Power Round: Geometry Revisited

Similar documents
Collinearity/Concurrence

Concurrency and Collinearity

Classical Theorems in Plane Geometry 1

Calgary Math Circles: Triangles, Concurrency and Quadrilaterals 1

Isogonal Conjugates. Navneel Singhal October 9, Abstract

SMT Power Round Solutions : Poles and Polars

7.5 Proportionality Relationships

2013 Sharygin Geometry Olympiad

SOME NEW THEOREMS IN PLANE GEOMETRY II

chapter 1 vector geometry solutions V Consider the parallelogram shown alongside. Which of the following statements are true?

Two applications of the theorem of Carnot

INVERSION IN THE PLANE BERKELEY MATH CIRCLE

Two applications of the theorem of Carnot

A FORGOTTEN COAXALITY LEMMA

Geometry JWR. Monday September 29, 2003

SMT 2018 Geometry Test Solutions February 17, 2018

Mathematics 2260H Geometry I: Euclidean geometry Trent University, Fall 2016 Solutions to the Quizzes

On the Feuerbach Triangle

Berkeley Math Circle, May

SOME NEW THEOREMS IN PLANE GEOMETRY. In this article we will represent some ideas and a lot of new theorems in plane geometry.

Higher Geometry Problems

arxiv: v1 [math.ho] 29 Nov 2017

Vectors - Applications to Problem Solving

Definitions, Axioms, Postulates, Propositions, and Theorems from Euclidean and Non-Euclidean Geometries by Marvin Jay Greenberg ( )

RMT 2013 Geometry Test Solutions February 2, = 51.

On Emelyanov s Circle Theorem

Exercises for Unit I I I (Basic Euclidean concepts and theorems)

IMO 2016 Training Camp 3

1998 IMO Shortlist BM BN BA BC AB BC CD DE EF BC CA AE EF FD

1. If two angles of a triangle measure 40 and 80, what is the measure of the other angle of the triangle?

Higher Geometry Problems

Harmonic Division and its Applications

Complex Numbers in Geometry

GEOMETRY OF KIEPERT AND GRINBERG MYAKISHEV HYPERBOLAS

Inversion in the Plane. Part II: Radical Axes 1

5. Introduction to Euclid s Geometry

Radical axes revisited Darij Grinberg Version: 7 September 2007

Exercises for Unit V (Introduction to non Euclidean geometry)

1. Matrices and Determinants

(RC3) Constructing the point which is the intersection of two existing, non-parallel lines.

Definitions, Axioms, Postulates, Propositions, and Theorems from Euclidean and Non-Euclidean Geometries by Marvin Jay Greenberg

Additional Mathematics Lines and circles

The circumcircle and the incircle

Geometry Honors Review for Midterm Exam

Complex numbers in the realm of Euclidean Geometry

1/19 Warm Up Fast answers!

CHAPTER 4. APPLICATIONS AND REVIEW IN TRIGONOMETRY

Chapter 3. Coaxial circles. 3.1 The radical axis of two circles. A quadratic equation of the form

Chapter 1. Affine and Euclidean Geometry. 1.1 Points and vectors. 1.2 Linear operations on vectors

12 th Annual Johns Hopkins Math Tournament Saturday, February 19, 2011 Power Round-Poles and Polars

2008 Euclid Contest. Solutions. Canadian Mathematics Competition. Tuesday, April 15, c 2008 Centre for Education in Mathematics and Computing

Conic Sections Session 2: Ellipse

Chapter 4. Feuerbach s Theorem

Chapter 1. Theorems of Ceva and Menelaus

Triangle Congruence and Similarity Review. Show all work for full credit. 5. In the drawing, what is the measure of angle y?

Exercises for Unit I I (Vector algebra and Euclidean geometry)

P1 Chapter 6 :: Circles

Hanoi Open Mathematical Competition 2017

BMC Intermediate II: Triangle Centers

Conics. Chapter 6. When you do this Exercise, you will see that the intersections are of the form. ax 2 + bxy + cy 2 + ex + fy + g =0, (1)

37th United States of America Mathematical Olympiad

Topic 2 [312 marks] The rectangle ABCD is inscribed in a circle. Sides [AD] and [AB] have lengths

1 Hanoi Open Mathematical Competition 2017

Theorem 1.2 (Converse of Pythagoras theorem). If the lengths of the sides of ABC satisfy a 2 + b 2 = c 2, then the triangle has a right angle at C.

International Mathematical Olympiad. Preliminary Selection Contest 2017 Hong Kong. Outline of Solutions 5. 3*

Chapter 5. Menelaus theorem. 5.1 Menelaus theorem

Sample Question Paper Mathematics First Term (SA - I) Class IX. Time: 3 to 3 ½ hours

Nozha Directorate of Education Form : 2 nd Prep. Nozha Language Schools Ismailia Road Branch

right angle an angle whose measure is exactly 90ᴼ

0114ge. Geometry Regents Exam 0114

Examples: Identify three pairs of parallel segments in the diagram. 1. AB 2. BC 3. AC. Write an equation to model this theorem based on the figure.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Student Name:

Hanoi Open Mathematical Competition 2016

Conic Construction of a Triangle from the Feet of Its Angle Bisectors

The sum x 1 + x 2 + x 3 is (A): 4 (B): 6 (C): 8 (D): 14 (E): None of the above. How many pairs of positive integers (x, y) are there, those satisfy

MA 460 Supplement: Analytic geometry

1. Suppose that a, b, c and d are four different integers. Explain why. (a b)(a c)(a d)(b c)(b d)(c d) a 2 + ab b = 2018.

Problems First day. 8 grade. Problems First day. 8 grade

Menelaus and Ceva theorems

Chapter 10. Properties of Circles

10. Show that the conclusion of the. 11. Prove the above Theorem. [Th 6.4.7, p 148] 4. Prove the above Theorem. [Th 6.5.3, p152]

SOLUTIONS TO ADDITIONAL EXERCISES FOR II.1 AND II.2

Foundations of Neutral Geometry

XIII GEOMETRICAL OLYMPIAD IN HONOUR OF I.F.SHARYGIN The correspondence round. Solutions

A MOST BASIC TRIAD OF PARABOLAS ASSOCIATED WITH A TRIANGLE

Solutions of APMO 2016

11 th Philippine Mathematical Olympiad Questions, Answers, and Hints

RMT 2014 Geometry Test Solutions February 15, 2014

Mathematics 2260H Geometry I: Euclidean geometry Trent University, Winter 2012 Quiz Solutions

6 CHAPTER. Triangles. A plane figure bounded by three line segments is called a triangle.

Practice Problems in Geometry

NEWTON AND MIDPOINTS OF DIAGONALS OF CIRCUMSCRIPTIBLE QUADRILATERALS

Chapter (Circle) * Circle - circle is locus of such points which are at equidistant from a fixed point in

0113ge. Geometry Regents Exam In the diagram below, under which transformation is A B C the image of ABC?

Lecture 3: Geometry. Sadov s theorem. Morley s miracle. The butterfly theorem. E-320: Teaching Math with a Historical Perspective Oliver Knill, 2013

Singapore International Mathematical Olympiad Training Problems

VAISHALI EDUCATION POINT (QUALITY EDUCATION PROVIDER)

Generalized Mandart Conics

Similarity of Triangle

0811ge. Geometry Regents Exam

Transcription:

Power Round: Geometry Revisited Stobaeus (one of Euclid s students): But what shall I get by learning these things? Euclid to his slave: Give him three pence, since he must make gain out of what he learns. - Euclid, Elements 1 Rules These rules supersede any rules appearing elsewhere about the Power Test. For each problem, you may use without proof any result (problem, lemma, proposition, exerice, or theorem) occurring earlier in the test, even if it s a problem your team has not solved. You may cite results from conjectures or subsequent problems only if your team solved them independently of the problem in which you wish to cite them. You may not cite parts of your proof of other problems: if you wish to use a lemma in multiple problems, reproduce it in each one. It is not necessary to do the problems in order, although it is a good idea to read all the problems, so that you know what is permissible to assume when doing each problem. However, please collate the solutions in order in your solution packet. Each problem should start on a new page. Using printed and noninteractive online references, computer programs, calculators, and Mathematica (or similar programs), is allowed. (If you find something online that you think trivializes part of the problem that wasn t already trivial, let us know you won t lose points for it.) No communication with humans outside your team about the content of these problems is allowed. 2 Prerequisites We open with a quick exercise. When we say that D BC, we mean that D is a point anywhere in the line passing through BC (not necessarily just the line segment BC between them). Exercise -9 (3 points). Let ABC be a triangle and let D BC, E AC, F AB, where the six points A, B, C, D, E, F are all distinct. Prove that if D, E, and F are collinear, then either none or exactly two of D, E, and F lie in their corresponding line segments 1

BC, AC, AB, respectively. Menelaus theorem (triangle version). Let ABC be a triangle and let A 1 BC, B 1 AC, C 1 AB, with none of A 1, B 1, and C 1 a vertex of ABC. Then A 1, B 1, C 1 are collinear if and only if A 1 B A 1 C B1C B 1 A C1A C 1 B = 1 and exactly one or all three lie outside the segments BC, CA, AB. (We use the convention that all segments are unoriented throughout this test.) Menelaus s Theorem (quadrilateral one-way version). Let A 1 A 2 A 3 A 4 be a quadrilateral and let d be a line which intersects the sides A 1 A 2, A 2 A 3, A 3 A 4 and A 4 A 1 at the points M 1, M 2, M 3, and M 4, respectively. Then, M 1 A 1 M 1 A 2 M2A 2 M 2 A 3 M3A 3 M 3 A 4 M4A 4 M 4 A 1 = 1. Exercise -8 (7 points). Prove the quadrilateral one-way version of Menelaus s Theorem. Ceva s theorem. Let ABC be a triangle and let A 1 BC, B 1 AC, C 1 AB, with none of A 1, B 1, and C 1 a vertex of ABC. Then AA 1, BB 1, CC 1 are concurrent if and only if AC 1 C 1 B BA 1 A 1 C CB 1 B 1 A = 1 2

and exactly one or all three lie on the segments BC, CA, AB. Exercise -7 (a) (1 point). In ABC, suppose D, E, and F are the midpoints of BC, CA, and AB, respectively. Prove that AD, BE, CF are concurrent. (b) (2 points). In ABC, suppose AD is an angle bisector of BAC, and similarly that BE, CF are angle bisectors. Prove that AD, BE, CF are concurrent. Exercise -6. Mass point geometry is a method useful in finding ratios of certain lengths in setups involving triangles and cevians. Imagine that X and Y are vertices of a triangle. We may assign masses µ(x), µ(y ) > 0 to the points X and Y. Then, the center of mass of the points X and Y is the point Z on XY such that µ(x) XZ = µ(y ) Y Z. The problem-solving strategy is to choose the weights for the vertices of the triangles so that the centers of masses of the vertices of the triangle coincide with the important points in the diagram, such as endpoints of cevians. When the masses are chosen this way, then the center of mass of the triangle is the intersection of the cevians. For more details, examples, and rigorous definitions, one can refer to Wikipedia. (a) (2 points). In ABC, D is in BC, E is in CA, and F is in AB such that AD, BE, CF concur at the point X, and AF = 2, F B = 3, BD = 1, DC = 5. Find AE/CE using mass points, and without using mass points. (b) (2 points) Find AD/AX again using mass points, and without using mass points. (c) (2 points). Find the ratio of the areas of AF X to CDX (using any method of your choice). Desargues s theorem. Let ABC and A B C be two triangles. Let A be the intersection of BC and B C, B be the intersection of CA and C A, and C be the intersection of AB and A B, and assume all three of those intersections exist. 3

Then the lines AA, BB, and CC are concurrent or all parallel if and only if A, B, and C are collinear. Desargues s Theorem is true even if, for instance, BC and B C are parallel, provided that one interprets the intersection of parallel lines appropriately. We won t state cases like the following separately in the future; you may want to google line at infinity if you re unfamiliar with them. Exercise -5 (5 points). Let ABC and A B C be two triangles. Suppose that BC and B C are parallel, CA and C A are parallel, and AB and A B are parallel. Prove that the lines AA, BB, and CC are concurrent or all parallel. Pascal s theorem. Let A, B, C, D, E, F be six points all lying on the same circle. Then, the intersections of AB and DE, of BC and EF, and of CD and F A are collinear. Keep an open mind for degenerate cases, where some of the points are equal! For this theorem, if two of the points are the same, then the line through them is the tangent to the circle at that point. Exercise -4 (5 points). Suppose the incircle of ABC is tangent to BC, CA, AB at D, E, F, respectively. Let X, Y, Z be the intersections of AB and DE, BC and EF, CA and F D, respectively. Show that X, Y, Z are collinear. In fact, we may replace the circle in Pascal s Theorem with an arbitrary conic section. When we consider the degenerate conic section given by two lines, we obtain the statement of Pappus s theorem: Pappus s theorem. Given three collinear points A, B, C and three collinear points D, E, F, 4

then if P is the intersection of BF and CE, Q of AF and CD, and R of AE and BD, then P, Q, R are also collinear. Also, some projective geometry notions might come in handy at some point. We introduce below the notions of harmonic division, harmonic pencil, pole, polar, and mention some lemmas that you may want to be familiar with. Let A, C, B, and D be four points on a line d. If they are in that order on d, the quadruplet (ACBD) is called a harmonic division (or just harmonic ) if and only if CA CB = DA DB. Notice that this definition remains invariant if we swap the orders of A, B and/or C, D on the line. Thus, if the four points lie in the order A, D, B, C or B, C, A, D or B, D, A, C, we may define the harmonic division (ACBD) in the same way. Exercise -3 (3 points). Suppose A = (1, 0), B = (5, 4), and C = (4, 3). Find D such that (ACBD) is harmonic, E such that (ACEB) is harmonic, and F such that (AF CB) is harmonic. If X is a point not lying on d, then the pencil X(ACBD) (consisting of the four lines XA, XB, XC, XD) is called harmonic if and only if the quadruplet (ACBD) is harmonic. So in this case, X(ACBD) is usually called a harmonic pencil. Now, the polar of a point P in the plane of a given circle Γ with center O is defined as the line containing all points Q such that the quadruplet (P XQY ) is harmonic, where X and Y are the intersection points with Γ of a line passing through P. This polar is actually a line perpendicular to OP ; when P lies outside the circle, we can see from the following exercise that it is precisely the line determined by the tangency points of the circle with the tangents from P. We say that P is the pole of this line with respect to Γ. 5

Exercise -2 (2 points). Let O be the circle of radius 2 centered at the origin, and let P = (a, a) for some a 0. Find the polar of P with respect to O. Given these concepts, there are four important lemmas that summarize the whole theory. Remember them by heart even though you might prefer not to use them in this test. They are quite beautiful. Lemma 1. In a triangle ABC consider three points X, Y, Z on the sides BC, CA, and AB, respectively. If X is the point of intersection of the line Y Z with the extended side BC, then the quadruplet (BXCX ) is a harmonic division if and only if the lines AX, BY, CZ are concurrent. Lemma 2. Let l and l be two lines in plane and let P be a point in the same plane but not lying on either l or l. Let A, B, C, D be points on l and let A, B, C, D be the intersections of the lines P A, P B, P C, P D with l, respectively. Then BA BC : DA DC = B A B C : D A D C. Conversely, if A = A ; A, B, C, D and A, B, C, D lie in those orders on l and l, respectively; and the cross-ratio above holds, then the lines BB, CC, DD are concurrent. Lemma 3. Let A, B, C, D be four points lying in this order on a line d. If X is a point not lying on this line, then if two of the following three propositions are true, then the third is also true: The quadruplet (ABCD) is harmonic. XB is the internal angle bisector of AXC. XB XD. Lemma 4. If P lies on the polar of Q with respect to some circle Γ, then Q lies on the polar of P. Exercise -1 (a) (3 points). Prove Lemma 1. (b) (6 points). Prove Lemma 2. Reminder 0 (0 points). On every page you submit, put your team s name, a page count, and solutions to problems from at most one problem. This is it. You are now ready to proceed the next section. As Erdős would advise you, keep your brain open! 6

3 The Test General Setting. We are given a scalene triangle ABC in plane, with incircle Γ, and we let D, E, F be the tangency points of Γ with the sides BC, CA, and AB, respectively. Furthermore, let P be an arbitrary point in the interior 1 of the triangle ABC and let A 1 B 1 C 1 be its cevian triangle (that is, A 1, B 1, C 1 are the intersections of the lines AP, BP, CP with the sides BC, CA, and AB, respectively); from A 1, B 1, C 1 draw the tangents to Γ that are different from the triangle s sides BC, CA, AB, and let their tangency points with the incircle be X, Y, and Z, respectively. Now, with this picture in front of you, take a look at the following results! (ahem... and prove them!) Proposition 1 (a) (6 points). Extend A 1 X to intersect AC at V. Show that the lines AA 1, BV, and DE are concurrent. (b) (12 points). Let A 2 be the intersection point of AX with the sideline BC. Show that A 2 B A 2 C = s c s b A1B 2 A 1 C 2. [Hint: Menelaus, Menelaus, Menelaus!] (c) (2 point). Prove that the lines AX, BY, and CZ are concurrent. 1 The point P is considered inside ABC just for convenience, so please don t worry about the word interior that much; we just want nice, symmetrical drawings!) 7

Proposition 2 (14 points). The lines B 1 C 1, EF, Y Z concur at a point, say A 0. Similarly, the lines C 1 A 1, F D, ZX and A 1 B 1, DE, XY concur at points B 0 and C 0, respectively. [Hint: Pascal s theorem might be useful here.] Proposition 3 (8 points). The points A 0, B, C 0 are collinear. Similarly, the points A 0, B 0, C are collinear, and A, B 0, C 0 are collinear. [Hint: Recall Lemma 2.] 8

Proposition 4 (14 points). The triangles A 0 B 0 C 0 and DEF are perspective 2 and their perspector 3 lies on the incircle of ABC. Proposition 5 (a) (10 points). Let ABC be an arbitrary triangle, and A, B, C be three points on BC, CA, AB. Let also A, B, C be three points on the sides B C, C A, A B of triangle A B C. Then consider the following three assertions: (1) The lines AA, BB, CC concur. (2) The lines A A, B B, C C concur. (3) The lines AA, BB, CC concur. If any two of these three assertions are valid, then the third one must hold, too. [Hint: We didn t put the quadrilateral version of Menelaus in the Prerequisites section for nothing!] (b) (4 points). The triangles A 0 B 0 C 0 and ABC are perspective. Proposition 6 (10 points). The incenter I of ABC is the orthocenter of triangle A 0 B 0 C 0. [Hint: Lemma 2 might prove useful here.] 2 Two triangles ABC and XY Z are said to be perspective if and only the lines AX, BY, CZ are concurrent. 3 The perspector of two perspective triangles ABC and XY Z is precisely the common point of the lines AX, BY, CZ. 9

Proposition 7 (14 points). Let R a point on AC and consider S, T the intersections of RA 0, RC 0 with AB and BC respectively. Then, B 0 lies on ST. Proposition 8 (14 points). The triangles ABC and T RS are perspective. Proposition 9 (20 points). The triangles A 0 B 0 C 0 and T RS are perspective and the locus of the perspector as R varies along the line AC is a line tangent to the incircle of triangle ABC. [Hint: This is the capstone problem of the test, and its solution uses many of the results you ve encountered throughout the test.] 10

4 Historical Fact/Challenge When the point P chosen at the beginning of the test is the incenter, the Nagel point, or the orthocenter of triangle ABC, the configuration generates a Feuerbach family of circles. More precisely, maintaining the notations from the previous propositions, the circumcircle of triangle T RS always passes through the Feuerbach point 4 of triangle ABC, as R varies on the line AC. So, do try and have fun with it after finishing everything. However, you will not receive any credit for this problem. 4 The incircle and the nine-point circle of a triangle ABC are tangent to each other and their tangency point is called the Feuerbach point of triangle ABC. 11