Einstein-Maxwell-Chern-Simons Black Holes

Similar documents
Rotating Black Holes in Higher Dimensions

Jose Luis Blázquez Salcedo

Jose Luis Blázquez Salcedo

Charged Rotating Black Holes in Higher Dimensions

Black Holes in Four and More Dimensions

Rotating Charged Black Holes in D>4

Black hole near-horizon geometries

The abundant richness of Einstein-Yang-Mills

Extremal black holes and near-horizon geometry

Black hole instabilities and violation of the weak cosmic censorship in higher dimensions

General Relativity and Cosmology Mock exam

Kerr black hole and rotating wormhole

Cosmological constant is a conserved charge

Mass and thermodynamics of Kaluza Klein black holes with squashed horizons

ON THE BLACK HOLE SPECIES

BPS Black holes in AdS and a magnetically induced quantum critical point. A. Gnecchi

Dilatonic Black Saturn

arxiv:hep-th/ v3 25 Sep 2006

Global and local problems with. Kerr s solution.

WHY BLACK HOLES PHYSICS?

Dynamical compactification from higher dimensional de Sitter space

Modelling the evolution of small black holes

My talk Two different points of view:

Jason Doukas Yukawa Institute For Theoretical Physics Kyoto University

Übungen zu RT2 SS (4) Show that (any) contraction of a (p, q) - tensor results in a (p 1, q 1) - tensor.

Expanding plasmas from Anti de Sitter black holes

Where is the PdV term in the first law of black-hole thermodynamics?

Analytic solutions of the geodesic equation in static spherically symmetric spacetimes in higher dimensions

Black holes in N = 8 supergravity

On Black Hole Structures in Scalar-Tensor Theories of Gravity

Microstate Geometries. Non-BPS Black Objects

References. S. Cacciatori and D. Klemm, :

Self trapped gravitational waves (geons) with anti-de Sitter asymptotics

Rotating Attractors - one entropy function to rule them all Kevin Goldstein, TIFR ISM06, Puri,

arxiv: v1 [gr-qc] 7 Jan 2018

Holographic Entanglement Entropy for Surface Operators and Defects

Spin and charge from space and time

Integrability of five dimensional gravity theories and inverse scattering construction of dipole black rings

A Summary of the Black Hole Perturbation Theory. Steven Hochman

Black Holes in Higher-Derivative Gravity. Classical and Quantum Black Holes

Lecture 9: RR-sector and D-branes

κ = f (r 0 ) k µ µ k ν = κk ν (5)

Magnetized black holes and black rings in the higher dimensional dilaton gravity

Chapter 2 Black Holes in General Relativity

arxiv:hep-th/ v2 24 Sep 1998

THE 2D ANALOGUE OF THE REISSNER-NORDSTROM SOLUTION. S. Monni and M. Cadoni ABSTRACT

arxiv: v2 [gr-qc] 1 Apr 2016

QFT Corrections to Black Holes

TOPIC V BLACK HOLES IN STRING THEORY

Instability of extreme black holes

Black Holes. Jan Gutowski. King s College London

AdS and Af Horndeski black hole solutions in four dimensions

Radiation from the non-extremal fuzzball

Universal Relations for the Moment of Inertia in Relativistic Stars

Asymptotic Quasinormal Frequencies for d Dimensional Black Holes

On Special Geometry of Generalized G Structures and Flux Compactifications. Hu Sen, USTC. Hangzhou-Zhengzhou, 2007

GRAVITY DUALS OF 2D SUSY GAUGE THEORIES

Constrained BF theory as gravity

Charged Spinning Black Holes & Aspects Kerr/CFT Correspondence

Einstein Toolkit Workshop. Joshua Faber Apr

Trapped ghost wormholes and regular black holes. The stability problem

One Step Forward and One Step Back (In Understanding Quantum Black Holes) Gary Horowitz UC Santa Barbara

arxiv:gr-qc/ v2 1 Oct 1998

Charged, Rotating Black Holes in Higher Dimensions

Three-Charge Supertubes in a Rotating Black Hole Background

Black-hole & white-hole horizons for capillary-gravity waves in superfluids

A5682: Introduction to Cosmology Course Notes. 2. General Relativity

Einstein Double Field Equations

Late-time tails of self-gravitating waves

A rotating charged black hole solution in f (R) gravity

General Relativity and Differential

Black holes, black strings and cosmological constant. 418-th WE-Heraeus Seminar, Bremen, August 2008

The Role of Black Holes in the AdS/CFT Correspondence

Non-Abelian Einstein-Born-Infeld Black Holes

Particle Dynamics Around a Charged Black Hole

General Relativity and the Black Ring Coordinate System

Accelerating Cosmologies and Black Holes in the Dilatonic Einstein-Gauss-Bonnet (EGB) Theory

arxiv:gr-qc/ v1 26 Aug 1997

Stability of black holes and solitons in AdS. Sitter space-time

Black hole thermodynamics

Newman-Penrose formalism in higher dimensions

Black holes with only one Killing field

The Uses of Ricci Flow. Matthew Headrick Stanford University

Black rings with a small electric charge: gyromagnetic ratios and algebraic alignment

Some Comments on Kerr/CFT

TO GET SCHWARZSCHILD BLACKHOLE SOLUTION USING MATHEMATICA FOR COMPULSORY COURSE WORK PAPER PHY 601

Black holes in the 1/D expansion

Microscopic entropy of the charged BTZ black hole

Black Hole Entropy and Gauge/Gravity Duality

Electromagnetic Energy for a Charged Kerr Black Hole. in a Uniform Magnetic Field. Abstract

Holography Duality (8.821/8.871) Fall 2014 Assignment 2

Heterotic Torsional Backgrounds, from Supergravity to CFT

Geometric inequalities for black holes

Classification theorem for the static and asymptotically flat Einstein-Maxwell-dilaton spacetimes possessing a photon sphere

Classical and thermodynamic stability of black holes

Fourth Aegean Summer School: Black Holes Mytilene, Island of Lesvos September 18, 2007

Black Holes and Wave Mechanics

Theory. V H Satheeshkumar. XXVII Texas Symposium, Dallas, TX December 8 13, 2013

Interpolating geometries, fivebranes and the Klebanov-Strassler theory

Analytic Kerr Solution for Puncture Evolution

Transcription:

.. Einstein-Maxwell-Chern-Simons Black Holes Jutta Kunz Institute of Physics CvO University Oldenburg 3rd Karl Schwarzschild Meeting Gravity and the Gauge/Gravity Correspondence Frankfurt, July 2017 Jutta Kunz (Universität Oldenburg) EMCS Black Holes Frankfurt, July 2017 1 / 35

. Outline Outline. 1 Introduction. 2 Asymptotically Flat EMCS Black Holes D = 5 Einstein-Maxwell Theory D = 5 minimal supergravity D = 5 EMCS theory: λ 1. 3 EMCS Solutions with AdS Asymptotics Charged solutions Magnetized solutions Magnetized squashed solutions. 4 Conclusion and Outlook Jutta Kunz (Universität Oldenburg) EMCS Black Holes Frankfurt, July 2017 2 / 35

. Outline Outline. 1 Introduction. 2 Asymptotically Flat EMCS Black Holes D = 5 Einstein-Maxwell Theory D = 5 minimal supergravity D = 5 EMCS theory: λ 1. 3 EMCS Solutions with AdS Asymptotics Charged solutions Magnetized solutions Magnetized squashed solutions. 4 Conclusion and Outlook Jutta Kunz (Universität Oldenburg) EMCS Black Holes Frankfurt, July 2017 2 / 35

. Outline Outline. 1 Introduction. 2 Asymptotically Flat EMCS Black Holes D = 5 Einstein-Maxwell Theory D = 5 minimal supergravity D = 5 EMCS theory: λ 1. 3 EMCS Solutions with AdS Asymptotics Charged solutions Magnetized solutions Magnetized squashed solutions. 4 Conclusion and Outlook Jutta Kunz (Universität Oldenburg) EMCS Black Holes Frankfurt, July 2017 2 / 35

. Outline Outline. 1 Introduction. 2 Asymptotically Flat EMCS Black Holes D = 5 Einstein-Maxwell Theory D = 5 minimal supergravity D = 5 EMCS theory: λ 1. 3 EMCS Solutions with AdS Asymptotics Charged solutions Magnetized solutions Magnetized squashed solutions. 4 Conclusion and Outlook Jutta Kunz (Universität Oldenburg) EMCS Black Holes Frankfurt, July 2017 2 / 35

. Outline Introduction. 1 Introduction. 2 Asymptotically Flat EMCS Black Holes D = 5 Einstein-Maxwell Theory D = 5 minimal supergravity D = 5 EMCS theory: λ 1. 3 EMCS Solutions with AdS Asymptotics Charged solutions Magnetized solutions Magnetized squashed solutions. 4 Conclusion and Outlook Jutta Kunz (Universität Oldenburg) EMCS Black Holes Frankfurt, July 2017 3 / 35

Introduction. Generalization of D = 4 Black Holes: D > 4 Tangherlini (1963) Myers and Perry (1986) mmmm static mmmm mmmn rotating mmmn D = 4 Schwarzschild Kerr (M) (M, J) D > 4 Tangherlini Myers-Perry (M) (M, J 1,..., J N ) Jutta Kunz (Universität Oldenburg) EMCS Black Holes Frankfurt, July 2017 3 / 35

Introduction. Generalization of D = 4 Black Holes: D > 4 Tangherlini (1963) Myers and Perry (1986) mmmm static mmmm mmmn rotating mmmn D = 4 Schwarzschild Kerr (M) (M, J) D > 4 Tangherlini Myers-Perry (M) (M, J 1,..., J N ) Jutta Kunz (Universität Oldenburg) EMCS Black Holes Frankfurt, July 2017 3 / 35

Introduction. Generalization of D = 4 Black Holes: D > 4 Tangherlini (1963) Myers and Perry (1986) mmmm static mmmm mmmn rotating mmmn D = 4 Schwarzschild Kerr (M) (M, J) D > 4 Tangherlini Myers-Perry (M) (M, J 1,..., J N ) Jutta Kunz (Universität Oldenburg) EMCS Black Holes Frankfurt, July 2017 3 / 35

Introduction. Myers-Perry Black Holes Myers and Perry 1986 D: dimension of space-time D 1 N: number of independent angular momenta J i : N 2 N: number of independent planes x 3 ϕ 2 (x 3, x 4 ) x 4 θ (x 1, x 2 ) x 2 ϕ 1 x 1 example: D = 5, N = 2 Jutta Kunz (Universität Oldenburg) EMCS Black Holes Frankfurt, July 2017 4 / 35

Introduction. Myers-Perry Black Holes metric Frolov and Kubiznak (2007) ds 2 D,MP = dt 2 ΠF N + Π mr 2 ε dr2 + (r 2 + a 2 i )(dµ 2 i + µ 2 i dφ 2 i ) + mr2 ε ΠF F 1 ( i=1 dt i=1 ) 2 N a i µ 2 i dφ i + εr 2 dν 2 i=1 N a 2 N i µ2 i r 2 + a 2, Π = (r 2 + a 2 i ) i i=1 N µ 2 i + εν 2 = 1 i=1 coordinate ν only in even dimensions: odd D : ε = 0 even D : ε = 1 mass M and angular momenta J i : M = m (1 + (D 3)) A(S D 2 ) J i = 2m a i A(S D 2 ), i = 1,..., N Jutta Kunz (Universität Oldenburg) EMCS Black Holes Frankfurt, July 2017 5 / 35

Introduction. Myers-Perry Black Holes metric in odd D: a i = a ds 2 D,MP = dt 2 + ΠF Π mr 2 dr2 + + mr2 ΠF ( dt N (r 2 + a 2 )(dµ 2 i + µ 2 i dφ 2 i ) i=1 ) 2 N aµ 2 i dφ i i=1 F 1 N i=1 a 2 µ 2 i r 2 + a 2, N Π = (r 2 + a 2 ) i=1 enhanced symmetry: U(1) N U(N) factorization of angular coordinates Jutta Kunz (Universität Oldenburg) EMCS Black Holes Frankfurt, July 2017 6 / 35

Introduction. Myers-Perry Black Holes: Domain of Existence 1.00 0.50 D = 5: domain of existence is bounded j 2 0.00-0.50-1.00-1.0-0.5 0.0 0.5 1.0 j 1 scaled angular momenta j 1 = J 1 /M (D 2)/(D 3) j 2 = J 2 /M (D 2)/(D 3) Jutta Kunz (Universität Oldenburg) EMCS Black Holes Frankfurt, July 2017 7 / 35

Introduction. Myers-Perry Black Holes: Domain of Existence 1.00 0.50 D = 5: domain of existence is bounded j 2 0.00-0.50-1.00-1.0-0.5 0.0 0.5 1.0 j 1 scaled angular momenta D = 6: domain of existence is unbounded on axes: for J 1 = J, J 2 = 0 for J 1 = 0, J 2 = J j 1 = J 1 /M (D 2)/(D 3) j 2 = J 2 /M (D 2)/(D 3) Jutta Kunz (Universität Oldenburg) EMCS Black Holes Frankfurt, July 2017 7 / 35

Introduction. Myers-Perry Black Holes: ds/ads Gibbons, Lu, Page and Pope (2004) ( )2 N 2µ ai ρ2i dϕi 2 2 2 ds = W (1 + Λ r )dt + W dt U Ξi i=1 ( ) ) N ( 2 r + a2i U + dr2 + ϵ r2 dy 2 + (dρ2i + ρ2i dϕ2i ) Z 2µ Ξ i i=1 (N ( )2 r 2 + a2 ) Λ i 2 ρi dρi + ϵr ydy Ξi W (1 + Λ r2 ) i=1 Λ = 2Λ, Ξi = 1 Λ a2i (D 1)(D 2) N (1 + Λ r2 ) 2 (r + a2i ) r2 ϵ i=1 ) ( N Z a2i ρ2i U= 1 r2 + a2i 1 + Λ r2 i=1 W = ϵy 2 + N ρ2i, Ξ i=1 i Jutta Kunz (Universita t Oldenburg) Z= EMCS Black Holes Frankfurt, July 2017 8 / 35

. Outline Asymptotically Flat EMCS Black Holes. 1 Introduction. 2 Asymptotically Flat EMCS Black Holes D = 5 Einstein-Maxwell Theory D = 5 minimal supergravity D = 5 EMCS theory: λ 1. 3 EMCS Solutions with AdS Asymptotics Charged solutions Magnetized solutions Magnetized squashed solutions. 4 Conclusion and Outlook Jutta Kunz (Universität Oldenburg) EMCS Black Holes Frankfurt, July 2017 9 / 35

Asymptotically Flat EMCS Black Holes. D = 5 Einstein-Maxwell-Chern-Simons Theory Jutta Kunz (Universita t Oldenburg) EMCS Black Holes Frankfurt, July 2017 9 / 35

Asymptotically Flat EMCS Black Holes. D = 5 Einstein-Maxwell-Chern-Simons Theory In odd dimensions D = 2n + 1 the Einstein-Maxwell action may be supplemented by a AF n Chern-Simons term. D = 5 Einstein-Maxwell-Chern-Simons action S = 1 { g (R Fµν F µν ) 2λ 16πG 5 3 3 εmnpqr A m F np F qr }{{} Chern Simons } d 5 x Chern-Simons coupling constant λ λ = 0: λ = 1: Einstein-Maxwell theory bosonic sector of minimal D = 5 supergravity λ > 1 Jutta Kunz (Universität Oldenburg) EMCS Black Holes Frankfurt, July 2017 9 / 35

Asymptotically Flat EMCS Black Holes. D = 5 Einstein-Maxwell-Chern-Simons Theory coupled set of field equations Einstein equations G µν = 2 (F µρ F ρν 14 ) F ρσf ρσ Maxwell Chern-Simons equations unchanged w.r.t. Einstein-Maxwell ν F µν + λ 2 3 ϵµναβγ F να F βγ = 0. breaking of Q Q symmetry if λ 0 Jutta Kunz (Universität Oldenburg) EMCS Black Holes Frankfurt, July 2017 9 / 35

Asymptotically Flat EMCS Black Holes. D = 5 Einstein-Maxwell-Chern-Simons Theory Ansätze: J 1 = J 2 = J (cohomogeneity-1) metric ds 2 = F 1 (r)dr 2 + 1 4 F 2(r)(σ 2 1 + σ 2 2) + 1 4 F 3(r) ( σ 3 2ω(r)dt ) 2 F0 (r)dt 2, gauge potential A = a 0 (r)dt + a φ (r) 1 2 σ 3, angular dependence left-invariant 1-forms σ i on S 3 σ 1 = cos ψdθ + sin ψ sin θdϕ σ 2 = sin ψdθ + cos ψ sin θdϕ σ 3 = dψ + cos θdϕ θ, ϕ and ψ: Euler angles on S 3 (0 θ π, 0 ϕ 2π, 0 ψ 4π) Jutta Kunz (Universität Oldenburg) EMCS Black Holes Frankfurt, July 2017 9 / 35

. Outline Asymptotically Flat EMCS Black Holes D = 5 Einstein-Maxwell Theory. 1 Introduction. 2 Asymptotically Flat EMCS Black Holes D = 5 Einstein-Maxwell Theory D = 5 minimal supergravity D = 5 EMCS theory: λ 1. 3 EMCS Solutions with AdS Asymptotics Charged solutions Magnetized solutions Magnetized squashed solutions. 4 Conclusion and Outlook Jutta Kunz (Universität Oldenburg) EMCS Black Holes Frankfurt, July 2017 10 / 35

Asymptotically Flat EMCS Black Holes D = 5 Einstein-Maxwell Theory. Einstein-Maxwell Black Holes higher dimensional black holes? no closed form solutions except for Tangherlini perturbative solutions small J small Q extremal near horizon solutions odd D, equal J numerical solutions odd D, equal J a single J Jutta Kunz (Universita t Oldenburg) EMCS Black Holes Frankfurt, July 2017 11 / 35

Asymptotically Flat EMCS Black Holes. Einstein-Maxwell Black Holes D = 5 Einstein-Maxwell Theory Gauntlett, Myers, Townsend (1999) first law mass formula dm = T ds + 2ΩdJ + ΦdQ D 3 D 2 M = 2κA H + N i=1 Ω i J i + D 3 D 2 Φ HQ M: mass T : surface gravity S: area Ω: angular velocity J: angular momentum Φ: horizon potential Q: charge Jutta Kunz (Universität Oldenburg) EMCS Black Holes Frankfurt, July 2017 11 / 35

Asymptotically Flat EMCS Black Holes. Einstein-Maxwell Black Holes gyromagnetic ratio g: D = 5 Einstein-Maxwell Theory µ mag = g QJ 2M Aliev and Frolov (2004), Aliev (2006) perturbative result in lowest order: g = D 2 Navarro-Lérida (2010) perturbative result in higher order: g D 2 g/(d-2) 1.05 1.04 1.03 1.02 5D 7D 9D 3rd order extremal black holes g D 2 = 1+ 1 ( ) 2 Q +... 16 M 1.01 1.00 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Q/M Jutta Kunz (Universität Oldenburg) EMCS Black Holes Frankfurt, July 2017 11 / 35

Asymptotically Flat EMCS Black Holes. Near Horizon Solutions D = 5 Einstein-Maxwell Theory Kunduri, Lucietti (2013) Blázquez-Salcedo, J.K., Navarro-Lérida (2013) near-horizon geometry of extremal black holes: AdS 2 S 3 metric gauge potential ds 2 = v 1 ( dr2 r 2 r2 dt 2 ) + v 2 [ σ 2 1 + σ 2 2 + v 3 (σ 3 krdt) 2] A µ dx µ = q 1 rdt + q 2 (σ 3 krdt) σ 1 = cos ψdθ + sin ψ sin θdϕ, σ 2 = sin ψdθ + cos ψ sin θdϕ, σ 3 = dψ + cos θdϕ Jutta Kunz (Universität Oldenburg) EMCS Black Holes Frankfurt, July 2017 12 / 35

Asymptotically Flat EMCS Black Holes. Near Horizon Solutions D = 5 Einstein-Maxwell Theory angular momentum area relation for EM black holes vs scaled charge 1.0 0.8 MP branch, 5D RN branch, 5D MP branch, 7D RN branch, 7D MP branch, 9D RN branch, 9D MP branch, 11D RN branch, 11D equal magnitude angular momenta EM in D dimensions 2 solutions 1st solution: A H /J 0.6 J = 2(D 3)A H 0.4 0.2 0.0 1.0 2.0 3.0 4.0 5.0 6.0 Q/J (D-3)/(D-2) MP branch 2nd solution: J = (D 1)J H RN branch Jutta Kunz (Universität Oldenburg) EMCS Black Holes Frankfurt, July 2017 12 / 35

Asymptotically Flat EMCS Black Holes. Near Horizon Solutions D = 5 Einstein-Maxwell Theory angular momentum area relation for EM black holes vs scaled charge 1.00 0.75 MP branch, 5D RN branch, 5D MP branch, 7D RN branch, 7D MP branch, 9D RN branch, 9D MP branch, 11D RN branch, 11D equal magnitude angular momenta EM in D dimensions 2 solutions 1st solution: J H /J 0.50 J = 2(D 3)A H 0.25 0.00 0.0 1.0 2.0 3.0 4.0 5.0 6.0 Q/J (D-3)/(D-2) MP branch 2nd solution: J = (D 1)J H RN branch Jutta Kunz (Universität Oldenburg) EMCS Black Holes Frankfurt, July 2017 12 / 35

Asymptotically Flat EMCS Black Holes D = 5 Einstein-Maxwell Theory. Near Horizon and Global Solutions A H Q scaled area of EM black holes vs scaled charge M (D 2)/(D 3) M A H /M (D-2)/(D-3) 0.05 0.04 0.03 0.02 0.01 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Q/M Extremal D=5 Extremal D=7 Extremal D=9 Static D=5 Static D=7 Static D=9 equal magnitude angular momenta D dimensions globally realized: MP branch: small Q/M RN branch: large Q/M switch: matching point Jutta Kunz (Universität Oldenburg) EMCS Black Holes Frankfurt, July 2017 13 / 35

Asymptotically Flat EMCS Black Holes D = 5 Einstein-Maxwell Theory. Near Horizon and Global Solutions J scaled angular momenta of EM black holes vs scaled charge M (D 2)/(D 3) J/M (D-2)/(D-3) 0.08 0.06 0.04 0.02 0.00 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Q/M Extremal D=5 Extremal D=7 Extremal D=9 Static D=5 Static D=7 Static D=9 equal magnitude angular momenta D dimensions globally realized: MP branch: small Q/M RN branch: large Q/M switch: matching point Jutta Kunz (Universität Oldenburg) EMCS Black Holes Frankfurt, July 2017 13 / 35

Asymptotically Flat EMCS Black Holes D = 5 Einstein-Maxwell Theory. Near Horizon and Global Solutions D = 5 extremal black holes in EM theory: λ = 0 J /M 3/2 J 1 = J 2, λ=0 0.40 λ=0 0.30 0.20 0.10 0.00-1.0-0.5 0.0 0.5 1.0 3/2 Q/M boundary of domain of existence non-extremal bhs inside naked singularities outside J = 0: static black holes RN black holes extremal RN on the boundary λ = 0 symmetry q q Jutta Kunz (Universität Oldenburg) EMCS Black Holes Frankfurt, July 2017 13 / 35

. Outline Asymptotically Flat EMCS Black Holes D = 5 minimal supergravity. 1 Introduction. 2 Asymptotically Flat EMCS Black Holes D = 5 Einstein-Maxwell Theory D = 5 minimal supergravity D = 5 EMCS theory: λ 1. 3 EMCS Solutions with AdS Asymptotics Charged solutions Magnetized solutions Magnetized squashed solutions. 4 Conclusion and Outlook Jutta Kunz (Universität Oldenburg) EMCS Black Holes Frankfurt, July 2017 14 / 35

Asymptotically Flat EMCS Black Holes D = 5 minimal supergravity. Einstein-Maxwell-Chern-Simons Black Holes: λ = 1 Breckenridge, Myers, Peet and Vafa (1997) Chong, Cveti c, Lü and Pope (2005) extremal λ = 1 EMCS black holes: J /M 3/2 0.40 0.30 0.20 0.10 J 1 = J 2, λ=0, 1 λ=0 λ=1 0.00-1.0-0.5 0.0 0.5 1.0 3/2 Q/M boundary of domain of existence non-extremal bhs inside naked singularities outside J = 0: static black holes RN black holes extremal RN on the boundary λ 0 symmetry q q broken Jutta Kunz (Universität Oldenburg) EMCS Black Holes Frankfurt, July 2017 15 / 35

Asymptotically Flat EMCS Black Holes D = 5 minimal supergravity. Einstein-Maxwell-Chern-Simons Black Holes: λ = 1 Breckenridge, Myers, Peet and Vafa (1997) Chong, Cveti c, Lü and Pope (2005) extremal λ = 1 EMCS black holes: J /M 3/2 0.40 0.30 0.20 0.10 J 1 = J 2, λ=0, 1 λ=0 λ=1 0.00-1.0-0.5 0.0 0.5 1.0 3/2 Q/M vertical wall BMPV solutions Q is kept fixed J increases M remains constant first law dm = T ds + Ω i dj i + ΦdQ extremal: T = 0 Q fixed: dq = 0 M fixed: dm = 0??? Jutta Kunz (Universität Oldenburg) EMCS Black Holes Frankfurt, July 2017 15 / 35

Asymptotically Flat EMCS Black Holes D = 5 minimal supergravity. Einstein-Maxwell-Chern-Simons Black Holes: λ = 1 Breckenridge, Myers, Peet and Vafa (1997) Chong, Cveti c, Lü and Pope (2005) extremal λ = 1 EMCS black holes: J /M 3/2 0.40 0.30 0.20 0.10 J 1 = J 2, λ=0, 1 λ=0 λ=1 0.00-1.0-0.5 0.0 0.5 1.0 3/2 Q/M horizon angular velocites vanish: Ω i = 0, J = 0 angular momentum is stored in the Maxwell field negative fraction of the angular momentum is stored behind the horizon the effect of rotation is to deform the horizon into a squashed 3-sphere Jutta Kunz (Universität Oldenburg) EMCS Black Holes Frankfurt, July 2017 15 / 35

. Outline Asymptotically Flat EMCS Black Holes D = 5 EMCS theory: λ 1. 1 Introduction. 2 Asymptotically Flat EMCS Black Holes D = 5 Einstein-Maxwell Theory D = 5 minimal supergravity D = 5 EMCS theory: λ 1. 3 EMCS Solutions with AdS Asymptotics Charged solutions Magnetized solutions Magnetized squashed solutions. 4 Conclusion and Outlook Jutta Kunz (Universität Oldenburg) EMCS Black Holes Frankfurt, July 2017 16 / 35

Asymptotically Flat EMCS Black Holes D = 5 EMCS theory: λ 1. Einstein-Maxwell-Chern-Simons Black Holes: λ > 1 J.K., Navarro-Lérida (2006) 0.40 0.30 λ=1.5 λ=1 J 1 = J 2 Ω=0 0.40 0.30 λ=2 J 1 = J 2, λ=0, 1, 2 λ=1 Ω=0 J /M 3/2 0.20 0.10 λ=0 J /M 3/2 0.20 0.10 λ=0 0.00-1.5-1.0-0.5 0.0 0.5 1.0 3/2 Q/M black holes with Ω = 0, J 0 black holes with Ω < 0, J > 0 0.00-1.5-1.0-0.5 0.0 0.5 1.0 3/2 Q/M non-extremal counter-rotating (shaded area) Jutta Kunz (Universität Oldenburg) EMCS Black Holes Frankfurt, July 2017 17 / 35

Asymptotically Flat EMCS Black Holes D = 5 EMCS theory: λ 1. Einstein-Maxwell-Chern-Simons Black Holes: λ > 1 λ > 2 EMCS black holes 0.3 0.2 r H =0.1 r H =0.5 J 1 = J 2, λ=3, Q=-1 non-extremal black holes black holes are not uniquely determined by M, J i, Q J 0.1 0.0-0.1-0.2-0.3 0.5 0.6 0.7 0.8 0.9 1.0 M non-uniqueness of 5D black holes with horizon topology of a sphere S 3 extremal black holes angular momentum vs mass Jutta Kunz (Universität Oldenburg) EMCS Black Holes Frankfurt, July 2017 17 / 35

Asymptotically Flat EMCS Black Holes D = 5 EMCS theory: λ 1. Extremal EMCS Black Holes: λ > 2 j Blázquez-Salcedo, J.K., Navarro-Lérida, Radu (2014) 0.04 0.02 0-0.02-0.04 domain of existence: λ = 5 0.008 0.004 0.000-0.004 λ=5 extremal λ=5 extremal, static -0.008 0.56 0.58 0.60 extremal black holes: boundary of domain of existence inside the domain of existence many branches J = 0 non-static black holes sequence of pairs q ns > q s limit -0.6-0.3 0 0.3 0.6 0.9 1.2 q extremal RN: q s Jutta Kunz (Universität Oldenburg) EMCS Black Holes Frankfurt, July 2017 18 / 35

Asymptotically Flat EMCS Black Holes D = 5 EMCS theory: λ 1. Extremal EMCS Black Holes: λ > 2 M 160 120 80 Q>0 global Q<0 global branches for fixed Q: λ = 5 C [1,2] C [1,2] C [3,4] C [3,4] (B [2,3], B * [2,3] ) (B [2,3], B* [2,3] ) n=3 n>6 (B [1,2], B * [1,2] ) n=2 (B [1,2], B* [1,2] ) n=1-50 0 50 100 J n=6 n=5 n=4 0 extremal black holes: J = 0 non-static black holes sequence of pairs labelled by integer n limit n : extremal RN branchpoints B and cusps C nonuniqueness Jutta Kunz (Universität Oldenburg) EMCS Black Holes Frankfurt, July 2017 19 / 35

Asymptotically Flat EMCS Black Holes D = 5 EMCS theory: λ 1. Extremal EMCS Black Holes: λ > 2 A H 45 30 15 horizon area: λ = 5, Q fixed C nh Q>0 global Q<0 global C [1,2] C [1,2] C [3,4] C [3,4] B [1,2] B [1,2] n=1, 2,... B * [1,2] B * [1,2] Q>0 near horizon Q<0 near horizon 0-100 -50 0 50 100 J C nh extremal black holes: J = 0 non-static black holes same area extremal RN isolated near horizon vs global solutions zero global bh one global bh many global bh Jutta Kunz (Universität Oldenburg) EMCS Black Holes Frankfurt, July 2017 19 / 35

Asymptotically Flat EMCS Black Holes D = 5 EMCS theory: λ 1. Extremal EMCS Black Holes: λ > 2 how do the solutions on these branches differ? what is the origin of the branch structure? Jutta Kunz (Universität Oldenburg) EMCS Black Holes Frankfurt, July 2017 20 / 35

Asymptotically Flat EMCS Black Holes D = 5 EMCS theory: λ 1. Radial Excitations of Extremal EMCS Black Holes 0.50 gauge field function a φ n=7 n=6 n=5 n=4 n=3 n=2 0.25 0.00 a ϕ -0.25-0.50-0.75 λ=5 n=1-2 -1 0 1 1/3 log 10 (r/a H ) Jutta Kunz (Universität Oldenburg) EMCS Black Holes Frankfurt, July 2017 21 / 35

Asymptotically Flat EMCS Black Holes D = 5 EMCS theory: λ 1. Radial Excitations of Extremal EMCS Black Holes 0 metric function ω -2-4 log 10 ( ω ) -6 1 node -8 2 nodes 3 nodes 4 nodes 5 nodes 6 nodes -10 7 nodes 8 nodes 9 nodes 10 nodes -12-3 -2.5-2 -1.5-1 -0.5 0 log 10 (x) Jutta Kunz (Universität Oldenburg) EMCS Black Holes Frankfurt, July 2017 21 / 35

. Outline EMCS Solutions with AdS Asymptotics. 1 Introduction. 2 Asymptotically Flat EMCS Black Holes D = 5 Einstein-Maxwell Theory D = 5 minimal supergravity D = 5 EMCS theory: λ 1. 3 EMCS Solutions with AdS Asymptotics Charged solutions Magnetized solutions Magnetized squashed solutions. 4 Conclusion and Outlook Jutta Kunz (Universität Oldenburg) EMCS Black Holes Frankfurt, July 2017 22 / 35

EMCS Solutions with AdS Asymptotics. Anti-de Sitter space Jutta Kunz (Universita t Oldenburg) EMCS Black Holes Frankfurt, July 2017 22 / 35

EMCS Solutions with AdS Asymptotics. Adding a negative cosmological constant Λ D = 5 Einstein-Maxwell-Chern-Simons action 1 { ( g S = R + 12 ) 16πG 5 L 2 F µνf µν 2λ } 3 3 εmnpqr A m F np F qr d 5 x cosmological constant Λ = 6/L 2 Chern-Simons coupling constant λ λ = 0: λ = 1: Einstein-Maxwell theory bosonic sector of D = 5 gauged supergravity λ 1 Jutta Kunz (Universität Oldenburg) EMCS Black Holes Frankfurt, July 2017 23 / 35

. Outline EMCS Solutions with AdS Asymptotics Charged solutions. 1 Introduction. 2 Asymptotically Flat EMCS Black Holes D = 5 Einstein-Maxwell Theory D = 5 minimal supergravity D = 5 EMCS theory: λ 1. 3 EMCS Solutions with AdS Asymptotics Charged solutions Magnetized solutions Magnetized squashed solutions. 4 Conclusion and Outlook Jutta Kunz (Universität Oldenburg) EMCS Black Holes Frankfurt, July 2017 24 / 35

EMCS Solutions with AdS Asymptotics Charged solutions. Charged solutions in gauged supergravity: λ = 1 Chong, Cveti c, Lü and Pope (2005): trial and error 2 independent angular momenta, g = 1/L Jutta Kunz (Universität Oldenburg) EMCS Black Holes Frankfurt, July 2017 25 / 35

EMCS Solutions with AdS Asymptotics Charged solutions. Charged EMCS solutions: λ 1 Blázquez-Salcedo, J.K., Navarro-Lérida, Radu (2017) small λ global (non-extremal) J H global (extremal) + near horizon P 2 Gap near horizon P 1 0 0 horizon angular momentum J H vs angular momentum J J Jutta Kunz (Universität Oldenburg) EMCS Black Holes Frankfurt, July 2017 26 / 35

EMCS Solutions with AdS Asymptotics Charged solutions. Charged EMCS solutions: λ 1 Blázquez-Salcedo, J.K., Navarro-Lérida, Radu (2017) small λ 0.004 Near-horizon, λ=0.1 Global, λ=0.1 Near-horizon, λ=0.025 Global, λ=0.025 Near-horizon, EM-AdS Global, EM-AdS Q>0 0.004 Near-horizon, λ=0.5 Global, λ=0.5 Near-horizon, λ=0.1 Global, λ=0.1 Near-horizon, EM-AdS Global, EM-AdS Q<0 J H 0.002 J H 0.002 Gap Gap 0 0 0 0.004 0.008 0 0.004 0.008 J J Q > 0 Q < 0 dots, triangles: limiting solutions, squares: critical solutions A H = 0 Jutta Kunz (Universität Oldenburg) EMCS Black Holes Frankfurt, July 2017 26 / 35

EMCS Solutions with AdS Asymptotics Charged solutions. Charged EMCS solutions: λ 1 Blázquez-Salcedo, J.K., Navarro-Lérida, Radu (2017) large λ 0.2 n=1 n=2 n=3 n=4 n=5 n=6 3 0 AdS boundary a ϕ 0 F 2 horizon -3-0.2-0.4 horizon 0 0.25 0.5 0.75 1 r/(1+r) AdS boundary -6 n=1 n=2 n=3 n=4 n=5 n=6 RN-AdS 0 0.5 1 r/(1+r) Q < 0 Q < 0 magnetic gauge potential a φ invariant F 2 = F µν µν Jutta Kunz (Universität Oldenburg) EMCS Black Holes Frankfurt, July 2017 26 / 35

EMCS Solutions with AdS Asymptotics Charged solutions. Charged EMCS solutions: λ 1 Blázquez-Salcedo, J.K., Navarro-Lérida, Radu (2017) horizon area A H vs charge Q: temperature T H plot Jutta Kunz (Universität Oldenburg) EMCS Black Holes Frankfurt, July 2017 26 / 35

. Outline EMCS Solutions with AdS Asymptotics Magnetized solutions. 1 Introduction. 2 Asymptotically Flat EMCS Black Holes D = 5 Einstein-Maxwell Theory D = 5 minimal supergravity D = 5 EMCS theory: λ 1. 3 EMCS Solutions with AdS Asymptotics Charged solutions Magnetized solutions Magnetized squashed solutions. 4 Conclusion and Outlook Jutta Kunz (Universität Oldenburg) EMCS Black Holes Frankfurt, July 2017 27 / 35

EMCS Solutions with AdS Asymptotics Magnetized solutions. Static purely magnetic solutions: λ = 0 Blázquez-Salcedo, J.K., Navarro-Lérida, Radu (2016) r : a φ c m Φ m = 1 F = 1 4π 2 c m S 2 100 3 0 D=7 D=5 50 D=7-3 D=9 M µ 0 D=5-6 -50-9 D=9-100 0 1 2 3 c m -12 0 1 2 3 c m mass M vs flux parameter c m magnetic moment µ vs c m Solitons Jutta Kunz (Universität Oldenburg) EMCS Black Holes Frankfurt, July 2017 28 / 35

EMCS Solutions with AdS Asymptotics Magnetized solutions. Static purely magnetic solutions: λ = 0 Blázquez-Salcedo, J.K., Navarro-Lérida, Radu (2016) Black holes in D = 5 0.5 0 soliton limit 1 c m =0 c m =1.5 c m =2 c m =2.5 c m =3 Type I Type II M A H 0.5-0.5 c m =0 c m =1.5 c m =2 singular limit c m =2.5 c m =3 Type I Type II -1 0 0.5 1 T H singular limit soliton limit 0 0 0.25 0.5 0.75 T H mass M vs temperature T H horizon area A H vs T H type I: M, A H increase with T H type II: M, A H decrease with T H type I: for all c m type II: for c m < c m Jutta Kunz (Universität Oldenburg) EMCS Black Holes Frankfurt, July 2017 28 / 35

EMCS Solutions with AdS Asymptotics Magnetized solutions. Static purely magnetic solutions: λ = 0 Blázquez-Salcedo, J.K., Navarro-Lérida, Radu (2016) 10 domain of existence: D = 5 Type I black holes 0 M Type II black holes -10 singular limit solitons -20 0 1 2 3 c m Jutta Kunz (Universität Oldenburg) EMCS Black Holes Frankfurt, July 2017 28 / 35

EMCS Solutions with AdS Asymptotics Magnetized solutions. Rotating magnetized solutions: λ = 1 Blázquez-Salcedo, J.K., Navarro-Lérida, Radu (2017) solitons: mass M, angular momentum J and charge Q (R) vs c m 40 30 20 10 0 L=1 3Q (R) M -J c m single parameter no upper bound on c m no radial excitations for λ = 1 radial excitations for λ > 1? 0 1 2 3 4 5 c m 1 3 Q = Q(R) = 1 2 S 3 ( F + 2λ ) 3 3 A F, J = λπ 3 3 c3 m = Φ m Q (R) Jutta Kunz (Universität Oldenburg) EMCS Black Holes Frankfurt, July 2017 29 / 35

EMCS Solutions with AdS Asymptotics Magnetized solutions. Rotating magnetized solutions: λ = 1 Blázquez-Salcedo, J.K., Navarro-Lérida, Radu (2017) black holes: mass M vs temperature T H M 1 0.8 0.6 0.4 0.2 c m = 0 c m = 0.2 c m = -0.2 c m = 0.33 c m = -0.33 c m = 0.66 c m = -0.66 3 parameters: J, Q (R), c m c m 0: relevant for small T H only large c m : black holes thermodynamically stable rotating J = 0 black holes 0 0 0.2 0.4 0.6 0.8 T H J = 0.003, Q (R) = 0.044 Jutta Kunz (Universität Oldenburg) EMCS Black Holes Frankfurt, July 2017 29 / 35

EMCS Solutions with AdS Asymptotics Magnetized solutions. Rotating magnetized solutions: λ = 1 Blázquez-Salcedo, J.K., Navarro-Lérida, Radu (2017) black holes: area A H vs temperature T H A H 100 10 1 0.1 c m = 0 c m = 0.2 c m = -0.2 c m = 0.33 c m = -0.33 c m = 0.66 c m = -0.66 3 parameters: J, Q (R), c m c m 0: relevant for small T H only large c m : black holes thermodynamically stable rotating J = 0 black holes 0 0.2 0.4 0.6 0.8 T H J = 0.003, Q (R) = 0.044 Jutta Kunz (Universität Oldenburg) EMCS Black Holes Frankfurt, July 2017 29 / 35

EMCS Solutions with AdS Asymptotics Magnetized solutions. Rotating magnetized solutions: λ = 1 Blázquez-Salcedo, J.K., Navarro-Lérida, Radu (2017) T H, M, c m T H, c m, A H stationary J = 0 black holes L = 1, Q (R) = 0.044 Jutta Kunz (Universität Oldenburg) EMCS Black Holes Frankfurt, July 2017 29 / 35

EMCS Solutions with AdS Asymptotics Magnetized solutions. Rotating magnetized solutions: λ = 1 Blázquez-Salcedo, J.K., Navarro-Lérida, Radu (2017) T H, Ω H, c m T H, R(r H ), c m stationary J = 0 black holes L = 1, Q (R) = 0.044 Jutta Kunz (Universität Oldenburg) EMCS Black Holes Frankfurt, July 2017 29 / 35

. Outline EMCS Solutions with AdS Asymptotics Magnetized squashed solutions. 1 Introduction. 2 Asymptotically Flat EMCS Black Holes D = 5 Einstein-Maxwell Theory D = 5 minimal supergravity D = 5 EMCS theory: λ 1. 3 EMCS Solutions with AdS Asymptotics Charged solutions Magnetized solutions Magnetized squashed solutions. 4 Conclusion and Outlook Jutta Kunz (Universität Oldenburg) EMCS Black Holes Frankfurt, July 2017 30 / 35

EMCS Solutions with AdS Asymptotics. Squashed solitons: λ = 1 Cassani and Martelli (2014) Magnetized squashed solutions boundary metric: squashed S 3 sphere ds 2 (bdry) = L2 dω 2 (v) dt2, dω 2 (v) = 1 ( dθ 2 + sin 2 θdϕ 2 + (dψ + v cos θdϕ) 2) 4 v: control parameter M 10 3 10 2 10 1 10 0 10-1 susy black holes susy solitons -1 J 0 1 0 Gutowski-Reall black holes 2.5 Q squashed susy solitons ( 5 M = πl 2 288 + 2 27v 2 7 36 v2 + 89 ) 864 v4 5 J = πl3 27 Q = 2πL2 9 3 ( v 2 1 ) 3 ( v 2 1 ) 2 Jutta Kunz (Universität Oldenburg) EMCS Black Holes Frankfurt, July 2017 31 / 35

EMCS Solutions with AdS Asymptotics Magnetized squashed solutions. Magnetized squashed solutions: λ = 1 work in progress boundary metric: squashed S 3 sphere ds 2 (bdry) = L2 dω 2 (v) dt2, dω 2 (v) = 1 ( dθ 2 + sin 2 θdϕ 2 + (d 4 ψ + v cos θdϕ) 2) v: control parameter M 10 3 10 2 10 1 10 0 10-1 susy black holes susy solitons -1 J 0 1 0 Gutowski-Reall black holes 2.5 Q 5 nonextremal black holes event horizon of spherical topology, no pathologies characterization: M, Q, J, c m r H 0: squashed spinning charged solitons J = Φ m Q. Jutta Kunz (Universität Oldenburg) EMCS Black Holes Frankfurt, July 2017 32 / 35

EMCS Solutions with AdS Asymptotics Magnetized squashed solutions. Magnetized squashed solutions: λ = 1 work in progress boundary metric: squashed S 3 sphere ds 2 (bdry) = L2 dω 2 (v) dt2, dω 2 (v) = 1 ( dθ 2 + sin 2 θdϕ 2 + (d 4 ψ + v cos θdϕ) 2) v: control parameter 3 1.2 log 10 A H 1.5 0 J=1.07, Q=3.49 J=0.8, Q=2.3 J=0.8, Q=1.21 J=0.6, Q=1.21 J=0.61, Q=1.21 susy black hole log 10 M 0.6 J=1.07, Q=3.49 J=0.8, Q=2.3 J=0.8, Q=1.21 J=0.6, Q=1.21 J=0.61, Q=1.21 susy black hole susy solitons susy solitons -1.5 0 0 0.5 1 0 0.5 1 T H T H black holes v = 1.65, c = 1, L = 1 Jutta Kunz (Universität Oldenburg) EMCS Black Holes Frankfurt, July 2017 32 / 35

EMCS Solutions with AdS Asymptotics Magnetized squashed solutions. Magnetized squashed solutions: λ = 1 work in progress boundary metric: squashed S 3 sphere ds 2 (bdry) = L2 dω 2 (v) dt2, dω 2 (v) = 1 ( dθ 2 + sin 2 θdϕ 2 + (d 4 ψ + v cos θdϕ) 2) v: control parameter 2 J=1.07, Q=3.49 J=0.8, Q=2.3 J=0.8, Q=1.21 J=0.6, Q=1.21 J=0.61, Q=1.21 susy black hole 1.6 Ω H 0 susy solitons ε 1.3 J=1.07, Q=3.49 J=0.8, Q=2.3 J=0.8, Q=1.21 J=0.6, Q=1.21 J=0.61, Q=1.21 susy black hole susy solitons -2 1 0 0.5 1 0 0.5 1 T H T H black holes v = 1.65, c = 1, L = 1 Jutta Kunz (Universität Oldenburg) EMCS Black Holes Frankfurt, July 2017 32 / 35

EMCS Solutions with AdS Asymptotics Magnetized squashed solutions. Magnetized squashed solutions: λ = 1 work in progress boundary metric: squashed S 3 sphere ) 1( 2 ds2(bdry) = L2 dω2(v) dt2, dω2(v) = dθ + sin2 θdϕ2 + (dψ + v cos θdϕ)2 4 v: control parameter black holes Jutta Kunz (Universita t Oldenburg) EMCS Black Holes Frankfurt, July 2017 32 / 35

EMCS Solutions with AdS Asymptotics Magnetized squashed solutions. Magnetized squashed solutions: λ = 1 work in progress boundary metric: squashed S 3 sphere ds 2 (bdry) = L2 dω 2 (v) dt2, dω 2 (v) = 1 ( dθ 2 + sin 2 θdϕ 2 + (d 4 ψ + v cos θdϕ) 2) v: control parameter black holes Jutta Kunz (Universität Oldenburg) EMCS Black Holes Frankfurt, July 2017 32 / 35

EMCS Solutions with AdS Asymptotics Magnetized squashed solutions. Magnetized squashed solutions: λ = 1 work in progress boundary metric: squashed S 3 sphere ds 2 (bdry) = L2 dω 2 (v) dt2, dω 2 (v) = 1 ( dθ 2 + sin 2 θdϕ 2 + (d 4 ψ + v cos θdϕ) 2) v: control parameter 10 3 susy black holes 10 2 Gutkowski-Real susy black holes (2004) round sphere: v = 1 no magnetization: c m = 0 M 10 1 10 0 10-1 susy solitons -1 J 0 1 0 Gutowski-Reall black holes 2.5 Q 5 M = πl2 216 (3α2 1)(31 + 76α 2 + 64α 4 ) + C J = πl3 216 (1 4α2 ) 2 (7 + 8α 2 ) Q = πl2 12 3 (4α2 1)(5 + 4α 2 ) Jutta Kunz (Universität Oldenburg) EMCS Black Holes Frankfurt, July 2017 32 / 35

EMCS Solutions with AdS Asymptotics Magnetized squashed solutions. Magnetized squashed solutions: λ = 1 work in progress boundary metric: squashed S 3 sphere ds 2 (bdry) = L2 dω 2 (v) dt2, dω 2 (v) = 1 ( dθ 2 + sin 2 θdϕ 2 + (d 4 ψ + v cos θdϕ) 2) v: control parameter 10 3 susy black holes 10 2 10 1 Gutowski-Reall black holes M susy solitons 10 0 10-1 -1 J 0 2.5 Q 1 0 new susy black holes ( 7913 M = πl 2 34848 + 33280 35937v 2 7 36 v2 + 89 ) 864 v4 ( 16640 J = πl 3 35937 2795 8712 v2 + 1 9 v4 1 ) 27 v6 5 Q = π 3L 2 1 13068 ( 6449 1936 v 2 + 968 v 4) A H = 7π 2 L 3 455 121 c m = ± L 3 ( 1 v 2 ) Jutta Kunz (Universität Oldenburg) EMCS Black Holes Frankfurt, July 2017 32 / 35

. Outline Conclusion and Outlook. 1 Introduction. 2 Asymptotically Flat EMCS Black Holes D = 5 Einstein-Maxwell Theory D = 5 minimal supergravity D = 5 EMCS theory: λ 1. 3 EMCS Solutions with AdS Asymptotics Charged solutions Magnetized solutions Magnetized squashed solutions. 4 Conclusion and Outlook Jutta Kunz (Universität Oldenburg) EMCS Black Holes Frankfurt, July 2017 33 / 35

. Conclusions Conclusion and Outlook Einstein-Maxwell-Chern-Simons black holes: D = 5 M 160 120 80 Q>0 global Q<0 global C [1,2] C [1,2] C [3,4] C [3,4] (B [2,3], B * [2,3] ) (B [2,3], B* [2,3] ) n=3 n>6 (B [1,2], B * [1,2] ) n=2 (B [1,2], B* [1,2] ) n=1-50 0 50 100 J mass vs angular momentum n=6 n=5 n=4 0 black holes with surprising properties non-uniqueness Ω = 0, J 0 non-static J = 0 sequences of radially excited extremal black holes... questions in which theories? in D = 4? consequences?... Jutta Kunz (Universität Oldenburg) EMCS Black Holes Frankfurt, July 2017 33 / 35

. Conclusions Conclusion and Outlook Einstein-Maxwell-Chern-Simons AdS solutions: D = 5 10 black holes and solitons c m = 0: many properties retained c m 0: new solitons M 0-10 Type I black holes Type II black holes singular limit solitons -20 0 1 2 3 c m mass vs magnetic flux new black holes J = Φ mq squashed magnetized solutions new solitons new black holes... questions domain of existence?... Jutta Kunz (Universität Oldenburg) EMCS Black Holes Frankfurt, July 2017 33 / 35

Conclusion and Outlook. Higher Dimensions: D 6 Dias, Figueras, Monteiro, Santos, Emparan (2009) unstable modes of Myers-Perry black holes: D 6 Jutta Kunz (Universita t Oldenburg) EMCS Black Holes Frankfurt, July 2017 34 / 35

Conclusion and Outlook. Higher Dimensions: D 6 Emparan, Figueras (2010) D 6 horizon area vs. angular momentum at fixed mass Jutta Kunz (Universita t Oldenburg) EMCS Black Holes Frankfurt, July 2017 34 / 35

. THANKS Conclusion and Outlook Jose Francisco Eugen Blázquez-Salcedo Navarro-Lérida Radu Jutta Kunz (Universität Oldenburg) EMCS Black Holes Frankfurt, July 2017 35 / 35

. THANKS Conclusion and Outlook Thank you very much for your attention Jutta Kunz (Universität Oldenburg) EMCS Black Holes Frankfurt, July 2017 35 / 35