Maejo International Journal of Science and Technology

Similar documents
1 Introduction We consider a class of singularly perturbed two point singular boundary value problems of the form: k x with boundary conditions

Solution for singularly perturbed problems via cubic spline in tension

Application of B-Spline to Numerical Solution of a System of Singularly Perturbed Problems

A Spline based computational simulations for solving selfadjoint singularly perturbed two-point boundary value problems

Numerical Solution of Singular Perturbation Problems Via Deviating Argument and Exponential Fitting

Convexity preserving interpolation by splines of arbitrary degree

Solution of Singularly Perturbed Differential Difference Equations Using Higher Order Finite Differences

Solving Singularly Perturbed Differential Difference Equations via Fitted Method

One-sided finite-difference approximations suitable for use with Richardson extrapolation

Lecture 13 APPROXIMATION OF SECOMD ORDER DERIVATIVES

NON-CENTRAL 7-POINT FORMULA IN THE METHOD OF LINES FOR PARABOLIC AND BURGERS' EQUATIONS

( ) [ ( k) ( k) ( x) ( ) ( ) ( ) [ ] ξ [ ] [ ] [ ] ( )( ) i ( ) ( )( ) 2! ( ) = ( ) 3 Interpolation. Polynomial Approximation.

Numerical Heat and Mass Transfer

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems

Numerical Simulation of One-Dimensional Wave Equation by Non-Polynomial Quintic Spline

Using T.O.M to Estimate Parameter of distributions that have not Single Exponential Family

A MODIFIED METHOD FOR SOLVING SYSTEM OF NONLINEAR EQUATIONS

A new Approach for Solving Linear Ordinary Differential Equations

NUMERICAL DIFFERENTIATION

ALGORITHM FOR THE CALCULATION OF THE TWO VARIABLES CUBIC SPLINE FUNCTION

Cubic Trigonometric B-Spline Applied to Linear Two-Point Boundary Value Problems of Order Two

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE

THE STURM-LIOUVILLE EIGENVALUE PROBLEM - A NUMERICAL SOLUTION USING THE CONTROL VOLUME METHOD

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Appendix B. The Finite Difference Scheme

VARIATION OF CONSTANT SUM CONSTRAINT FOR INTEGER MODEL WITH NON UNIFORM VARIABLES

The Exact Formulation of the Inverse of the Tridiagonal Matrix for Solving the 1D Poisson Equation with the Finite Difference Method

A Hybrid Variational Iteration Method for Blasius Equation

ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EQUATION

The Order Relation and Trace Inequalities for. Hermitian Operators

MMA and GCMMA two methods for nonlinear optimization

Lecture 2: Numerical Methods for Differentiations and Integrations

General viscosity iterative method for a sequence of quasi-nonexpansive mappings

More metrics on cartesian products

TR/95 February Splines G. H. BEHFOROOZ* & N. PAPAMICHAEL

Asymptotics of the Solution of a Boundary Value. Problem for One-Characteristic Differential. Equation Degenerating into a Parabolic Equation

Polynomial Regression Models

A FORMULA FOR COMPUTING INTEGER POWERS FOR ONE TYPE OF TRIDIAGONAL MATRIX

The Finite Element Method: A Short Introduction

Group Analysis of Ordinary Differential Equations of the Order n>2

Least squares cubic splines without B-splines S.K. Lucas

Construction of Serendipity Shape Functions by Geometrical Probability

Research Article Cubic B-Spline Collocation Method for One-Dimensional Heat and Advection-Diffusion Equations

High resolution entropy stable scheme for shallow water equations

Existence results for a fourth order multipoint boundary value problem at resonance

Yong Joon Ryang. 1. Introduction Consider the multicommodity transportation problem with convex quadratic cost function. 1 2 (x x0 ) T Q(x x 0 )

Numerical Solution of One-Dimensional Heat and Wave Equation by Non-Polynomial Quintic Spline

A Local Variational Problem of Second Order for a Class of Optimal Control Problems with Nonsmooth Objective Function

The Quadratic Trigonometric Bézier Curve with Single Shape Parameter

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 13

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0

for Linear Systems With Strictly Diagonally Dominant Matrix

Bezier curves. Michael S. Floater. August 25, These notes provide an introduction to Bezier curves. i=0

New Method for Solving Poisson Equation. on Irregular Domains

APPENDIX A Some Linear Algebra

2.29 Numerical Fluid Mechanics Fall 2011 Lecture 12

Numerical Solutions of a Generalized Nth Order Boundary Value Problems Using Power Series Approximation Method

Haar wavelet collocation method to solve problems arising in induction motor

Bézier curves. Michael S. Floater. September 10, These notes provide an introduction to Bézier curves. i=0

Chapter 4: Root Finding

Hongyi Miao, College of Science, Nanjing Forestry University, Nanjing ,China. (Received 20 June 2013, accepted 11 March 2014) I)ϕ (k)

Chapter 12. Ordinary Differential Equation Boundary Value (BV) Problems

A New Refinement of Jacobi Method for Solution of Linear System Equations AX=b

Report on Image warping

Errors for Linear Systems

Procedia Computer Science

COMPOSITE BEAM WITH WEAK SHEAR CONNECTION SUBJECTED TO THERMAL LOAD

Monotonic Interpolating Curves by Using Rational. Cubic Ball Interpolation

Linear Approximation with Regularization and Moving Least Squares

Perron Vectors of an Irreducible Nonnegative Interval Matrix

2.29 Numerical Fluid Mechanics

On Finite Rank Perturbation of Diagonalizable Operators

Shape preserving third and fifth degrees polynomial splines

Lecture 21: Numerical methods for pricing American type derivatives

Pathan Mahabub Basha *, Vembu Shanthi

Consistency & Convergence

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity

Nice plotting of proteins II

DETERMINATION OF TEMPERATURE DISTRIBUTION FOR ANNULAR FINS WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY BY HPM

Comparison of the Population Variance Estimators. of 2-Parameter Exponential Distribution Based on. Multiple Criteria Decision Making Method

Lecture 16 Statistical Analysis in Biomaterials Research (Part II)

PART 8. Partial Differential Equations PDEs

POLYNOMIAL BASED DIFFERENTIAL QUADRATURE FOR NUMERICAL SOLUTIONS OF KURAMOTO-SIVASHINSKY EQUATION

THERE ARE INFINITELY MANY FIBONACCI COMPOSITES WITH PRIME SUBSCRIPTS

Case Study of Markov Chains Ray-Knight Compactification

Georgia Tech PHYS 6124 Mathematical Methods of Physics I

ME 501A Seminar in Engineering Analysis Page 1

Grid Generation around a Cylinder by Complex Potential Functions

Weighted Fifth Degree Polynomial Spline

Heuristic Algorithm for Finding Sensitivity Analysis in Interval Solid Transportation Problems

Solving Fractional Nonlinear Fredholm Integro-differential Equations via Hybrid of Rationalized Haar Functions

Binomial transforms of the modified k-fibonacci-like sequence

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity

COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS

Fixed point method and its improvement for the system of Volterra-Fredholm integral equations of the second kind

Numerical Solution of two dimensional coupled viscous Burgers Equation using the Modified Cubic B-Spline Differential Quadrature Method

The Finite Element Method

Lecture Notes on Linear Regression

DEGREE REDUCTION OF BÉZIER CURVES USING CONSTRAINED CHEBYSHEV POLYNOMIALS OF THE SECOND KIND

Transcription:

Maejo Int. J. Sc. Technol. () - Full Paper Maejo Internatonal Journal of Scence and Technology ISSN - Avalable onlne at www.mjst.mju.ac.th Fourth-order method for sngularly perturbed sngular boundary value problems usng non-polynomal splne Kolloju Phaneendra * Emnen Sva Prasad and Ddd Kumara Swamy Department of Mathematcs Unversty College of Scence Osmana Unversty Hyderabad- Inda Department of Mathematcs Kavulguru Insttute of Technology and Scence Ramte Maharasthra 6 Inda Department of Mathematcs Chrstu Jyoth Insttute of Technology and Scence Warangal Inda * Correspondng author e-mal: ollojuphaneendra@yahoo.co.n Receved: January / Accepted: December / Publshed: January Abstract: Ths paper envsages a fourth-order fnte dfference method wth reference to the soluton of a class of sngularly perturbed sngular boundary value problems especally on a unform mesh. The non-polynomal splne forms the tool for the soluton of the problems. The dscretsaton equaton of the problems are developed usng the condton of contnuty for the frst-order dervatves of the non- polynomal splne at the nteror nodes and t s not vald at the sngularty. Hence at the sngularty the boundary value problem s modfed n order to get a three-term relaton. The trdagonal scheme of the method s processed usng dscrete nvarant mbeddng algorthm. The convergence of the method s analysed and maxmum absolute errors n the soluton are tabulated. Root mean square errors n the soluton of the examples are presented n comparson to the methods chosen from the lterature to establsh the proposed method. Keywords: sngularly perturbed two-pont sngular boundary value problem nteror nodes sngular pont non-polynomal splne boundary layer INTRODUCTION We consder a class of sngularly perturbed two-pont sngular boundary value problems of the form: y ( x) y( x) q( x) y( x) r( x) x () x wth boundary condtons y ( ) and y() ()

Maejo Int. J. Sc. Technol. () - where q(x) and r(x) are bounded contnuous functons n ( ) and are fnte constants. Let p( x). If p( x) M throughout the doman [ ] where M s a postve x constant then the boundary layer exsts n the neghbourhood of x =. If p( x) N throughout the nterval [ ] where N s a negatve constant then the boundary layer wll be n the neghbourhood of x =. Ths class of problems frequently occurs n many areas of appled mathematcs such as flud mechancs elastcty quantum mechancs optmal control chemcal-reactor theory aerodynamcs reacton dffuson process geophyscs and many other areas. Equatons of ths type exhbt solutons wth layers; that s the doman of soluton of the problem contans narrow regons where the soluton dervatves are extremely large. The numercal treatment of these problems gves major computatonal dffcultes due to the presence of boundary and/or nteror layers. A wde varety of boos have been publshed descrbng varous methods for solvng sngularly perturbed two-pont boundary value problems. Among these we menton Henre [] O Malley [] Bender and Orszag [] and Kress and Kress []. Bava [] nvestgated a fourth-order dfference scheme va cubc splne n compresson for the soluton of sngular perturbaton problems. Kadalbajoo and Aggarwal [6] proposed a ftted mesh B-splne method for sngular sngularly perturbed boundary value problems. Kadalbajoo and Patdar [] derved some dfference schemes for sngularly perturbed problems usng splne n compresson. Kadalbajoo and Reddy [] have dscussed a numercal method va devatng arguments to solve lnear sngular perturbaton problems. Mohanty et al. [ ] and Mohanty and Aurora [] have establshed varous methods based on tenson splne and compresson splne methods both on a unform and non-unform mesh for sngularly perturbed twopont sngular boundary value problems. Rashdna and Ghasem [] used cubc splne soluton of sngularly perturbed two-pont boundary value problems on a unform mesh. The approach presented n ths paper has the advantage over fnte dfference methods n that t provdes contnuous approxmatons not only for y(x) but also for y y and hgher dervatves at every pont of the range of ntegraton. Also the C - dfferentablty of the trgonometrc part of non-polynomal splnes compensates for the loss of smoothness nherted by polynomal splnes. Besdes a new parameter s ntroduced n ths method to acheve the desred fourth-order convergence for the problems represented by Eq. (). NON-POLYNOMIAL SPLINE METHOD The doman of the ntegraton [a b] s decomposed nto N equal subntervals wth mesh sze h so that x a h N are the nodes wth a x b xn. Let y(x) be the exact N soluton and y be an approxmaton to y ( x ) by the non-polynomal cubc splne S (x) passng through the ponts ( x y ) and ( x y ). Here S (x) satsfes nterpolatory condtons at x x ; also the contnuty of frst dervatve at the common nodes x y ) s fulflled. For each and th subnterval the cubc non-polynomal splne functon S (x) ( has the form: S ( x) a b ( x x ) c sn ( x x ) d cos ( x x ). N () where a b c and d are constants and s a free parameter.

Maejo Int. J. Sc. Technol. () - A non-polynomal functon ( ) S x of class C a b nterpolatng y(x) at the grd ponts x =.N depends on a parameter and reduces to ordnary cubc splne n [a b] as. To derve an expresson for the coeffcents of Eq. () n terms of y y M and M the followng are defned: S ( x ) y S ( x ) y '' S ( x ) M S '' ( x ) M Usng algebrac manpulaton the followng expressons are obtaned for the coeffcents: M y a y b M cos M c sn y h d M M where h for =. N-. Usng the contnuty of the frst dervatve at x y ) that s S ( x ) S( x ) we get the followng relatons for =.N- : where y y. M ( M M M () h y cos sn sn NUMERICAL METHOD '' M ( ) and. j y x j j h At the grd ponts x Eq. () may be dscretsed by Usng splne s second dervatves we have y p( x ) y q( x ) y r. M p( x ) y ( x) q( x ) y( x ) r( x ) for j. () j j j j j j Usng Eq.( ) n Eq.() and the followng approxmatons for the frst dervatve of y []: y y we get the trdagonal system: y y y h y y y h y y p p y h h q h[ p p ] E h q h[ p p ] y hr r h y F y G y H for. N (6) () where

Maejo Int. J. Sc. Technol. () - E p h ph p p p h q p h q h h p F p h p h p p p h q h G p h ph p p h pq p h q h h p H -h ph r r ph r p( x ) p q( x ) q r( x ) r for. N. For = the coeffcents y y and y n Eq. () are not defned; thus we need to develop a formula for ths case. Usng L-Hosptal rule and Eq. () we get the followng three-term formula for = : α h q β h q α h q h ε ε ε ε y y y α r β r α r. () Usng dscrete nvarant mbeddng algorthm [] the trdagonal system Eq.() together wth Eq.() for = N- s solved n order to get the approxmatons y y. yn of the soluton y(x) at x x. xn. TRUNCATION ERROR The local truncaton error assocated wth the scheme developed n Eq. () s T h h y x p x y x y x h O h 6 ( ) ( ) ( ) ( ) ( ) ( ) ( ). Thus for dfferent values of n the scheme of Eq. () the followng dfferent orders are ndcated: () For any choce of arbtrary and wth and for any value of the scheme of Eq. () gves the second-order method; () For and from Eq. () the fourth-order method s derved. CONVERGENCE ANALYSIS Incorporatng the boundary condtons (Eq. ) the system of Eq. () and () can be wrtten n the matrx form as: PY Q T( h) D ()

Maejo Int. J. Sc. Technol. () - where D and * * v w z v w z v w P z v w zn vn * h q * h q n whch v w α z α p h β ph ω p p ω p β h q p h α q h - hβ p v α p h β p h ω p p α p h β q h α w p h β ph ωp p ωh β pq α p h α q h hβ p for. N and h h q Q r r r q q. qn wn 6 wheren q h ph r r ph r for. N T ( h) ( h ) for and Y Y Y. YN T ( h) T T. TN O. are assocated vectors of Eq. ( ). T N Y Let y y y y satsfy the equaton Let e y Y. N Py Q T T T D. () be the dscretsaton error so that. Usng Eq.() from Eq.() we obtan the error equaton: D P E T(h) E e e e y Y. N. () Let p( x) C and q( x) C where C C are postve constants. If j P then h P C for P s the th T j element of P w h( ) C h C h C h CC. N

Maejo Int. J. Sc. Technol. () - P z h( ) C h C h C h CC. N. Thus for suffcently small h we have 6 Hence (D + P) s rreducble []. P N and P N. () Let S be the sum of the elements of the th row of the matrx (D + P); then we have h S q q for S h q q q h p q q for. N h S p p h p h q q h p p p h p q for N. * * Let C * mn p( x) C max p( x) and C * mn q( x) C max q( x). Snce N N N N and O( h) t s possble or easy to verfy that for small P exsts and D P. D Thus usng Eq. () we have Let th D P be the ( ) element of D P. h D P s monotone [ ]. Hence E D P T () and we defne N D P max D P and T ( h) max T( h). (a) N Snce hence Furthermore N N D P and D P S for. N D P D P Usng Eq.(a) - (d) from Eq.() we get * S h C (b) N. (c) S h C C * D P (d) mn S h N N E * C. * O( h ). () Hence the method (Eq. ) s fourth-order convergent for.

Maejo Int. J. Sc. Technol. () - NUMERICAL EXAMPLES To demonstrate the proposed method computatonally we consder three problems of the type n Eq.(). These problems are chosen because they have been wdely dscussed n the lterature and exact solutons are also avalable for comparson. Example. Consder a sngularly perturbed sngular boundary value problem: y (/ x) y ( x ) y f ( x) x. The exact soluton s y( x) exp( x ). The maxmum absolute errors are tabulated n Table for dfferent values of and h. A comparson of the root mean square errors wth another method s presented n Table. Example. Consder a boundary value problem: y y f ( x) x. x The exact soluton of ths problem s y( x) x snh x. The maxmum absolute errors are presented n Table for dfferent values of and h. A comparson of the root mean square errors s presented n Table. Table. Maxmum absolute errors n solutons of Examples - /h 6 Example.(-) 6.(-).(-).(-6).6(-).6(-).(-).(-6).(-).66(-).(-).(-).(-).(-).6(-).66(-) Example.6(-).6(-).(-).(-6).(-).(-).(-).(-6).(-).(-).(-).(-6).(-).(-).66(-).(-6) Example.(-). (-).6(-) 6.(-).(-). (-). (-).6 (-).6(-).(-).(-).6(-).(-).(-).(-).(-)

Maejo Int. J. Sc. Technol. () - Table. Comparson of root mean square errors n soluton of Example 6 /N Mohanty-Arora method [].(-).6(-).(-) 6.(-).(-).(-).(-).6(-) 6.(-).(-).6(-).(-) 6.(-).6(-).(-).(-).(-).(-).(-).(-).(-).(-).(-).(-) -.(-).(-).(-).6(-).(-).(-).(-) -.6(-).(-).6(-).(-).(-).(-).(-) -.(-).(-).(-) 6.(-).(-).6(-).(-) -.(-).(-).(-).(-) 6.6(-).(-).(-) Proposed method.(-).(-).(-6) 6.(-).(-).(-).(-).(-).(-).66(-).(-).(-) 6.(-).6(-).(-).(-).(-).(-).(-).(-6).(-).6(-).(-).(-).(-).(-).(-).(-6).(-).(-).66(-).(-).(-) 6.(-) 6.(-) 6.(-6).(-).(-).(-).(-).(-).(-).(-).(-).6(-) 6.(-).(-).(-).(-).(-).(-).6(-).(-6).(-).(-).6(-) Table. Comparson of root mean square errors n soluton of Example 6 /N Mohanty-Arora method [].(-).(-).(-).(-).6(-).(-).(-).(-).(-).(-).(-).6(-).(-).(-).(-) 6.6(-).(-).(-).(-).(-).(-).(-).(-).(-) 6.6(-).6(-).(-).(-).(-).(-).(-).6(-).(-).(-).(-).(-).(-).(-).(-).(-).(-).(-).(-) 6.(-).(-).(-).(-).6(-).(-).(-).(-) 6.6(-).6(-).(-).(-).6(-).(-).(-).66(-) 6.(-).(-).6(-).(-).6(-) Proposed method 6.(-).(-).(-6).(-).6(-).(-).(-).(-).(-) 6.(-).(-6).6(-).6(-).(-).6(-).(-).(-).(-).(-6).6(-).(-).(-).6(-).(-)

Maejo Int. J. Sc. Technol. () - Table. (Contnued) 6 /N.(-).(-).(-).(-6).(-).(-) 6.(-).(-).(-).6(-).(-).(-6).(-).6(-).(-).(-).(-).(-).(-).(-6).(-).6(-).(-).6(-).(-).(-).(-) 6.(-6) 6.(-).(-).(-).(-) Example. Consder a boundary value problem: y y y x x wth boundary condtons y() y() exp whose exact soluton s not nown. The maxmum absolute errors for ths example are calculated by usng the double mesh prncple E N max y N N y N and tabulated n Table for dfferent values of and h. CONCLUSIONS In ths paper the non-polynomal splne method s dscussed for a class of sngularly perturbed sngular two-pont boundary value problems. Convergence of the numercal method s analysed. The maxmum absolute errors n the soluton are tabulated for the exstng standard examples chosen from the lterature wth a vew to demonstratng the method. Root mean square errors n the soluton of the examples are presented wth comparson n order to justfy the method. Based on the numercal results t s observed that the method also affords good results for smaller values of. The proposed method s also extendable to non-sngular problems and sngularly perturbed delay dfferental equatons. REFERENCES. P. Henre Dscrete Varable Methods n Ordnary Dfferental Equatons Wley New Yor 6.. R. E. O Malley Introducton to Sngular Perturbatons Academc Press New Yor.. C. M. Bender and S. A. Orszag Advanced Mathematcal Methods for Scentsts and Engneers McGraw-Hll New Yor.. B. Kress and H.-O. Kress Numercal methods for sngular perturbaton problems SIAM J. Numer. Anal. 6-6.. R. K. Bawa Splne based computatonal technque for lnear sngularly perturbed boundary value problems Appl. Math. Comput. 6-6. 6. M. K. Kadalbajoo and V. K. Aggarwal Ftted mesh B-splne method for solvng a class of sngular sngularly perturbed boundary value problems Int. J. Comput. Math. 6-6.

Maejo Int. J. Sc. Technol. () -. M. K. Kadalbajoo and K. C. Patdar Numercal soluton of sngularly perturbed two pont boundary value problems by splne n compresson Int. J. Comput. Math. 6-.. M. K. Kadalbajoo Y. N. Reddy Numercal soluton of sngular perturbaton problems va devatng arguments Appl. Math. Comput. -.. R. K. Mohanty N. Jha and D. J. Evans Splne n compresson method for the numercal soluton of sngularly perturbed two-pont sngular boundary-value problems Int. J. Comput. Math. 6-6.. R. K. Mohanty D. J. Evans and U. Aurora Convergent splne n tenson methods for sngularly perturbed two-pont sngular boundary value problems Int. J. Comput. Math. -66.. R. K. Mohanty and U. Aurora A famly of non-unform mesh tenson splne methods for sngularly perturbed two-pont sngular boundary value problems wth sgnfcant frst dervatves Appl. Math. Comput. 6 -.. J. Rashdna R. Mohammad M. Ghasem Cubc splne soluton of sngularly perturbed boundary value problems wth sgnfcant frst dervatves Appl. Math. Comput. 6-66.. R. S. Varga Matrx Iteratve Analyss Prentce-Hall Englewood Clffs 6.. D. M. Young Iteratve Solutons of Large Lnear Systems Academc Press New Yor. by Maejo Unversty San Sa Chang Ma Thaland. Reproducton s permtted for noncommercal purposes.