Fourier Transform Methods for Partial Differential Equations

Similar documents
TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

On Gaussian Distribution

x, x, e are not periodic. Properties of periodic function: 1. For any integer n,

Chapter 3 Fourier Series Representation of Periodic Signals

ASSERTION AND REASON

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II

Lectures 2 & 3 - Population ecology mathematics refresher

Integration by Guessing

terms of discrete sequences can only take values that are discrete as opposed to

page 11 equation (1.2-10c), break the bar over the right side in the middle

How much air is required by the people in this lecture theatre during this lecture?

IIT JEE MATHS MATRICES AND DETERMINANTS

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

[ ] Review. For a discrete-time periodic signal xn with period N, the Fourier series representation is

APPLICATIONS OF THE LAPLACE-MELLIN INTEGRAL TRANSFORM TO DIFFERNTIAL EQUATIONS

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S.

ENGI 3424 Appendix Formulæ Page A-01

SOLVED EXAMPLES. Ex.1 If f(x) = , then. is equal to- Ex.5. f(x) equals - (A) 2 (B) 1/2 (C) 0 (D) 1 (A) 1 (B) 2. (D) Does not exist = [2(1 h)+1]= 3

Chapter 3 Higher Order Linear ODEs

Section 5.1/5.2: Areas and Distances the Definite Integral

MM1. Introduction to State-Space Method

LE230: Numerical Technique In Electrical Engineering

1 Introduction to Modulo 7 Arithmetic

IX. Ordinary Differential Equations

Relation of Finite Mellin Integral Transform. with Laplace and Fourier Transforms

National Quali cations

TWO MARKS WITH ANSWER

National Quali cations

The z-transform. Dept. of Electronics Eng. -1- DH26029 Signals and Systems

COMSACO INC. NORFOLK, VA 23502

Numerical Methods. Lecture 5. Numerical integration. dr hab. inż. Katarzyna Zakrzewska, prof. AGH. Numerical Methods lecture 5 1

Model of the multi-level laser

Q.28 Q.29 Q.30. Q.31 Evaluate: ( log x ) Q.32 Evaluate: ( ) Q.33. Q.34 Evaluate: Q.35 Q.36 Q.37 Q.38 Q.39 Q.40 Q.41 Q.42. Q.43 Evaluate : ( x 2) Q.

Calculus Cheat Sheet. ( x) Relationship between the limit and one-sided limits. lim f ( x ) Does Not Exist

Chapter 8 Approximation Methods, Hueckel Theory

Linear Algebra Existence of the determinant. Expansion according to a row.

Chapter 6 Perturbation theory

(1) (2) sin. nx Derivation of the Euler Formulas Preliminary Orthogonality of trigonometric system

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

Energy, entropy and work function in a molecule with degeneracy

UNIT I FOURIER SERIES T

ROUTH-HURWITZ CRITERION

Rectangular Waveguides

Riemann Integral Oct 31, such that

Vtusolution.in FOURIER SERIES. Dr.A.T.Eswara Professor and Head Department of Mathematics P.E.S.College of Engineering Mandya

Quantum Mechanics & Spectroscopy Prof. Jason Goodpaster. Problem Set #2 ANSWER KEY (5 questions, 10 points)

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

Application of Maple on the Differential Problem

COMP108 Algorithmic Foundations

EE Control Systems LECTURE 11

EE Control Systems LECTURE 11

On the Existence and uniqueness for solution of system Fractional Differential Equations

Classical Theory of Fourier Series : Demystified and Generalised VIVEK V. RANE. The Institute of Science, 15, Madam Cama Road, Mumbai

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

MAT 182: Calculus II Test on Chapter 9: Sequences and Infinite Series Take-Home Portion Solutions

Technical Support Document Bias of the Minimum Statistic

LINEAR 2 nd ORDER DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS

Chapter 9 Infinite Series

An Investigation of Continued Fractions

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS

Ordinary Differential Equations

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

The Reign of Grace and Life. Romans 5:12-21 (5:12-14, 17 focus)

Further Results on Pair Sum Graphs

TOPIC 5: INTEGRATION

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura

PURE MATHEMATICS A-LEVEL PAPER 1

CREATED USING THE RSC COMMUNICATION TEMPLATE (VER. 2.1) - SEE FOR DETAILS

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

1985 AP Calculus BC: Section I

Consider serial transmission. In Proakis notation, we receive

Constructing solutions using auxiliary vector potentials

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

Emil Olteanu-The plane rotation operator as a matrix function THE PLANE ROTATION OPERATOR AS A MATRIX FUNCTION. by Emil Olteanu

Iterative Methods of Order Four for Solving Nonlinear Equations

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

HIGHER ORDER DIFFERENTIAL EQUATIONS

Jonathan Turner Exam 2-10/28/03

CIVL 8/ D Boundary Value Problems - Rectangular Elements 1/7

Lectures 5-8: Fourier Series

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths

New Advanced Higher Mathematics: Formulae

Approximately Inner Two-parameter C0

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net

1- I. M. ALGHROUZ: A New Approach To Fractional Derivatives, J. AOU, V. 10, (2007), pp

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph

0.1. Exercise 1: the distances between four points in a graph

SUTCLIFFE S NOTES: CALCULUS 2 SWOKOWSKI S CHAPTER 11

Discrete Fourier Transform (DFT)

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

First assignment of MP-206

CLASS XI CHAPTER 3. Theorem 1 (sine formula) In any triangle, sides are proportional to the sines of the opposite angles. That is, in a triangle ABC

CS September 2018

1. Introduction and notations.

(1) Then we could wave our hands over this and it would become:

Ordinary Differential Equations

Hypergeometric Functions and Lucas Numbers

this is called an indeterninateformof-oior.fi?afleleitns derivatives can now differentiable and give 0 on on open interval containing I agree to.

Transcription:

Itrtiol Jourl o Prtil Dirtil Equtio d Applitio,, Vol, No 3, -57 Avill oli t http://puipuom/ijpd//3/ Si d Edutio Pulihig DOI:69/ijpd--3- Fourir Trorm Mthod or Prtil Dirtil Equtio Nol Tu Ngro * Dprtmt o Mthmti, Collg o Nturl d Computtiol Si, Wollg Uivrity, P o 395 Corrpodig uthor: tit@gmilom Rivd My 6, ; Rvid Ju, ; Aptd Ju 9, Atrt Th purpo o thi mir ppr i to itrodu th Fourir trorm mthod or prtil dirtil qutio Th itrodutio oti ll th poil ort to ilitt th udrtdig o Fourir trorm mthod or whih qulittiv thory i vill d lo om illutrtiv mpl w giv Th rultig Fourir trorm mp utio did o phyil p to utio did o th p o rqui, who vlu qutiy th mout o h priodi rquy otid i th origil utio th ivr Fourir trorm rotrut th origil utio rom it trorm Kyword: ourir trorm, prtil dirtil qutio Cit Thi Artil: Nol Tu Ngro, Fourir Trorm Mthod or Prtil Dirtil Equtio Itrtiol Jourl o Prtil Dirtil Equtio d Applitio, vol, o 3 (: -57 doi: 69/ijpd--3- Itrodutio Th Fourir trorm i th turl tio o Fourir ri to utio ( o iiit priod [] Thi ppr dvlop o o th udmtl topi i lyi d i PDE, mly orthogol pio Diitio: Th t o utio {Y (:,, } h o whih i piwi otiuou i iiit or iit itrvl [α,β], i id to orthogol i [α,β] with rpt to th wight utio r(>, i β Ym, Y r Ym Y d or ll m d α β r Y d or ll α W hll lwy um tht r( h oly iit umr o zro i [α,β] d th itgrl β r Y d,, it α Diitio: Th orm o utio Y ( i dotd y Y did th ir produt o utio with itl d writt β Y r Y d α A rl - vlud utio Y ( i lld qur - itgrl o th itrvl i [α,β] with rpt to th wight utio r( wh β α r Y d < + Th orthogol t {Y (:,, } i [α,β] with rpt to th wight utio r( i id to orthoorml t i r Y β d or ll [8] α I {Y (} i orthoorml t o utio th β m m ( α Y, Y r Y Y d δ m i m Whr δm i th Krokr dlt [6] i m Thu, orthoorml utio hv th m proprti orthogol utio, ut, i dditio, thy hv ormlizd [5], i, h utio Y ( o th orthogol t h dividd y th orm o tht utio, whih i β did Y r Y d H i α orthogol t o utio {Y (} i did o th itrvl [α,β], with Y w lwy otrut orthoorml t o utio X ( y diig Y X, α β [] Y I t i viw o (, β r Ym Y d X m,x ϕm, ϕ δm Ym Y Ym Y α d h X or ll Empl: Th t o utio Y i,or,,, i t o orthogol

5 Itrtiol Jourl o Prtil Dirtil Equtio d Applitio utio ovr th itrvl <X< With rpt to th wight utio r( Thi i how y lultig th ir produt m m Ym, Y i,i i i d i ( m i ( m +, m, ( m ( m+ d Th orm qurd or h utio i giv y m m m m m Y, Y Y i d o d m i m For m,, Th rult r writt i ir produt ottio i m m i,i δm i m Th mir ppr diu priodi utio whih pdd i trm o iiit um o i d oi i whih mot utio outrd i girig r priodi utio Diitio: Fourir trigoomtri ri o utio o ( did o i did o - X, i th iiit trigoomtri ri ~ + o + i, Who oiit r giv y th ir produt ormul ( t dt t ( o dt, t ( i dt, Howvr, i th utio ( i odd, th i ( o tdt, ( t i tdt ( t i tdt, th Fourir trigoomtri ri rdu to th Fourir i ri: Whr o ~ i ( t i tdt, Thu, w olud tht i ( i odd, or did oly o(, d w mk it odd tio th th Fourir i ri otid Etly, i th m wy i ( i v, or did oly o (, d w mk it v tio th i ( t o tdt ( t o tdt, ( i tdt, th Fourir trigoomtri ri rdu to th Fourir oi ri: Whr ~ + o ( ( otdt, Empl: W hll id th Fourir oi ri o th < < Clrly, utio, to tdt tdt,, i t i t t o tdt t dt o (, + Thu, rom (, w hv ( ~ + o, < < Thorm: (Fourir thorm [ [7] ]t ( d ( piwi otiuou i th itrvl [-,] Th, th Fourir trigoomtri ri o ( ovrg to + _ ( + ( t h poit i th op itrvl (-, + _ ( + ( d t ± th ri ovrg to Empl: Coidr th utio [ [,,,, Clrly, CP (, d h igl jump diotiuity t For thi utio, th Fourir ( ( trigoomtri oiit r,, Thu, w hv ( ~ + i (, y F (3

Itrtiol Jourl o Prtil Dirtil Equtio d Applitio 6 From Fourir thorm i (,3 th qulity F( ( hold t h poit i th op itrvl (-, d (, whr t th right hd id i / whih i th m + _ ( + id i gi / whih i th m Alo, t ± th right hd + _ ( + Th Fourir itgrl i turl tio o Fourir trigoomtri ri i th tht it rprt piwi mooth utio who domi i mi-iiit or iiit [] A priodi utio ( did i iit itrvl (-, prd i Fourir ri y tdig thi opt, o priodi utio did i -<< (or ll prd Fourir itgrl t p ( priodi utio o priod p tht rprtd y Fourir ri ( i, + o + Whr dt o tdt, i dt, p Th prolm w hll oidr i wht hpp to th ov ri wh or thi w irt d, to oti o ( otdt ( dt + + i ( i tdt ( + W ow t + Th, d w my writ th Fourir ri i th orm ( dt ( o ( otdt ( + + (i ( dt Thi rprttio i vlid or y id p, ritrrily lrg, ut id W ow lt d um tht th rultig lim i olutly opriodi utio i itgrl o th -i, i, d < Th,, d th vlu o th irt trm o th right id o ( pproh zro Alo, d th iiit ri i ( om itgrl rom to, whih rprt (, i, o ( otdt (5 + ( tdt Now i w itrodu th ottio A ( otdt, B ( tdt (6 Th (5 writt [ + ] Ao B d (7 Thi rprttio o ( i lld Fourir itgrl Thorm: (Fourir Itgrl Thorm: t (, - << piwi otiuou o h iit itrvl, < (-, i, i olutly itgrl d d, o(-, Th, ( rprtd y Fourir itgrl (7 A o + B d Furthr, t h ( + + ( Empl: Fid th Fourir itgrl rprttio o th igl pul utio i < i > From (6 w hv A ( otdt otdt B t tdt Thu, (7 giv th rprttio o i d (8 Now rom thi Thorm it i lr tht i < o ( + d i ± (9 i >

7 Itrtiol Jourl o Prtil Dirtil Equtio d Applitio Thi itgrl i lld Dirihlt diotiuity tor Sttig i (9 yild th importt itgrl d ( kow th Dirihlt itgrl Thorm : (Fourir Coi Itgrl Thorm: I ( tii th Dirihlt oditio o th o gtiv rl li d i olutly itgrll o (,, th, whr A A o tdt t otdt Thorm : (Fourir Si Itgrl Thorm: I ( tii th Dirihlt oditio o th o gtiv rl li d i olutly itgrll o (,, th ; whr B B i d t tdt Idd, i ( i v utio, th B( i (3 t otdt d th Fourir itgrl (7 d A rdu to th Fourir oi itgrl, A o td ( Similrly, i ( i odd, th i (6w hv A( t tdt d th Fourir itgrl (7 d B rdu to th Fourir i itgrl B i dtd ( i Empl: Epr Fourir i > i itgrl d h vlut o o ( Th Fourir i itgrl or ( d i i d ( tdt d ( tdt o d o d o i < d i > At, whih poit o diotiuity o (,th vlu o th ov itgrl ( + ( + + W ot tht (5 i th m ( [ oo t] dtd + ( o( d Th itgrl i rkt i v utio o, w dot it y F ( Si o( i v utio o, th utio do ot dpd o, d w itgrt with rpt to t (ot, th itgrl o F ( rom to i / tim th itgrl o F ( rom - to Thu, t t dt d From th ov rgumt it i lr tht ( o( dtd A omitio o (3 d ( giv o( (3 ( i ( t t dtd (5 Thi i lld th ompl Fourir itgrl From th ov rprttio o (, w hv t i ( dt d (6 Diitio: I th Fourir itgrl o ( i th ompl orm giv y t i ( dt d th prio i rkt i utio o, i dotd y F( or F( d i lld Fourir trorm o Now writig or t w gt F d (7 Ad with thi (6 om F d (8 Th rprttio (8 i lld th ivr Fourir trorm o F( Filly, i Thorm-, i (, - << i piwi otiuou o h iit itrvl,

Itrtiol Jourl o Prtil Dirtil Equtio d Applitio 8 Th, th Fourir trorm (7 d d < o ( it Furthr, t h, F d ( + + ( Empl: Fid th Fourir trorm o th qur wv utio From (7, w hv, <,, > F i d d i Furthr it ollow tht,,, <, i d, < < i,, < Th i thiqu or olvig prtil dirtil qutio (PDE o oudd ptil domi i th Fourir mthod [] Th mir ppr dl with th prolm o th Fourir trorm mthod or prtil dirtil qutio oidrig irt prolm i iiit domi whih tivly olvd y idig th Fourir trorm or th Fourir i or oi trorm o th ukow utio Howvr, or uh prolm uully th mthod o prtio o vril do ot work u th Fourir ri r ot dqut to yild omplt olutio Thi i du to th t tht ot th prolm rquir otiuou uprpoitio o prtd olutio I thi mir ppr w gi y motivtig th otrutio y ivtigtig how Fourir ri hv th lgth o th itrvl go to iiity Thror, thi ppr dvlop th thory o th Fourir trorm mthod or prtil dirtil qutio i whih qulittiv thory it Th mi ojtiv o thi ppr i to diu Fourir trorm mthod or prtil dirtil qutio (PDE whih ot hlp ull i pproimtio to th tru itutio d tht mor rliti modl would ilud om o th priodi utio writt i trm o iiit um o i d oi ri y uig Fourir trorm whih wr omplitd wh w r uig Fourir ri Trorm o Prtil Drivtiv Diitio: I th Fourir itgrl o ( i th ompl orm giv y t i ( dt d th prio i rkt i utio o, i dotd y F( or F( d i lld Fourir trorm o Now writig or t w gt F d ( Ad with thi (8 om F d ( Th rprttio ( i lld th ivr Fourir trorm o F( Filly, i Thorm-, i (, - << i piwi otiuou o h iit itrvl, d d < Th, th Fourir trorm ( o ( it Furthr, t h, F d ( + + ( Empl: Fid th Fourir trorm o th qur wv utio, <,, > From (, w hv F i d d i,, Furthr it ollow tht, <, i d, < < i,, < Thorm (Covolutio Thorm: Suppo tht ( d g( r piwi otiuou, oudd, d olutly itgrl utio o th -i Th F * g F( F( g (3

9 Itrtiol Jourl o Prtil Dirtil Equtio d Applitio Whr *g i th ovolutio o utio d g did ( * ( ( g t g t dt g t t dt Proo: By th diitio d itrhg o th ordr o itgrtio, w hv F ( * g ( T g ( T dtd ( T g ( T ddt Now w mk th utitutio -Tv, o tht T+ν d ( T+ ν F ( * g ( T g ( v dvdt T F( Gg v T dt g v dv By tkig th ivr Fourir trorm o oth id o (3 d writig F( d F( g g otig tht d ( *, d l h othr, w oti g g d ( Th olutio o IBVP oitig o prtil dirtil qutio togthr with oudry d iitil oditio olvd y th Fourir trorm mthod I o dimiol oudry vlu prolm, th prtil dirtil qutio ily trormd ito ordiry dirtil qutio y pplyig uitl trorm Th rquird olutio i th otid y olvig thi qutio d ivrtig y m o th ompl ivrio ormul or y y othr mthod I two dimiol prolm, it i omtim rquird to pply th trorm twi d th dird olutio i otid y doul ivrio Suppo tht u(, i utio o two vril d t, whr -<< d t> Bu o th pr o two vril, r i dd i idtiyig th vril with rpt to whih th Fourir trorm i omputd For mpl, or id t, th utio u(, om utio o th ptil vril, d uh, w tk it Fourir trorm with rpt to th vril W dot thi trorm y u(, Thu, Fu ( ( t, u(, u( t, d Thi trorm i lld Fourir trorm i th vril [] To illutrt th u o thi ottio w omput om vry uul trorm Fourir Trorm d Prtil Drivtiv Giv u(, with -<< d t>, w hv d F( ( u( t, u(, ; dt d F( ( u( t, u(,,,, ; dt F( ( u( t, u(, ; F( ( u( t, ( u(,,,, To prov (i w trt with th right id d dirtit udr th itgrl ig with rpt to t: d d u (, u (, d dt dt u (, Th lt prio i th Fourir trorm o u( t, utio o, d (i ollow Rptd dirtitio udr th itgrl ig with rpt to t yild (ii Fourir Si d Coi Trorm For v utio ( Fourir itgrl i th Fourir oi itgrl (5 whr A( i giv y (6 W t A F, whr idit oi Th rplig t y W gt d d F o d (5 F od (6 Formul (5 giv rom ( w utio F ( lld th Fourir oi trorm o ( whr (6 F, d w ll it th ivr giv k ( rom Fourir oi trorm o F Rltio (5 d (6 togthr orm Fourir oi trorm pir Similrly, or odd utio ( th Fourir i trorm i d th ivr Fourir i trorm i F i d (7 d th ivr Fourir i trorm i F d (8

Itrtiol Jourl o Prtil Dirtil Equtio d Applitio 5 Empl : Fid th Fourir oi trorm o >, > Solutio F od od ( th itgrl i v th imgiry prt itgrt d to zro u it i odd ( y orm F diitio o Fourir tr y Empl : Coidr th utio i i i > Epr uig ivr Fourir oi d th ivr i trorm Solutio: W irt trt y omputig th Fourir oi trorm From (8, ( o o + F io d Uig (6, w oti th ivr oi trorm rprttio ( o o + od( W omput th i trorm imilrly y uig (6 F o o ( d thu th ivr i trorm rprttio ( i i i d( Coi d Si Trorm o Drivtiv o Futio I ( i olutly itgrl o th poitiv -i d piwi otiuou o vry iit itrvl, th th Fourir oi d i trorm o it Furthrmor, it i lr tht F d F r lir oprtor, i, F + g F ( + F ( d F + g F + F Thorm: t ( otiuou d olutly itgrl o th -i, lt ( piwi otiuou o h iit itrvl, d lt ( Th, ' F ( F ( F F [ ] ( (9 ' ( Proo: To how (i, w itgrt y prt, to oti ' ' FC ood o o + i d ( + F ( Alo w itgrt y prt, to oti ' ' FC d ( [ i i ( o o d ] F Similrly, ( ( '' ' ' FC F By ormul (ii with itd o giv ( ( '' ' ' FC ' ( F ( ( ' F ( '' ' ( F F ( ( By ormul ( with itd o giv '' ( ( ' F F h y (9 '' ( ( F F ( F ( ( W hv y th Fourir trorm, F d ( By imilr produr w id rltio tw th i d oi Fourir trorm o th drivtiv o utio, uh d FC ood d + d d d [ oo ] d( d ( itgrtig y pr α +

5 Itrtiol Jourl o Prtil Dirtil Equtio d Applitio Udr th umptio, d α d Similrly, itgrtig, m d d d d (3 d d Equtio, ( d (3 yild, m α ( or '( or '( i odd d i tht w writ αo pl o '( rptig th produr my prd th um o d ithr W thu hv will our wh r r ( r + ( r Ad i α + r r + ( r + ( r α Similr produr with hlp o ( d (3 will yild α m r r r r d ( α + ( + r r + + r r ( α + + ( Similrly th ollowig rult r ily dduil, d (i o o d F d 3 df d F Wh, d 3 d d (ii ood F d d (iii d F d d F wh, F d d (iv d F d F Empl: W oud tht Applyig (ii with, w oti F F H F Covolutio thorm or Fourir i d oi trorm Thorm: t F ( d G trorm o ( d g(, rptivly, d lt F ( d G rptivly Th th Fourir oi th Fourir i trorm o ( d g( F [ F G ] g( ( + ( + d W hv F G od F odg ( od g( df ood g( d F [ o( o( ] d + + g( ( + ( + d Empl: (Covolutio with Coi Suppo tht i itgrl d v (- ( or ll g o Show tht, or ll rl umr ; d lt * g o( ( Solutio From th diitio d th t tht ; *gg*, w hv * g ( o [ ( ] dt ( o o( ( t o o ( dt + i i i Si i v, th produt ( it i odd, h, t it d o * g o( ( o o( dt ( o o( o o o( ( dt i i( o o o it ( ( dt (

Itrtiol Jourl o Prtil Dirtil Equtio d Applitio 5 3 Th Fourir Trorm mthod W ummriz th Fourir trorm mthod ollow: Stp : Fourir trorm th giv oudry vlu prolm i u(, d gt ordiry dirtil qutio i u u (, i th vril t Stp : olv th ordiry dirtil qutio d id (, Stp 3: ivr Fourir trorm u(, to gt u(, Thi mthod i uul i trtig vrity o prtil dirtil qutio, ut it h it limittio, i w hv to um tht th utio i th prolm d it olutio hv Fourir trorm Nvrthl, th mthod or u opportuiti yod th limittio, w ow illutrt Th mthod o olutio i t plid through th ollowig mpl Empl : W will how how th Fourir trorm ppli to th ht qutio W oidr th ht low prolm o iiitly log thi r iultd o it ltrl ur, whih i modld y th ollowig iitilvlu prolm u u < <, t>, > t u d u, iit, t > u,, < <, ( whr th utio i piwi mooth d olutly itgrl i (-, t u(, th Fourir trorm o u(, Thu, rom th Fourir trorm pir, w hv u(, u(, d u (, u (, d Aumig tht th drivtiv tk udr th itgrl, w gt u u u u (, u, t ( d (, d u t d I ordr or u(, to tiy th ht qutio, w mut hv u u u(, + u(, d Thu, u mut olutio o th ordiry dirtil qutio u + u Th iitil oditio i dtrmid y u (, u (, d d F Thror, w hv d h Now i (, u t F t t u( t, F d (5 /( t i d, t i i ( w dot F d g th rom (5 it ollow tht ( µ /( t u( t, ( µ dµ t (6 ( µ /( ( µ dµ t Thi ormul i du to Gu Thi ormul i du to Gu d Wirtr For h µ th utio ( µ /( u t, / t i olutio o th ht qutio d i lld th udmtl olutio Thu, (6 giv rprttio o th olutio otiuou uprpoitio o th udmtl olutio Th tdrd orml ditriutio utio Ф i did ( µ /( / t Thi i otiuou irig utio with Ф(, Ф(,Ф(, I <, th w writ ( µ t z t ( µ dµ dz, z t t t ( ( t z t z dz dz (7 Ф Ф t t

53 Itrtiol Jourl o Prtil Dirtil Equtio d Applitio From (6 d (7 it i lr tht th olutio o th prolm C writt ut u, < <, t>, < u(,,, > u( t, Ф Ф t t Now uig th proprti Ф(, Ф(,Ф(, w vriy tht, <, lim u( t,, < < t,, > Empl : Coidr th prolm ut u, >, t>, u,, t> (8 u d u iit, t > u,, > whih ppr i ht low i mi iiit rgio I (8 th utio i piwi mooth d olutly itgrl i [, W di th odd utio Th rom (6 w hv ( µ /(, > (, < µ dµ t ( µ /( ( µ /( ( µ dµ + ( µ dµ t t I th irt itgrl w hg µ to -µ d u th odd o, to oti ( µ /( ( + µ /( µ dµ µ dµ t t Thu, th olutio o th prolm (8 writt ( µ /( ( + µ /( u( t, ( µ dµ t Th ov produr to id th olutio o (8 i lld th mthod o img I logou wy it how tht th olutio o th prolm t u u, >, t>, u,, t> (9 u d u iit, t > writt u,, > ( µ /( ( + µ /( u( t, ( µ dµ t Hr, o our, w d to td ( to v utio, > (, < I (9 th phyil igii o th oditio u, i tht thr i prt iultio, i, thr i o ht lu ro th ur Empl 3: Coidr th iitil-vlu prolm or th wv qutio ut u, < <, t>, > u d u iit, t > ( u,, < <, u,, < <, t whr th utio d r piwi mooth d olutly itgrl i (-, To id th olutio o thi prolm, w itrodu th Fourir trorm Fj j d, j, d it ivrio ormul j Fj d, j, W lo d th Fourir rprttio o th olutio u(,, Whr u(, u( t, u (, d i ukow utio, whih w will ow dtrmi For thi, w utitut thi ito th dirtil qutio (, to oti u(, u(, t + d Thu, u mut olutio o th ordiry dirtil qutio

Itrtiol Jourl o Prtil Dirtil Equtio d Applitio 5 u + u who olutio writt (, + u t ot t To id ( d, w ot tht u(, d u (, d d h F d F Thror, it ollow tht F u (, F ot + t d h th Fourir rprttio o th olutio i F u (, F ot + t d i i i i + Now i o, i w hv i F ( o d F ( d + ( + t ( F ( d + ( + t + ( t Similrly, ( ξ + t ξ F d dξ t + t t t F d t t F d ( + ( F + t ξ t dξ F dξ d d Puttig th togthr yild d Almrt ormul + t t u (, [ ( + t + ( t ] + ( ξ dξ Empl : Coidr th ollowig prolm ivolvig th pl qutio i hl-pl: u + uyy, < <, y > u(,, < < uy (, M, < <, y>, whr th utio i piwi mooth d olutly itgrl i (-, I, th w lo hv th implid oudry oditio lim uy,, lim uy, For thi, w lt, y +, F d, F d d u(,y u (, y d W id tht u + u u, y + d u, yy Thu, u (, y y mut tiy th ordiry dirtil qutio u y u d th iitil oditio u(, F or h Th grl olutio o th ordiry dirtil y y qutio i + I w impo th iitil oditio d th oudd oditio, th olutio om y F, u(, y F y F, < y Thu, th dird Fourir rprttio o th olutio i y u(,y F d To oti pliit rprttio, w irt th ormul or F( d ormlly itrhg th ordr o itgrtio, to oti

55 Itrtiol Jourl o Prtil Dirtil Equtio d Applitio ξ y u(,y ( ξ dξ d Now th ir itgrl i ( ξ y d ( ξ dξ ( ξ y ( ξ y d R d y R yi ( ξ y + ( ξ Thror, th olutio u(,y pliitly writt y ξ ( y + ( ξ u(,y ( ξ d Thi rprttio i kow Poio itgrl ormul I prtiulr, or, < < u(,, othrwi Thu, ( om y dξ / y y + ( ξ ( ξ + y (,y dξ u ξ Uig th utitutio v w hv dξ ydv, o y tht (,y u ( / y + v ( / y t t y y Th Fourir Si d Coi Trorm Mthod W will motivt th itrodutio o Fourir i d oi trorm y oidrig impl phyil prolm I ordr to u th Fourir i d oi trorm to olv prtil dirtil qutio: I th oudry oditio r o th Dirihlt typ: whr th utio vlu i prrid o th oudry, th th Fourir i trorm i ud I th oudry oditio r o th Num typ: whr th drivtiv o utio i prrid o oudry, th Fourir oi trorm i pplid I ithr, th PDE rdu to ODE i Fourir trorm whih i olvd Th th ivr Fourir i (or oi trorm will giv th olutio to th prolm Iiit Fourir oi d i Trorm Mthod To olv prtil dirtil qutio (otiig od drivtiv did o mi-iiit itrvl, dv uig Fourir oi trorm, ( mut kow I ut (,, i giv th w mploy oi o u trorm to rmov Diitio: Th iiit Fourir oi trorm o utio ( or <<,i did F i i d ig poitiv itgr Hr ( i lld th ivr Fourir oi trorm o F ( d i did F ( o d Similrly, th Fourir i trorm my ud or mi-iiit prolm i ( i giv Furthrmor, prolm r mor rdily olvd i th oudry oditio r homogou Thu, i (, prtio o vril motivt th u o i oly Similrly, ( impli th u o oi Diitio: Th iiit Fourir i trorm o utio ( o uh tht << i dotd y F (, ig poitiv itgr d i did F i i d Hr ( i lld th ivr Fourir i trorm o F ( d did F ( i d Empl: W hll mploy th Fourir i trorm to id th olutio o th ollowig prolm ivolvig th pl qutio i mi-iiit trip: u + uyy, < <,< y < u(,, < <, u(, y, < y < u,, < <, whr th utio i piwi mooth d olutly itgrl i [, W hll lo d th oudry lim uy, lim u y, oditio d d, For thi, w lt, F d, F d u (,y u (, y d

Itrtiol Jourl o Prtil Dirtil Equtio d Applitio 56 W id tht u (, y u, + uyy u (, y + d y Thu, u d h mut tiy th ordiry dirtil qutio u y u + u, y oh y ih y Now th oudry oditio u ( Thu, w hv, yild ih oh ih u (, y oh y + ih y oh ih ( y oh Now i u (, F F ih, d thror ih (, u y F Thi giv th olutio ih ( y ih, w id ih ( y u (,y F d ih ih ( y ( t t dtd ih Fiit Fourir oi d i Trorm Mthod Wh th domi o th phyil prolm i iit, it i grlly ot ovit to u th trorm with iiit rg o itgrtio I my, iit Fourir trorm ud with dvtg Diitio: Th iit Fourir i trorm o,< < i did F ( i i d Whr i itgr Th utio ( i th lld th ivr iit Fourir i trorm o F ( d i giv y F( i F( i ( Diitio: Th iit Fourir oi trorm o,< < i did F ( o d, Whr i itgr Th utio ( i th lld th ivr iit Fourir oi trorm o F ( d i giv y F + F( o( o Fiit Fourir trorm r uul i olvig prtil dirtil qutio For thi, w ot tht (, u t i d u( t, i u( t, o d Ad h u F F( d imilrly, u F F( [ u(, u( t, o ], u u F F (3 F (, (, o + u t u t u F F (, (, o u t u t Empl: Fid th olutio o th prolm u u, < <, t > u,,< < u, t u, t, t > Tkig th iit Fourir i trorm with o oth id o th prtil dirtil qutio giv d u u i i d Writig u or F ( d uig (3 with u, t, u, t ld to du(, t dt 6, whih olvd to oti u (, u /6 Now tkig th iit Fourir i trorm o th oditio u( w hv

57 Itrtiol Jourl o Prtil Dirtil Equtio d Applitio u (, i d o / i / / /6 3 o Si u (, it ollow tht 3 u( t, o Thu, rom ( w gt t /6 6 o t (, /6 u t i 3 Coluio Howvr, Phyil prolm vr I thi work, wh modlig prolm ovr rgio tht tdd vry r i t lt o dirtio, w ot idlizd th itutio to tht o prolm hvig iiit tt i o or mor dirtio, whr y oudry oditio tht would hv pplid o th r-wy oudri r dirdd i vor o impl oudd oditio o th olutio th pproprit vril i t to iiity Suh prolm wr mthmtilly modld y dirtil qutio did o iiit rgio For o-dimiol prolm w ditiguih two typ o iiit rgio: iiit itrvl tdig rom - to d mi-iiit itrvl tdig rom o poit (uully th origi to iiit (uully + r iiit, ut y itroduig mthmtil modl with iiit tt, w r l to dtrmi hvior o prolm i th itutio i whih th ilu o tul oudri r ptd to gligil Thu th mir ppr dvlopd th Fourir trorm mthod d pplid it to olv: ht low prolm o iiitly log thi r iultd o it ltrl ur, ht low i mi iiit rgio, wv qutio, pl qutio i hl-pl d i miiiit trip, d om prtil dirtil qutio o th tir rl li Ev though urvy o thi mir ppr how tht wht i tully tudid Fourir trorm mthod to PDE i tht, w tk th Fourir trorm o PDE d it iitil d oudry oditio to rdu it ito ODE W th olvd thi ODE or th trormd utio W ivrtd thi utio to dtrmi th olutio to our PDE Thi i ot jut mthod tht i pii to th Fourir trorm u thi mthod lo work or th pl trorm d i grl or my itgrl trorm Th itgrl diig th Fourir trorm d it ivr r rmrkly lik, d thi ymmtry w ot ploitd, or mpl wh mlig ppdi giv or Fourir trorm O oditio o thi i tht th vril you tk to th itgrl trorm it domi mut mth th rg o itgrtio o th itgrl trorm Th typ o oudry d iitil oditio tht r giv hould lo plyd rol i whih trorm hould ud I, th Fourir trorm i ud to lyz oudry vlu prolm o th tir li Th tio o Fourir mthod to th tir rl li ld turlly to th Fourir trorm, trmly powrul mthmtil tool or th lyi o opriodi utio It i rol to pt Fourir trorm mthod pply to olv dirt orm o prtil dirtil qutio uh Tlgrph qutio: utt + ( α + β ut + αβu u or th αβ>, Th Fourir trorm i o udmtl import i rod rg o pplitio, iludig oth ordiry d prtil dirtil qutio, qutum mhi, igl d img proig, otrol thory, d proility, to m ut w Rr [] Agrwl R d R Dol, 9 Ordiry d prtil dirtil Equtio With Spil Futio, Fourir Sri, d Boudry vlu Prolm, Sprig Strt, Nw York [] Amr N, Prtil Dirtil Equtio With Fourir Sri Ad Boudry Vlu Prolm, d ditio, Plo Prti Hll, Uitd Stt o Amri [3] Bdru V, 8 Highr Egirrig Mthmti, Tt M Grw-Hill Pulihig Compy imitd, Nwdlhi [] Duy D, 998 Advd Egirig Mthmti, CRC Pr C, Nw York [5] Hrm R, 987 Elmtry Applid prtil Dirtil qutio With Fourir ri d Boudry Vlu Prolm, Eglwood Cli, Nw Jry [6] Piku A d Zry S, 997 Fourir Sri d Itgrl Trorm, Cridg Uivrity Pr, Uitd Kigdom [7] Puri P, 997 Prtil Dirtil Equtio d Mthmti, CRC Pr, Nw York [8] Tvito A, 998 Itrodutio to Prtil Dirtil Equtio A Computtiol pproh, Sprigr-Vrlg, Nw York, I