Monopoles and Skyrmions. Ya. Shnir. Quarks-2010

Similar documents
Skyrme model U : S 3 S 3. d 3 x. The Skyrme field: The topological charge: Q = 1. Rescaling: Sigma-model term Skyrme term Potential term.

Baby Skyrmions in AdS 3 and Extensions to (3 + 1) Dimensions

Charge quantization for dyons

Topological Solitons from Geometry

Solitons in the SU(3) Faddeev-Niemi Model

A Review of Solitons in Gauge Theories. David Tong

Singular Monopoles and Instantons on Curved Backgrounds

UNIVERSITI TEKNOLOGI MARA EXACT SOLUTIONS OF THE SU(2) YANG-MILLS-HIGGS THEORY

Abelian and non-abelian Hopfions in all odd dimensions

AdS Holography and dyonic black holes

Instantons and Sphalerons in a Magnetic Field

Electrically and Magnetically Charged Solitons in Gauge Field Th

Solitons and point particles

Baryon Physics in Holographic QCD Models (and Beyond) in collaboration with A. Wulzer

Skyrmions in models with pions and rho mesons

Solitons, Vortices, Instantons

Instanton constituents in sigma models and Yang-Mills theory at finite temperature

Supersymmetric Gauge Theories in 3d

Nucleons from 5D Skyrmions

SYMMETRIC SKYRMIONS. Institute of Mathematics, University of Kent at Canterbury, Canterbury, CT2 7NZ, U.K.

Topological Solitons

arxiv:nlin/ v1 [nlin.si] 4 Dec 2000

Topological reduction of supersymmetric gauge theories and S-duality

The Role Of Magnetic Monopoles In Quark Confinement (Field Decomposition Approach)

Two-monopole systems and the formation of non-abelian clouds

Continuity of the Deconfinement Transition in (Super) Yang Mills Theory

NTNU Trondheim, Institutt for fysikk

arxiv: v1 [hep-th] 10 Oct 2017

arxiv: v2 [hep-th] 15 Dec 2017

Kink Chains from Instantons on a Torus

Classically isospinning Skyrmion solutions. Abstract

t Hooft loop path integral in N = 2 gauge theories

A Multimonopole Solution in String Theory

Salty popcorn in a homogeneous low-dimensional toy model of holographic QCD

Continuity of the Deconfinement Transition in (Super) Yang Mills Theory

QCD and Instantons: 12 Years Later. Thomas Schaefer North Carolina State

arxiv:hep-th/ v2 7 Sep 1999

Skyrme models- BPS and/or SUSY, at last

Light Nuclei as Quantized Skyrmions: Energy Spectra and Form Factors

Math. Res. Lett. 13 (2006), no. 1, c International Press 2006 ENERGY IDENTITY FOR ANTI-SELF-DUAL INSTANTONS ON C Σ.

Lectures on. Holographic QCD. Shigeki Sugimoto (Kavli IPMU) 1/53. holography 2013 APCTP, Pohang 2013/6/19 and 20

Holographic Monopole Catalysis of Baryon Decay

Holographic Entanglement Entropy for Surface Operators and Defects

S-CONFINING DUALITIES

Quark Mass from Tachyon

arxiv:hep-th/ v2 24 May 2001

General Relativity and Cosmology Mock exam

Hopf Fibrations. Consider a classical magnetization field in R 3 which is longitidinally stiff and transversally soft.

arxiv: v2 [hep-th] 21 Aug 2009

Geometry and Physics. Amer Iqbal. March 4, 2010

Matryoshka Skyrmions, Confined Instantons and (P,Q) Torus Knots. Muneto Nitta (Keio Univ.)

Acknowledgements An introduction to unitary symmetry The search for higher symmetries p. 1 The eight-baryon puzzle p. 1 The elimination of

Solitons, Links and Knots

Solitons and instantons in gauge theories

The abundant richness of Einstein-Yang-Mills

LARGE N c QCD AND THE SKYRME MODEL

Part III Classical and Quantum Solitons

MAP, MAC, and Vortex-rings Configurations in the Weinberg-Salam Model arxiv: v8 [hep-th] 20 Mar 2015

Holographic study of magnetically induced ρ meson condensation

The stability of the wall is due to the potential and the gradient balancing each other (Derrick s Theorem). Simple argument: = E grad

Abelian vortices from Sinh Gordon and Tzitzeica equations

Chiral Symmetry Breaking from Monopoles and Duality

Skyrmions up to Baryon Number 108

arxiv:gr-qc/ v1 21 Mar 1996

arxiv: v1 [hep-th] 27 Mar 2008

Instanton Bags, High Density Holographic QCD and Chiral Symmetry Restoration

Meson-Nucleon Coupling. Nobuhito Maru

arxiv: v3 [hep-th] 11 Nov 2018

arxiv: v4 [hep-th] 17 Aug 2017

Possible Advanced Topics Course

H-dibaryon in Holographic QCD. Kohei Matsumoto (M2, YITP) (in collaboration with Hideo Suganuma, Yuya Nakagawa)

1/N Expansions in String and Gauge Field Theories. Adi Armoni Swansea University

The E&M of Holographic QCD

LIBERATION ON THE WALLS IN GAUGE THEORIES AND ANTI-FERROMAGNETS

arxiv: v2 [hep-ph] 2 Dec 2016

arxiv:hep-th/ v1 19 Feb 1995

The Higgs bundle moduli space

Instantons in string theory via F-theory

Vortices as Instantons in Noncommutative Discrete Space: Use of Z 2 Coordinates

Einstein-Maxwell-Chern-Simons Black Holes

Lattice Gauge Theory and the Maxwell-Klein-Gordon equations

PoS(Confinement X)058

Transparent connections

Monopoles and Confinement

Topological zero modes at finite chemical potential

Chern-Simons Theory and Its Applications. The 10 th Summer Institute for Theoretical Physics Ki-Myeong Lee

HIGH DENSITY NUCLEAR CONDENSATES. Paulo Bedaque, U. of Maryland (Aleksey Cherman & Michael Buchoff, Evan Berkowitz & Srimoyee Sen)

Magnetic monopoles. Arjen Baarsma. January 14, 2009

Chern-Simons gauge theory The Chern-Simons (CS) gauge theory in three dimensions is defined by the action,

Integrable spin systems and four-dimensional gauge theory

Think Globally, Act Locally

Exact Solutions of 2d Supersymmetric gauge theories

Hairy black holes in general Skyrme models

Show, for infinitesimal variations of nonabelian Yang Mills gauge fields:

INSTANTON MODULI AND COMPACTIFICATION MATTHEW MAHOWALD

Geometry and Spin Transport in Skyrmion Magnets

Two Fundamental Principles of Nature s Interactions

A BPS Skyrme model. Journal of Physics: Conference Series. Related content. To cite this article: C Adam et al 2011 J. Phys.: Conf. Ser.

Axions. Kerstin Helfrich. Seminar on Theoretical Particle Physics, / 31

On Consistency in the Skyrme Topological Model

Transcription:

Monopoles and Skyrmions Ya. Shnir Quarks-2010 Коломна, Россия, 8 Июня 2010

Outline Abelian and non-abelian magnetic monopoles BPS monopoles Rational maps and construction of multimonopoles SU(2) axially symmetric multimonopoles Monopole-antimonopole chains Multimonopole moduli space Skyrmions Skyrme model Construction of multiskyrmions Axially symmetric multiskyrmions Rational maps and multiskyrmions Skyrmion-antiSkyrmion chains Multiskyrmions moduli space Summary and outlook

Yang-Mills Mills-Higgs Theory S= 1 2 d 4 x{f µν F µν + (D µ Φ)(D µ Φ) V(Φ)} F µν = µ A ν ν A µ +ie[a µ,a ν ] D µ Φ= µ Φ+ie[A µ,φ] V(Φ)=λ(Φ 2 η 2 ) 2 t Hooft-Polyakov static spherically symmetric solution φ a = ra er 2 H(eηr); A a n =ε amn rm er 2 (1 K(eηr)) R c ~m v -1

Bogomolny equations: BPS monopole mass: BPS monopoles λ =0, B k = D k F M = 4ph/ e Homotopy group π 2 (S 2 ) Long-range scalar field F ~ 1/r No net interaction between the BPS monopoles Analytical solution of the BPS equations: K= ξ sinhξ ; H=ξcothξ 1 Magnetic charge of a monopole is a topological number Φ: S 2 S 2 Sir M. Atiyah,, R. Ward (1977), P. Forgacs et al (1981), W. Nahm (1982), P. Sutcliffe (1996) and other

Self-dual monopoles vs non-self dual monopoles BPS monopoles: In the limit h=0 the energy becomes: E=Tr d 3 x { 1 4 (ε ijkf ij ±D i Φ) 2 1 2 ε ijkf ij D k Φ } The first order Bogomol'nyi equations yield absolute minimum: M =4πg B k =±D k Φ No net interaction between the BPS monopoles: the electromagnetic repulsion is compensated by the long-range scalar interaction. Non self-dual monopoles: They are solutions of the second order Yang-Mills equations: µ F µν =0 E>M BPS even if g=0 (deformations of the topologically trivial sector) The constituents are non BPS monopoles and/or vortices in a static equilibrium; separation is relatively small, there are no long-range forces

Rational map monopoles There is a transformation of a monopole into a rational map from the Riemanian sphere to inself: R: S 2 # S 2 (P. Sutcliffe, N.Manton et al) R(z)= a(z) b(z) = a 1z n 1 + +a n z n +b 1 z n 1 + +b n, z=x 1 +ix 2 Construction of the rational maps monopoles: Represent BPS equation in spherical coordinates r,z,z Impose a complex gauge Φ= ia r = i 2 U 1 r U, A z =U 1 z U, A z =0 Construct the monopoles using { U exp 2r 1+ R 2 ( R 2 1 2R 2R 1 R 2 )}

R = 1/z: one spherically symmetric monopole centered at the origin; R(z) = a 1z+a 2 z 2 +b 1 z+b 2 : two monopoles R(z)= i 3z 2 1 z(z 2 i : Tetrahedral monopoles (degree 3 map) 3) R(z)= z4 +2i 3z 2 +1 z 4 2iz 2 : Octahedral monopoles (degree 4 map) 3+1

Numerical Technique Energy minimization approach (static solutions in 2d and in 3d) supercomputers and grid systems Solution of system of PDE s obtained by imposing some symmetry conditions, boundary problem in in 2d and in 3d: Newton-Raphson iterative procedure (FIDISOL/CADSOL package); boundary problem in d1 (COLSYS package) Gradient flow method Dynamics of the solitons: : (pseudo( pseudo) spectral methods, symplectic methods.

Non-BPS axially symmetric monopoles MA pair: magnetic dipole (Taubes, Nahm, Rüber, R Kleihaus,Kunz & Shnir) A µ dx µ = ( K 1 r dr+(1 K 2)dθ ) τ (n) ϕ 2e nsinθ ( ) Φ=Φ aτa 2 = τ r H (n,m) τ 1 2 +H (n,m) θ 2 2. ( ) τ K (n,m) r 3 2e +(1 K 4 ) τ(n,m) θ 2e dϕ; Magnetic charge: Q= 1 2π S 2 (ΦdΦ dφ) = 1 2 n[1 ( 1)m ]

Monopole-antimonopole chains

Effective electromagnetic interaction } `t Hooft tensor: F µν ={ˆΦF µν 2eˆΦD i µˆφd νˆφ The electric and magnetic (topological) currents: µ F µν =4πjν; el µ F µν =4πjν mag The magnetic field if generated by the magnetic charges and electric currents j el r =jel θ =0; 4πjel ϕ = 2 1 ra ϕ +sinθ θ r 2 sinθ θa ϕ

Effective electromagnetic interaction `t Hooft tensor: ˆ Fµν Fµν = Φ Φ i ˆ ˆ Dν Φ ˆ Φ Dµ Φ Φ Φ 2e Φ The electric and magnetic (topological) currents: µ Fµν = 4π jνel ; µ F µν = 4π jνmag The magnetic field if generated by the magnetic charges and electric currents jrel = jθel = 0; 4πjϕel = r2 Aϕ + sin θ θ r2 s1in θ θ Aϕ

Skyrme field L= d 3 x Skyrmions U SU(2); R µ =( µ U)U 1 { } F 2 π 16 Tr(R µr µ ) 1 32e Tr([R 2 µ,r ν ][R µ,r ν ])+ m2 π F2 π 8 Tr(1 U) Nonlinear pion theory: U =φ 0 +iσ k φ k, φ 2 0 +φ2 k =1 Baryon charge is identified with the topological number U : S 3 S 3 B= 1 24π 2 d 3 xε ijk Tr(R i R j R k ) Homotopy group π 3 (S 3 ) B= 1: Spherically symmetric skyrmion U =exp{if(r)ˆn σ} ˆn=(sinθcosϕ,sinθsinϕ,cosθ) Boundary conditions: f ( r), with f (0) = πk, and The approximation : f ( ) = 0. f ( r) = 4 arctan[exp(r) ]

Skyrmion s interaction There is no self-dual skyrmions: E í B A single Skyrmion is approximated by a triplet of orthogonal dipoles Field equations: Asymptotically The dipole-dipole interaction energy Attractive channel: ( µ R µ + 1 4 [Rν,[R ν R µ ]] ) =0 φ k d k r k 4πr 3 +O(r 3 ); φ 0 1 R ñn There are 6 zero modes of the B=1 Skyrmion: 3 translations + 3 rotations E int = 2d2 3πR 3 (cosα 1)[1 3( R n)] Translations: U iu 1 2( k U)U U 1 2 ( d 3 xtr( i U i U ) 1 2 Rotations (Adkins, Nappi & Witten (1983)); rigid body approximation U A(t)UA(t)

Axially symmetric multiskyrmions Trigonometric parametrisation: φ α =sinfsingn α ; φ 3 =sinfcosg; φ 4 =cosf; n α =(cosnϕ,sinnϕ) B= 2:

Stereographic projection: Rational map Skyrmions (N. S. Manton,C.Houghton and P. Sutcliffe) z=tan(θ/2)e iϕ ˆn z = 1 1+ z 2 (z+z, i(z z), 1 z 2 ) ˆn R : S 2 S 2 U =exp{if(r)ˆn R σ} ˆn R = 1 1+ R 2 (R+R, i(r R), 1 R 2 ) The holomorphic map of degree B: R=a(z)/b(z) R(z)= z4 +2i 3z 2 +1 B= 4: B= 7: (Octahedral Skyrmions) z 4 2i 3z 2 +1 B= 7:R(z)= z7 7z 5 7z 2 1 z 7 +7z 5 7z 2 +1 (Icosahedral Skyrmions)

R. A. Battye,, N. S. Manton, C.Houghton and P. Sutcliffe (1996,2004) Shell vs. Crystal Shell wins for m c 0.16

Skyrmion-antiSkyrmion chains (P. Sutcliffe, S.Krusch, Y.Shnir, T.Tchrakian ) φα = sin f sin g nα ; φ3 = sin f cos g ; φ4 = cos f ; θ=π Q = 12 n cos(mθ ) θ=0 = 12 n [1 ( 1)m ] f ( 0) = π, f ( ) = 0 r g (0) = 0, g ( ) = mπ

4 φ ( r, θ ) cos f ( r, θ ) (Skyrmion - antiskyrmion chains) Φ( r, θ ) 2 (MAM chains)

L= d 3 x Skyrmion-antiSkyrmion chains: mass term { } F 2 π 16 Tr(R µr µ ) 1 32e Tr([R 2 µ,r ν ][R µ,r ν ])+ m2 π F2 π 8 Tr(1 U) n=1 chains exist for m c 0.10

Skyrmions and instantons Skyrme field can be generated from the holonomy of a Yang-Mills instanton (M. Atiyah & N.Manton (1989), P. Sutcliffe (2010) { } U(x)=Pexp A U(x) : R 3 4 (x, x 4 )dx 4 SU(2) Baryon charge is equal to the Pontryagin charge: B= 1 24π 2 d 3 xε ijk Tr(R i R j R k ) N = 1 16π 2 Tr d 4 xf µν F µν Remarkable approximation to the exact solution of the Skyrme model (about 1%) Sakai-Sugimoto Sugimoto conjecture about a correspondence between Yang-Mills Mills-Chern- Simons instantons on a curved four-manifold and an extended Skyrme model (Skyrme( field and an infinite tower of massive vector mesons)

Summary and Outlook There is certain similarity between the monopoles and the Skyrmions. Rational maps approach works both for BPS monopoles and for Skyrmions. Axially-symmetric sphaleron solutions representing chains of solitons in alternating order exist in both models. Non-trival holonomy and Skyrmion-anti- Skyrmion chains? Skyrmed monopoles and rational maps? Gauged Skyrmions?