PC4262 Remote Sensing Scattering and Absorption

Similar documents
Solutions: Homework 7

Advanced Heat and Mass Transfer by Amir Faghri, Yuwen Zhang, and John R. Howell

The mathematics of scattering and absorption and emission

Analysis of Scattering of Radiation in a Plane-Parallel Atmosphere. Stephanie M. Carney ES 299r May 23, 2007

MCRT L10: Scattering and clarification of astronomy/medical terminology

Multiple scattering of light by water cloud droplets with external and internal mixing of black carbon aerosols

Radiation in the atmosphere

Mie Theory, Cross-Sections, Efficiency Factors and Phase Function

Goal: The theory behind the electromagnetic radiation in remote sensing. 2.1 Maxwell Equations and Electromagnetic Waves

Electromagnetic fields and waves

1 CHAPTER 5 ABSORPTION, SCATTERING, EXTINCTION AND THE EQUATION OF TRANSFER

Laser Beam Interactions with Solids In absorbing materials photons deposit energy hc λ. h λ. p =

Lecture 6 Scattering theory Partial Wave Analysis. SS2011: Introduction to Nuclear and Particle Physics, Part 2 2

Radiative heat transfer

Solar radiation / radiative transfer

p(θ,φ,θ,φ) = we have: Thus:

Monte Carlo Radiation Transfer I

ATM 507 Lecture 4. Text reading Chapters 3 and 4 Today s topics Chemistry, Radiation and Photochemistry review. Problem Set 1: due Sept.

PHYS 390 Lecture 23 - Photon gas 23-1

, analogous to an absorption coefficient k a

Lecture 06. Fundamentals of Lidar Remote Sensing (4) Physical Processes in Lidar

E d. h, c o, k are all parameters from quantum physics. We need not worry about their precise definition here.

2 The Radiative Transfer Equation

Lecture 26. Regional radiative effects due to anthropogenic aerosols. Part 2. Haze and visibility.

Applied Nuclear Physics (Fall 2006) Lecture 19 (11/22/06) Gamma Interactions: Compton Scattering

Optical Imaging Chapter 5 Light Scattering

- 1 - θ 1. n 1. θ 2. mirror. object. image

Lecture 4* Inherent optical properties, IOP Theory. Loss due to absorption. IOP Theory 12/2/2008

Lecture Notes Prepared by Mike Foster Spring 2007

Scattering of EM waves by spherical particles: Overview of Mie Scattering

Introduction to Elementary Particle Physics I

Appendix B. Solutions to Chapter 2 Problems

Laser Cross Section (LCS) (Chapter 9)

Fundametals of Rendering - Radiometry / Photometry

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Numerical Heat and Mass Transfer

The Radiative Transfer Equation

Beer-Lambert (cont.)

7. Dust Grains & Interstellar Extinction. James R. Graham University of California, Berkeley

Fundamental Concepts of Radiation -Basic Principles and Definitions- Chapter 12 Sections 12.1 through 12.3

10. Scattering from Central Force Potential

Scattering by a Multi-Electron Atom, Atomic Scattering Factors; Wave Propagation and Refractive Index

ATMO/OPTI 656b Spring Scattering of EM waves by spherical particles: Mie Scattering

Simplified Collector Performance Model

What is it good for? RT is a key part of remote sensing and climate modeling.

Electromagnetic Waves Across Interfaces

Electromagnetic Waves

The collision probability method in 1D part 2

Interaction X-rays - Matter

Heriot-Watt University

Cloud optical thickness and effective particle radius derived from transmitted solar radiation measurements: Comparison with cloud radar observations

6. LIGHT SCATTERING 6.1 The first Born approximation

PHY492: Nuclear & Particle Physics. Lecture 3 Homework 1 Nuclear Phenomenology

] T. The Mulassis Normalization factor. Omni-directional flux to Current [1]: Flux in Energy range of the simulation:

Fundamentals of Rendering - Radiometry / Photometry

Fundamentals of Rendering - Radiometry / Photometry

7. Aerosols and Climate

INFRAMET. 2.1 Basic laws

Massachusetts Institute of Technology Physics 8.03 Fall 2004 Final Exam Thursday, December 16, 2004

Phys. 506 Electricity and Magnetism Winter 2004 Prof. G. Raithel Problem Set 5 Total 40 Points. 1. Problem Points

Supporting Information

Elastic Scattering. R = m 1r 1 + m 2 r 2 m 1 + m 2. is the center of mass which is known to move with a constant velocity (see previous lectures):

Aerosol Optical Properties

AT622 Section 14 Particle Scattering

MATH2000 Flux integrals and Gauss divergence theorem (solutions)

Serco Assurance. Resonance Theory and Transport Theory in WIMSD J L Hutton

THREE MAIN LIGHT MATTER INTERRACTION

in Electromagnetics Numerical Method Introduction to Electromagnetics I Lecturer: Charusluk Viphavakit, PhD

Section 22. Radiative Transfer

Lecture 11 March 1, 2010

Light Sources and Illumination. Blackbody. Page 1

Lecture 2: principles of electromagnetic radiation

Fundamentals on light scattering, absorption and thermal radiation, and its relation to the vector radiative transfer equation

Appendix A. Longwave radiation in a canopy stand

Akira Ishimaru, Sermsak Jaruwatanadilok and Yasuo Kuga

Section 10. Radiative Transfer

AT622 Section 2 Elementary Concepts of Radiometry

Black Body Radiation

= (fundamental constants c 0, h, k ). (1) k

Mathieu Hébert, Thierry Lépine

Monte Carlo method projective estimators for angular and temporal characteristics evaluation of polarized radiation

12.815/12.816: RADIATIVE TRANSFER PROBLEM SET #1 SOLUTIONS

Lesson 6: Diffusion Theory (cf. Transport), Applications

2. Passage of Radiation Through Matter

Analysis of second-harmonic generation microscopy under refractive index mismatch

Measurement of the effective refractive index of a turbid colloidal suspension using light refraction

Computer Graphics III Radiometry. Jaroslav Křivánek, MFF UK

Stellar Astrophysics: The Continuous Spectrum of Light

Lecture: Scattering theory

STOCHASTIC & DETERMINISTIC SOLVERS

Scattering of EM waves by spherical particles: Mie Scattering

Chapter 3-Elastic Scattering Small-Angle, Elastic Scattering from Atoms Head-On Elastic Collision in 1-D

3 Chapter. Gauss s Law

OPTICAL Optical properties of multilayer systems by computer modeling

9 Atomic Coherence in Three-Level Atoms

Rutherford Backscattering Spectrometry

PHYS 4400, Principles and Varieties of Solar Energy Instructor: Randy J. Ellingson The University of Toledo

PHY102 Electricity Topic 3 (Lectures 4 & 5) Gauss s Law

Physics Dec The Maxwell Velocity Distribution

Radiometry and Photometry

Transcription:

PC46 Remote Sensing Scattering and Absorption Dr. S. C. Liew, Jan 003 crslsc@nus.edu.sg Scattering by a single particle I(θ, φ) dφ dω F γ A parallel beam of light with a flux density F along the incident direction (θ i, φ i ) shines on a particle. The scattered light is measured within a small cone of solid angle dω, along a direction which makes an angle γ with the incident beam. The angle γ is known as the scattering angle. The intensity of the scattered light (i.e. the scattered flux per unit solid angle) along the direction (θ, φ) is, dφ I ( θ, φ) = [W sr -1 (1) ] dω For simplicity of presentation, we will assume for the time being that the particle is a homogeneous sphere, and to simplify the scattering geometry, the z-axis is directed along the direction of the incident flux, with the origin at the centre of the particle. The scattering angle γ is then equal to the angle θ of the spherical coordinate system. By azimuthal symmetry, the scattered intensity depends only on the scattering angle γ. The parameter that relates the scattered intensity to the incident flux density is the angular scattering cross-section: I ( σ ( = [m sr -1 () ] F The total scattering cross-section is the total flux scattered into all directions per unit incident flux density: π π π (3) = σ( sin dφ = π σ( sin [m ] 0 So the total scattered flux is, qs = F [W] (4)

The scattering efficiency is the ratio of the scattering cross-section σ s to the geometric crosssection A g of the particle: (5) Qs = [dimensionless] Ag Absorption If the refractive index of the scattering particle has non-zero imaginary part, then absorption occurs. The total power absorbed per unit incident flux density is defined as the absorption coefficient σ a. The total absorbed flux is, qa = Fσa [W] (6) and the absorption efficiency is σ Q a a = [dimensionless] Ag (7) The Extinction Cross-section is the sum of the scattering and absorption cross-sections: σ e = + σa (8) while the Extinction Efficiency is the sum of the scattering and absorption efficiencies: Q e = Qs + Qa (9) Single Scattering Albedo The single scattering albedo of the particle is is defined as the ratio of the scattering crosssection to extinction cross-section: (10) ω = = σe + σa Its value ranges from 0 (totally absorbing particle, no scattering) to 1 (totally scattering particle, no absorption). Scattering Phase Function The scattering phase function is the ratio of the angular scattering cross-section to the total scattering cross-section, multiplied by a factor 4π: σ( (11) P( = 4π Note that in the case of azimuthal symmetry considered here, the phase function is dependent only on the scattering angle θ. The scattering phase function describes the directional distribution of the scattered flux. It is normalized such that 1 ππ (1) P ( sinθ dθdφ = 1 4π 00

Asymmetricity parameter of the scattering phase function The forward scattering direction refers to scattering angle 0 < θ < π/ while the backward scattering direction refers to the range of scattering angles π/ < θ < π. Typically, for a small particle (i.e. small relative to the wavelength λ), the phase function is symmetric in the forward and backward direction. For a larger particle, the phase function is peaked towards the forward scattering direction, i.e. the phase function has large values for small scattering angle. The parameter that characterize the asymmetricity of the phase function is the mean value of the cosine of the scattering angle, using the phase function as the weighting function. 1 (13) P( cosθ d(cos g = 1 1 P( d(cos 1 Scattering by a Suspension of Particles in Air We now consider the case where light is scattered by a collection of particles suspended in a medium (such as aerosol particles suspended in air). The distance between the particles are assumed to be large compared to the wavelength of the incident light, so that the intensities scattered by the various particles can be added up without considering interference effect (Independent Incoherent Scattering). Mono-Dispersion of Particles We will first consider a special case where all particles are identical, with the same size and composed of the same material. Let the particle density be N (no. of particles in a unit volume of air). The intensity scattered from a small volume V of the scattering medium can be expressed as I ( = FVNσ( (14) where F is the incident flux density and σ ( is the angular scattering cross-section of a single particle, θ is the scattering angle. The angular scattering coefficient of the scattering medium is the product of particle density and angular scattering cross-section: β( = N σ( [m -1 sr -1 ] (15) The scattering coefficient, absorption coefficient and extinction coefficient can be similarly defined: Scattering Coefficient: β s = N [m -1 ] (16) Absorption Coefficient: Extinction Coefficient: β a = Nσa [m -1 ] (17) β e = Nσe [m -1 ] (18) β s + βa = βe (19)

The singular scattering albedo is βs ω = βe (0) and the scattering phase function is β( P( = 4π βs (1) Polydispersion of Particles Now we consider a more general case where the scattering particles has a size distribution n(r) such that n(r)dr is the number of particles with radius ranging from r to r + dr per unit volume of the scattering medium. The minimum and maximum radii of the particles are r min and r max respectively. The angular scattering coefficient is now expressed as rmax β( = n ( r) σ( θ; r) dr rmin () Note that the angular scattering coefficient is a function of the scattering angle θ and the particle radius r. The scattering, absorption and extinction coefficients are similarly defined as: rmax Scattering Coefficient: βs = n ( r) ( r) dr rmin rmax Absorption Coefficient: β = n ( r) σ a rmin a ( r) dr rmax Extinction Coefficient: βe = n ( r) σe ( r) dr rmin (3) (4) (5) β s + βa = βe (6) The single scattering albedo and scattering phase function are expressed similarly in terms of the coefficients as in the monodispersion case.

Beer-Lambert Law Scattered Intensity I( area A θ F z F + F Consider a small volume of the scattering medium, of cross sectional area A and thickness z, and hence with volume V = A z. A beam of light incident on to the scattering volume. The incident flux density is F and the transmitted flux density emerging from the opposite side of the scattering volume is F + F. In general, F is a negative quantity due to scattering and absorption. We assume the z-axis is pointing along the direction of the incident flux. By generalizing expression (14), the angular intensity (flux per unit solid angle) scattered from this scattering volume V of the scattering medium can be generalized to I ( = FVβ( (7) where β( is the angular scattering coefficient of the medium (Eq. ). The total scattered flux is obtained by integrating (7) for all directions, Φ s = I( sinθ dθ dφ = FVβs all directions where β s is the scattering coefficient (Eq. 3). (8) The total absorbed flux can be similarly expressed as Φ a = FVβ a (9) The total flux removed from the incident beam due to scattering and absorption is Φ e = Φ s + Φa = FV ( βs + βa ) = FVβe (30) Hence, the transmitted flux density is Φ F e (31) = = Fβe z A This is the differential form of the Beer-Lambert Law. If the extinction coefficient is constant, independent of the coordinate z, then the equation can be integrated to gives the exponential decay of the flux density along the direction of propagation, F = F 0 exp( βe z) (3) Reflectance, Absorptance and Transmittance of a Thin Layer of Air Consider again the scattering volume of thickness z in the previous section. Recall that the reflectance, absorptance and transmittance are defined respectively as the ratios of the reflected, absorbed and transmitted fluxes to the incident flux. The incident flux in this case is

Φ i = FA (33) Hence, from equations (9), the absorptance for the thin layer of air with thickness z is Φa FA zβa α = = = βa z Φi FA (34) The total flux scattered in the backward direction is π π π π (35) Φ sb = I( sin dφ = FA z β( sin dφ = FAβsb z 0 π / 0 π / Here, we have defined the backscattering coefficient β sb of the scattering medium to be π π (36) β = β( sin dφ sb 0 π / Hence, the reflectance of the thin layer of air with thickness z is Φ sb ρ = = βsb z Φi (37) The transmittance has two components: the direct and diffused components. The direct transmittance is due to the removal of flux from the incident beam by absorption and scattering into all (forward and backward) directions, while the diffused transmittance is due to the scattering of the incident beam into all the forward directions. The total flux scattered into the forward direction is ππ/ ππ/ Φ sf = I( sin dφ = FA z β( sin dφ = FAβsf z where the forward scattering coefficient β sf is defined as ππ/ βsf = β( sin dφ (38) (39) The diffused transmittance due to the forward scattered flux is Φ sf (40) τdiffused = = βsf z Φ ι while the direct transmittance is Φι ( Φa + Φ s ) (41) τdirect = = 1 ( βa + βs ) z = 1 βe z Φι Hence, the total transmittance is τ = τdirect + τdiffused = 1 ( βe βsf ) z (4) By conservation of energy, the transmittance τ, reflectance ρ and absorptance α must sum up to one, τ + ρ + α = 1 (43) Hence, we have 1 ( βe βsf ) z + βsb z + βa z = 1 (44)

Which leads to the relation β e = βsf + βsb + βa = βs + βa (45) which is identical to Eqn. (6). Note that we have assumed that the thickness z is very thin such that the flux scattered through the edge of the scattering volume is negligible compared to those scattered through the front and back surface. General Scattering Geometry dω s Scattered flux direction S s (θ s, φ s ) γ dω i Scattering volume V Incident flux direction S i (θ i, φ i ) Let si be a unit vector pointing along the direction ( θ i ) of the incident flux and let ss be a unit vector pointing along the direction ( θ s, φ s ) of the scattered flux. The incident radiance along s i is L( θ i ). We consider the scattering events occurring in a small volume V of the scattering medium. The incident flux density within the solid angle dω i is d Fi = L( θi ) dωi (46) and from eqn (7), the scattered intensity due to this incident flux density is di( θs, φs ) = L( θi ) Vβ( θs, φs ; θi ) dωi (47) Note that, in general, the scattered intensity depends on the directions of the incident and the scattered fluxes. This dependence is explicitly included in the arguments of the angular scattering coefficient. Suppose that the incident radiance comes from all direction, then the scattered intensity per unit volume of scattering medium is obtained by integrating di( θ s, φs ) over all directions of the incident radiance: I( θs, φs) (48) = L( θi, φi ) β( θs, φs; θi, φi)dωi V all directions Using the relations between the angular scattering coefficient, scattering coefficient and scattering phase function (eqn. 1), this expression can be rewritten as:

I( θs, φs ) β ππ s = L( θi ) P( θs, φs ; θi ) sin θidθi V 4π dφi (49) If the scattering medium is homogeneous, then the scattering phase function depends only on the scattering angle γ, P( θs, φs ; θi ) = P( γ) (50) The scattering angle γ can be computed by noting that cosγ is the dot-product of the incident vector s i and the scattering vector s r, cos γ = s i s r (51) and it can be shown that, (5) cos γ = cosθ cosθ + (1 cos θ ) (1 cos θ ) cos( φ φ ) i r i r i r NOTES: In this chapter, all equations have been written in terms of the radiant quantities, without explicitly referring to the dependence on wavelength. It should be apparent that the equations are still valid if the radiant quantities are replaced by the respective spectral radiant quantities.