxiv(2016) A.Bienfait et al., Nature Nano (2015) NN mmmmmm = 22 1111 33 0.1 1E-12 1E-10 1E-8 1E-6 1E-4 0.01 pp CC 10 4 improvement over state-of-the-art Below QL?? NN mmmmmm = 333333 S. Probst (2016)

Quantum squeezed states below the quantum limit 1.5 1.0 nn eeee,ii = 1 2 coth ħωω 0 2kkkk Q I nn eeee,ii Q 0.5 0 I Q I 0.0 0 1 2 3 TT/(ħωω 0 /kk) QUANTUM LIMIT QUANTUM SQUEEZING

Measurements beyond the quantum limit using squeezing Giovanetti, Lloyd, Maccone, Science (2004) Optical domain Squeezed state production Slusher et al., PRL (1985) L. Wu et al., PRL (1986) Phase measurements in an interferometer Caves, PRD (1981) Grangier et al., PRL (1987), Xiao et al., PRL (1987) LIGO, Nature Phys (2011), Nature Photonics (2013) Spectroscopy Polzik et al., PRL (1992) Imaging Treps et al., Science (2003) M.A. Taylor et al., Nature Phot. (2013) Atomic magnetometry F Wolfgramm et al., PRL (2010) Microwave domain Squeezed state production Movshovitch, Yurke, PRL 65, 1419 (1990) Mallet et al., PRL 106, 220502 (2011) Quantum physics experiments Gardiner, PRL (1986) Murch et al., Nature (2012) Toyli et al., arxiv (2016) Proposals for qubit state readout N. Didier et al., PRL 115, 093604 (2015) N. Didier et al., PRL 115, 203601 (2015) Here : squeezing-enhanced pulsed magnetic resonance detection

Principle of the experiment 50Ω@20mmmm B 0 Spin-echo L.O. I Q

Principle of the experiment SQUEEZER B 0 Spin-echo L.O. I Q Signal-to-noise ratio on the echo signal quadrature enhanced by vacuum squeezing at spectrometer input

How to generate squeezed microwave vacuum? Q amplification phase Josephson Parametric Amplifier GG IN OUT GG 1 I Pump signal in Frequency ωω pp = 2222

Squeezed vacuum characterization L.O. SQZ JPA AMP I I quadrature (V) Time (ms) Variance of I quadratue (V²) AMP Occurences AMP 0 ππ/2 ππ Phase ( ) φφ SQZ φφ JPA Voltage (V)

Squeezed vacuum characterization Quantum noise L.O. SQZ JPA AMP I Variance of I quadratue (mv²) Quantum noise n JPA AMP Occurences AMP JPA 0 ππ/2 ππ Phase ( ) φφ SQZ φφ JPA Voltage (V)

Squeezed vacuum characterization Reduced quantum noise L.O. SQZ JPA AMP I Deamplified phase φφ SQZ φφ JPA Noise reduction: -25% Variance of I quadratue (mv²) HEMT Occurences HEMT JPA SQZ 0 ππ/2 ππ Phase ( ) φφ SQZ φφ JPA Voltage (V) R. Movshovitch et al., PRL (1990) F. Mallet et al., PRL (2011)

Spin-echo emitted in squeezed vacuum Reduced quantum noise L.O. SQZ JPA AMP I SQZ ON B 0 Average 2000 Noise reduction: -25% SQZ ON SQZ OFF ECHO, SQZ ON ECHO, SQZ OFF Occurences Voltage (V) 40/61

Spin-echo emitted in squeezed vacuum SNR enhancement by 12% Proof of concept! Currently limited by microwave losses Average 2000 SQZ ON SQZ OFF ECHO, SQZ ON ECHO, SQZ OFF Occurences Voltage (V) 41/61

Conclusions Magnetic Resonance enhanced by quantum technologies (superconducting circuits) Magnetic resonance detection with unprecedented sensitivity (reaching the quantum limit) Towards single-spin sensitivity Quantum fluctuations of the field affect spin dynamics (Purcell effect) Dynamical control of T 1 by tuning spin frequency Useful for Dynamical Nuclear Polarization? Proof-of-principle that squeezing can improve sensitivity of magnetic resonance beyond quantum limit. Improving amount of squeezing becomes techn. relevant.

Quantronics group, CEA Saclay Acknowledgements University College London Aarhus University, Danemark D. ESTEVE D. VION A. BIENFAIT Y. KUBO S. PROBST J. PLA J. MORTON Quantronics Group B. JULSGAARD K. MOELMER POSITIONS OPEN X. ZHOU P. CAMPAGNE P. JAMONNEAU UC Berkeley T. SCHENKEL