Tests der Wirkung von PCE-Fließmitteln auf Stoffe für Ressourcen-effizienten, nachhaltigen Beton

Similar documents
Impact of some parameters on rheological properties of cement paste in combination with PCE-based Plasticizers

THE ASSESMENT AND CONTROL OF THE RHEOLOGICAL PROPERTIES OF SELF-COMPACTING CONCRETE IN A CONCRETE MIXER

ASSESSMENT OF RHEOLOGICAL EFFECTS IN THE BINDER ON THE RHEOLOGY OF MORTAR

CONTRIBUTION OF THE COARSE AGGREGATE FRACTION TO RHEOLOGY

Rheological Properties of Fresh Building Materials

Physical and chemical characteristics of natural limestone fillers: mix properties and packing density

The Rheological and Mechanical Properties of Self-Compacting Concrete with High Calcium Fly Ash

Influence of mixing intensity on the hardening of cement suspensions in two-stage mixing processes

Development of a New Test Method to Evaluate Dynamic Stability of Self-Consolidating Concrete

Rheology Testing of Deep Foundation Concrete

Influence of superplasticizers on rheological behaviour of fresh cement mortars

Rheological Properties of Self-Consolidating Concrete Stabilized With Fillers or Admixtures

Cement & Concrete Composites

HEALTH MONITORING OF EARLY AGE CONCRETE

Investigating Shear-Induced Particle Migration in Fresh Cement Mortars

THE VALUE OF COLLOIDAL SILICA FOR ENHANCED DURABILITY IN HIGH FLUIDITY CEMENT BASED MIXES

PCE WITH WELL-DEFINED STRUCTURES AS POWERFUL CONCRETE SUPERPLASTICIZERS FOR ALKALI-ACTIVATED BINDERS

Rheological studies on the flow behavior of twophase solid-liquid materials

5th International RILEM Symposium on Self-Compacting Concrete 3-5 September 2007, Ghent, Belgium

Brite EuRam Proposal No. BE Brite EuRam Contract No. BRPR-CT

ESTIMATION OF BINGHAM RHEOLOGICAL PARAMETERS OF SCC FROM SLUMP FLOW MEASUREMENT

NUTC R333. Influence of Mixing Procedure on Robustness of Self-Consolidating Concrete

MECHANISMS FOR THE CHANGES IN FLUIDITY AND HYDRATION KINETICS OF GROUTS AFTER MIXING

Keywords: Zeolite powder, High-strength concrete, Plastic viscosity, Chloride-penetration resistance, Self-shrinkage.

Lignopolymer Superplasticizers for Alternative Supplementary Cementitious Materials

Health Monitoring of Early Age Concrete

20/10/2015. Results: Part 1. Elucidation of the molecular architecture of the SPs

The development of a new method for the proportioning of high-performance concrete mixtures

Mix design and performance evaluation of ultra-high performance concrete (UHPC) with basalt aggregate Li, P.; Yu, Q.; Chung, C.P.; Brouwers, H.J.H.

Liquefaction is the sudden loss of shear strength of a saturated sediment due to earthquake shaking. Nisqually earthquake 02/28/2001: Olympia, WA

Correlation between setting, heat evolution, and deformations of cementitious binder systems depending on type and amount of superplasticizer

A Very Close Precursor of Self-Compacting Concrete (SCC) By Mario Collepardi

Rheology vs. slump and washout. First encounter with rheology

AIR BUBBLE STABILITY MECHANISM OF AIR-ENTRAINING ADMIXTURES AND AIR VOID ANALYSIS OF HARDENED CONCRETE

Studies on Furan Polymer Concrete

Non-Destructive Assessment of Residual Strength of Thermally Damaged Concrete Made with Different Aggregate Types

Fly ash. Pozzolan. Project sponsored by Texas Department of Transportation (TX )

Tendency of blends for segregation

CH5716 Processing of Materials

CARBON NANOTUBES AS A NEW REINFORCEMENT MATERIAL FOR MODERN CEMENT-BASED BINDERS

Temperature Dependence of Acoustic Velocities in Gas-Saturated Sandstones

INFLUENCE OF TEMPERATURE, CEMENT AND PLASTICIZER TYPE ON THE RHEOLOGY OF PASTE

Geology 229 Engineering Geology. Lecture 7. Rocks and Concrete as Engineering Material (West, Ch. 6)

The aggregation status of nanosilicas and silica fume, used in cementitious mixtures

INFLUENCE OF SILICA COLLOID ON RHEOLOGY OF CEMENT PASTE WITH SUPERPLASTICIZER

Characterization of Sand Formation from a Crude Oilfield

NEW SUPERPLASTICISERS: FROM RESEARCH TO APPLICATIONS

16 Rainfall on a Slope

RHEOLOGY OF GEOPOLYMER: COMPARATIVE STUDY BETWEEN PORTLAND CEMENT AND METAKAOLIN BASED GEOPOLYMER

Fluid Flow Fluid Flow and Permeability

Measurement of elastic properties of kerogen Fuyong Yan, De-hua Han*, Rock Physics Lab, University of Houston

Influence of Organic-Filler on Phenol-Formaldehyde Adhesion to Wood

Washing of Aggregates - Influence on Aggregate Properties and Mortar Rheology

Science and technology of concrete admixtures / edited by Pierre-Claude Aïtcin and Robert J. Flatt. Amsterdam [etc.], cop

Nano-silica production by a sustainable process; application in building materials.

A look into Gassmann s Equation

Performance of Concrete Containing Zeolite As a Supplementary Cementitious Material

Concrete Technology Prof. B. Bhattacharjee Department of Civil Engineering Indian Institute of Science IIT Delhi. Lecture - 6 Aggregates (Size, Shape)

BIO & PHARMA ANALYTICAL TECHNIQUES. Chapter 5 Particle Size Analysis

INFLUENCE OF METAKAOLINITE AND STONE FLOUR ON THE PROPERTIES OF SELF-COMPACTING CONCRETE

Stability of Breakwaters Armored with Heavy Concrete Cubes

Impact of Water Reducers and Superplasticizers on the Hydration of Portland Cement

Trezos, Sfikas and Pavlou 3rd fib International Congress WATER PERMEABILITY OF SELF COMPACTING CONCRETE

Effect of glass powder instead of mineral powder on asphalt mixture

Synthesis and Characterization of high-performance ceramic materials for hightemperature

Nano-modification of Building Materials for Sustainable Construction

THE INFLUENCE OF PROPERTIES AND CONTENT CEMENT PASTE S ON RHEOLOGY OF SELF-COMPACTING HIGH PERFORMANCE CONCRETES

THE APPLICATION OF NANOSTRUCTURED ZERO-CEMENT BINDERS IN FIRE-RESISTANT CELLULAR CONCRETES

Period #1 : CIVIL MATERIALS COURSE OVERVIEW

Observations on the Rheological Response of Alkali Activated Fly ash Suspensions: The Role of Activator Type and Concentration

Rheology and Mix Design

Competing Effect of Pore Fluid and Texture -- Case Study

TECHLINE 13 Methyl Cellulosics in Drymix Mortars

INFLUENCE OF AGGREGATE INTERFACE IN CONCRETE ON PERMEABILITY

Coupled seismoelectric wave propagation in porous media. Mehran Gharibi Robert R. Stewart Laurence R. Bentley

4 th Historic Mortars Conference HMC2016

Permeability of Sandy Soil CIVE 2341 Section 2 Soil Mechanics Laboratory Experiment #5, Laboratory #6 SPRING 2015 Group #3

CHEMICAL ADMIXTURES FOR CONCRETE

Pharmaceutics I صيدالنيات 1. Unit 6

Shape Effect of Crushed Sand Filler on Rheology: A Preliminary Experimental and Numerical Study

Effect of Chemical Structure on Steric Stabilization of Polycarboxylate-based Superplasticizer

Rheological and Tribological Characterization of Concrete in the Context of Estimating its Pumpability

VŠB - Technical University of Ostrava, Faculty of Mechanical Engineering, Institute of Transportation,

Taguchi Experiment Design for Investigation of Freshened Properties of Self-Compacting Concrete

Plastometry for the Self-Compacting Concrete Mixes

High Temperature Materials. By Docent. N. Menad. Luleå University of Technology ( Sweden )

1.033/1.57 Mechanics of Material Systems (Mechanics and Durability of Solids I)

Analysis of Shear Rate inside a Concrete Truck Mixer

FlowCyl: one-parameter characterisation of matrix rheology

SEG/New Orleans 2006 Annual Meeting

SLUMP FLOW VALUES VS. BINGHAM PARAMETERS FOR HIGH FLOWABLE MORTARS AND CONCRETES

Workability tests and rheological parameters in self-compacting concrete

PHD THESIS. Presented at: ECOLE NORMALE SUPERIEURE DE CACHAN. Specialty: Civil Engineering. By: Mr. PHAN VAN TIEN

Xylan Adsorption on Cellulose Model Films & Influence on Bond Strength

SOIL MECHANICS SAB1713 DR. HETTY

The 4-parameter Compressible Packing Model (CPM) for sustainable concrete.

SIMULATION IN MAGNETIC FIELD ENHANCED CENTRIFUGATION

Rock Physics Interpretation of microstructure Chapter Jingqiu Huang M.S. Candidate University of Houston

SURFACE TEXTURES. Sand Blasted: This surface is the result of a pressurized flow of sand water that provides a textured surface with a matte gloss.

MODELING GEOMATERIALS ACROSS SCALES JOSÉ E. ANDRADE DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING EPS SEMINAR SERIES MARCH 2008

Transcription:

Tests der Wirkung von PCE-Fließmitteln auf Stoffe für Ressourcen-effizienten, nachhaltigen Beton Effect of PCE-Superplasticizers on Powders for Eco-Concrete Institute of Technology and Testing of Building Materials Graz University of Technology Institute of Applied Geosciences Laboratory for Particle Analysis (RCPE) Dr. J. Juhart 11.03.2015 Rheo-Kolloquium Regensburg 1

Motivation Climate Protection and Sustainable Development N 2 O CH 4 CO 2 Quelle: IPCC: Climate Change 2007: Synthesis Report Cement production causes ~ 5% of world wide CO 2 -emission [Quelle: VÖZ] Concrete demand worldwide ~ 7 billion m³/year [KIT 2012] Dr. J. Juhart 11.03.2015 Rheo-Kolloquium Regensburg 2

Development of Eco-concrete 133% 100% 67% 33% 0% strength (fcm,28d) open porosity GWP PEI reduction of GWP and PEI by - 10-30% is possible equal concrete performance Dr. J. Juhart 11.03.2015 Rheo-Kolloquium Regensburg 3

Packing Optimization & Effect of Fillers cement micro filler eco-filler interstitial water water layer normal paste + + superplasticizer water layer thickness + filled eco-filler voids CEM-clinker w/b-ratio (w/c ) eco - e.g. HSC concrete Same workability/strength/ durability of eco-concrete and normal concrete Dr. J. Juhart 11.03.2015 Rheo-Kolloquium Regensburg 4

Flowability of Different Powders Which SP do you recommend for eco-concrete and what performance will we reach with different fine powders? Spread flow test Dr. J. Juhart 11.03.2015 Rheo-Kolloquium Regensburg 5

Superplasticizers PCE superplasticizer [PCE] application SP 55 ready mixed concrete SP 108 ready mixed concrete SP 109 precast concrete SP 110 precast concrete SP 144 precast concrete SP 147 precast concrete SP 170 precast concrete SP 182 precast concrete bulk density PCE content (solid) g/cm³ M.% 1,07 30 1,08 29 1,09 40 1,06 30 1,06 28 1,06 30 1,06 25 1,07 30 CEM Ø ca. 10 µm PCE ca. 10 nm Quelle: SIKA Produktbroschüre Dr. J. Juhart 11.03.2015 Rheo-Kolloquium Regensburg 6

Powders Portland Cement d 50 = 7,5 µm Micro-fillers d 50 < 4 µm Eco-fillers 5 µm < d 50 < 15µm inert stone powders type true density ρ 0 grain size d 50 location parameter x slope n Blainevalue water demand (MEM) V ws /V p sensitivity to addition of water Ep g/cm³ µm µm cm²/g kgco 2 /t MJ/t cem I 52,5 R 3,14 7,50 8,50 0,90 5110 0,92 0,0041 831 4030 quartz eco 2,65 13,80 18,60 1,00 4640 0,85 0,0026 41 1338 quartz micro 2,65 3,26 4,60 1,10 (12680) 0,83 0,0005 57 1788 microsilica 2,20 0,20 (34908) 1,28 0,0033 (0) (0) limestone micro 2,73 2,20 3,50 1,20 9314 0,61 0,0015 36 1006 limestone eco 1 2,70 9,00 15,80 1,20 5630 0,59 0,0028 25 717 limestone eco 2 2,70 12,00 20,40 1,00 3689 0,69 0,0026 25 717 dolomite micro 2,90 3,30 4,30 1,30 8300 0,85 0,0030 36 1006 dolomite eco 2,86 15,00 33,50 0,80 2962 0,61 0,0021 25 717 GWP PEI factor 1/20 Dr. J. Juhart 11.03.2015 Rheo-Kolloquium Regensburg 7

Water Demand and Flowability of Powders New combination-method MEM-ST Mixing energy method (MEM) water demand at saturation (Vws/Vp) void content Spread flow test ST (Okamura) water demand for certain spread flows (Vwf,i/Vp) cement micro-filler (limestone) eco-filler (quartz) V wf /V p Ep,cem MEM minimum water demand V ws /V p E p,quartz Ep, EEp, limest. p,limestone 0 100 200 300 400 no flow spread flow [mm] Water demand for certain spread flow Dr. J. Juhart 11.03.2015 Rheo-Kolloquium Regensburg 9

Sequence of Testing of Water-Powder mixes with SP water/powder mixes at minimum water demand (MEM) constant starting consistency addition of superplasticizers / mixing spread flow tests rheometer test SP dosage m PCE _ solid V powder m PCE _ s V p Dr. J. Juhart 11.03.2015 Rheo-Kolloquium Regensburg 10

Results 500 450 cem I 52,5 R; d 50 =7,5µm 400 spread flow [mm] 350 300 250 200 SP 144 etc. HC 150 SP 108 LC 100 0,00% 0,25% 0,50% 0,75% 1,00% 1,25% 1,50% m PCEsolid /V P [%] Dr. J. Juhart 11.03.2015 Rheo-Kolloquium Regensburg 11

Results 500 450 cem I 52,5 R; d 50 =7,5µm 400 spread flow [mm] 350 300 250 200 SP 144 etc. HC 150 SP 108 LC 100 0,00% 0,25% 0,50% 0,75% 1,00% 1,25% 1,50% m PCEsolid /V P [%] Dr. J. Juhart 11.03.2015 Rheo-Kolloquium Regensburg 12

Results 500 450 400 cem I 52,5 R; d 50 =7,5µm limestone eco 1; d 50 =9,0µm limestone eco 2; d 50 =12,0µm spread flow [mm] 350 300 250 200 SP 144 etc. HC 150 SP 108 LC 100 0,00% 0,25% 0,50% 0,75% 1,00% 1,25% 1,50% m PCEsolid /V P [%] Dr. J. Juhart 11.03.2015 Rheo-Kolloquium Regensburg 13

Results 500 spread flow [mm] 450 400 350 300 250 200 SP 144 etc. HC cem I 52,5 R; d 50 =7,5µm quartz eco; d 50 =13,8µm limestone eco 1; d 50 =9,0µm limestone eco 2; d 50 =12,0µm 150 SP 108 LC 100 0,00% 0,25% 0,50% 0,75% 1,00% 1,25% 1,50% m PCEsolid /V P [%] Dr. J. Juhart 11.03.2015 Rheo-Kolloquium Regensburg 14

Results 500 spread flow [mm] 450 400 350 300 250 200 SP 144 etc. HC cem I 52,5 R; d 50 =7,5µm dolomite micro; d 50 =3,3µm dolomite eco; d 50 =15µm quartz eco; d 50 =13,8µm limestone eco 1; d 50 =9,0µm limestone eco 2; d 50 =12,0µm 150 SP 108 LC 100 0,00% 0,25% 0,50% 0,75% 1,00% 1,25% 1,50% m PCEsolid /V P [%] Dr. J. Juhart 11.03.2015 Rheo-Kolloquium Regensburg 15

Results 500 spread flow [mm] 450 400 350 300 250 200 SP 144 etc. HC cem I 52,5 R; d 50 =7,5µm dolomite micro; d 50 =3,3µm dolomite eco; d 50 =15µm quartz eco; d 50 =13,8µm limestone micro; d 50 =2,2µm limestone eco 1; d 50 =9,0µm limestone eco 2; d 50 =12,0µm 150 SP 108 LC 100 0,00% 0,25% 0,50% 0,75% 1,00% 1,25% 1,50% m PCEsolid /V P [%] Dr. J. Juhart 11.03.2015 Rheo-Kolloquium Regensburg 16

Results 500 spread flow [mm] 450 400 350 300 250 200 quartz limestone SP 144 etc. HC cement cem I 52,5 R; d 50 =7,5µm dolomite micro; d 50 =3,3µm dolomite eco; d 50 =15µm quartz eco; d 50 =13,8µm limestone micro; d 50 =2,2µm limestone eco 1; d 50 =9,0µm limestone eco 2; d 50 =12,0µm 150 SP 108 LC 100 0,00% 0,25% 0,50% 0,75% 1,00% 1,25% 1,50% m PCEsolid /V P [%] Dr. J. Juhart 11.03.2015 Rheo-Kolloquium Regensburg 17

Rheometer Tests water/powder mixes with constant starting consistency (near minimum water demand, spread flow= 130 mm) addition of superplasticizers + external pre-mixing assumption: linear Bingham flow-curve torque [mnm] rel. yield value M0 rel. viscosity η rotational frequency [1/min] V measuring ~ 15 ml Dr. J. Juhart 11.03.2015 Rheo-Kolloquium Regensburg 19

Specifications Rheometer Measurements rotational frequency [1/min] 300 250 200 150 100 50 0 test profile (rate of shear history) pre shearing data aquisition measurement points 0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 testing time [sec] Dr. J. Juhart 11.03.2015 Rheo-Kolloquium Regensburg 20

Results Rheometer flow curves torque [mnm] 10 8 6 4 2 CEM I 52,5 R min. water demand SP_144 0,025% SP_144 0,4% M 0 yield value at min. water demand viscosity SP saturation torque [mnm] 10 8 6 4 2 dolomite powder "eco" min. water demand SP_144 0,025% SP_144 0,15% M 0 yield val. at min. water demand viscosity SP saturation 0 0 0 50 100 150 200 250 0 50 100 150 200 250 rotational frequency [1/min] rotational frequency [1/min] Yield value min. water demand M 0,mwd ~ const. for all water/powder mixes rel. M 0 M M 0 0, mwd Dr. J. Juhart 11.03.2015 Rheo-Kolloquium Regensburg 21

Results Rheometer yield stress (rel. M 0 ) vs. SP-dosage rel. M0 [ ] rel. M0 [ ] 1,2 1,0 0,8 0,6 0,4 0,2 SP 144 HC 0,0 0,00 0,25 0,50 0,75 1,00 1,25 1,50 1,75 1,2 1,0 0,8 0,6 0,4 0,2 mpce_solid/vp [%] SP 108 LC CEM I 52,5 R limestone eco 1 dolomite eco dolomite micro limestone micro quartz eco microsilica 0,0 0,00 0,25 0,50 0,75 1,00 1,25 1,50 1,75 mpce_solid/vp [%] CEM I 52,5 R limestone eco 1 dolomite micro dolomite eco limestone micro quartz eco microsilica Dr. J. Juhart 11.03.2015 Rheo-Kolloquium Regensburg 22

Results Rheometer rel. M 0 vs. rel. η 1,2 SP 108 LC rel. M0 [ ] 1,0 0,8 0,6 0,4 0,2 CEM I 52,5 R limestone eco 1 dolomite micro dolomite eco 0,0 0,00 0,25 0,50 0,75 1,00 1,25 1,50 1,75 mpce_solid/vp [%] rel. η [ ] 1,2 1,0 0,8 0,6 0,4 0,2 SP 108 LC CEM I 52,5 R limestone eco 1 dolomite micro dolomite eco 0,0 0,00 0,25 0,50 0,75 1,00 1,25 1,50 1,75 mpce_solid/vp [%] Dr. J. Juhart 11.03.2015 Rheo-Kolloquium Regensburg 23

Influence of PCE-SP on Microsilica (d 50 ~0,2µm) torque [mnm] 12 10 8 6 4 2 0 microsilica 0 50 100 150 200 250 rotational frequency [1/min] SP_108 LC 0,05% SP_144 HC 0,05% min. water demand + SP Dr. J. Juhart 11.03.2015 Rheo-Kolloquium Regensburg 24

Summary and Conclusion investigations by spread flow test and Rheometer SP-demand of CEM I > SP-demand of most stone powders with similar fineness to CEM I (differs for quartz-dolomite-limestone) viscosity of CEM I mixes > viscosity of most stone powder mixes of similar fineness SP-demand with increasing fineness of powders increase of yield stress & agglomeration of PCE with very fine powders observed for stone-powders: only small differences between SP-HC and SP-LC spread flow over time: decrease for cement (SP-HC ) > decrease for stone powders (almost no decrease over time for stone powders with all SP) estimation of spread flow of powder-mixes is possible when knowing the SPdemand of single ingredients (by summing up the weighted spread flows) Outlook: testing of the effect of SP on powders in pore solution of cement-limes is recommended (pre-tests show a big influence of ph-value and ions in pore solution on the interaction of powders and pore solution) Dr. J. Juhart 11.03.2015 Rheo-Kolloquium Regensburg 25

Thank you for your attention! joachim.juhart@tugraz.at Co-authors: Claudia Nickel, Prof. J. Tritthart Data based on student works of D. Borovina, A. Schönauer, C. Maier, TU Graz 2014/2015 Dr. J. Juhart 11.03.2015 Rheo-Kolloquium Regensburg 26