University of East Sarajevo Mathematical Society of the Republic of Srpska. PROCEEDINGS Trebinje, June 2014

Similar documents
Condensing KKM maps and its applications. Ivan D. Arand - elović, Z.Mitrović

Remark on a Couple Coincidence Point in Cone Normed Spaces

Uvod u analizu (M3-02) 05., 07. i 12. XI dr Nenad Teofanov. principle) ili Dirihleov princip (engl. Dirichlet box principle).

NEW MAXIMUM THEOREMS WITH STRICT QUASI-CONCAVITY. Won Kyu Kim and Ju Han Yoon. 1. Introduction

REMARKS ON THE KKM PROPERTY FOR OPEN-VALUED MULTIMAPS ON GENERALIZED CONVEX SPACES

TEORIJA SKUPOVA Zadaci

Metrički prostori i Riman-Stiltjesov integral

ZANIMLJIV NAČIN IZRAČUNAVANJA NEKIH GRANIČNIH VRIJEDNOSTI FUNKCIJA. Šefket Arslanagić, Sarajevo, BiH

SOME ELEMENTARY GENERAL PRINCIPLES OF CONVEX ANALYSIS. A. Granas M. Lassonde. 1. Introduction

Mircea Balaj. Comment.Math.Univ.Carolinae 42,4 (2001)

Red veze za benzen. Slika 1.

Iskazna logika 1. Matematička logika u računarstvu. oktobar 2012

Neke klase maksimalnih hiperklonova

Semi-strongly asymptotically non-expansive mappings and their applications on xed point theory

Applied Mathematics Letters

Slika 1. Slika 2. Da ne bismo stalno izbacivali elemente iz skupa, mi ćemo napraviti još jedan niz markirano, gde će

Nilpotentni operatori i matrice

A multidimensional generalization of the Steinhaus theorem

sset(x, Y ) n = sset(x [n], Y ).

UOPŠTENI INVERZI, FAKTORI USLOVLJENOSTI I PERTURBACIJE

Stabilization as a CW approximation

BROJEVNE KONGRUENCIJE

O aksiomu izbora, cipelama i čarapama

Uvod u relacione baze podataka

The nite submodel property and ω-categorical expansions of pregeometries

ELEMENTS OF THE KKM THEORY ON ABSTRACT CONVEX SPACES

ON GENERAL BEST PROXIMITY PAIRS AND EQUILIBRIUM PAIRS IN FREE GENERALIZED GAMES 1. Won Kyu Kim* 1. Introduction

Generalized vector equilibrium problems on Hadamard manifolds

Klase neograničenih operatora

Osobine metode rezolucije: zaustavlja se, pouzdanost i kompletnost. Iskazna logika 4

Research Article Common Fixed Points of Weakly Contractive and Strongly Expansive Mappings in Topological Spaces

ZANIMLJIVI ALGEBARSKI ZADACI SA BROJEM 2013 (Interesting algebraic problems with number 2013)

EQUILIBRIUM FOR PERTURBATIONS OF MULTIFUNCTIONS BY CONVEX PROCESSES

On the state of pure shear

REMARKS ON THE SCHAUDER TYCHONOFF FIXED POINT THEOREM

UNIVERSAL DERIVED EQUIVALENCES OF POSETS

Localizations as idempotent approximations to completions

SPACES ENDOWED WITH A GRAPH AND APPLICATIONS. Mina Dinarvand. 1. Introduction

UNIVERZITET U NOVOM SADU PRIRODNO-MATEMATIČKI FAKULTET DEPARTMAN ZA MATEMATIKU I INFORMATIKU. Poljski prostori. Mentor: prof.

On Semicontinuity of Convex-valued Multifunctions and Cesari s Property (Q)

MacLane s coherence theorem expressed as a word problem

Cartesian Closed Topological Categories and Tensor Products

CURRICULUM VITAE. Address Dubrovačka 4 Mathematical Institute, SANU Belgrade Knez Mihailova 36, P.O. Box 367. Serbia

Karakterizacija problema zadovoljenja uslova širine 1

THE KNASTER KURATOWSKI MAZURKIEWICZ THEOREM AND ALMOST FIXED POINTS. Sehie Park. 1. Introduction

Quantum logics with given centres and variable state spaces Mirko Navara 1, Pavel Ptak 2 Abstract We ask which logics with a given centre allow for en

Research Article Existence and Duality of Generalized ε-vector Equilibrium Problems

PRIPADNOST RJEŠENJA KVADRATNE JEDNAČINE DANOM INTERVALU

Mirela Nogolica Norme Završni rad

KKM-Type Theorems for Best Proximal Points in Normed Linear Space

Some Applications of Fixed Point Theorem in Economics and Nonlinear Functional Analysis

Existence of Solutions to Split Variational Inequality Problems and Split Minimization Problems in Banach Spaces

Projektovanje paralelnih algoritama II

Fixed Point Theorems for Condensing Maps

AUTOMATSKE GRUPE I STRUKTURE PREDSTAVLJIVE KONAČNIM AUTOMATIMA

Generalized Monotonicities and Its Applications to the System of General Variational Inequalities

Boolean Algebra and Propositional Logic

Constructive Proof of the Fan-Glicksberg Fixed Point Theorem for Sequentially Locally Non-constant Multi-functions in a Locally Convex Space

Convergence theorems for a finite family. of nonspreading and nonexpansive. multivalued mappings and equilibrium. problems with application

Vector Space Basics. 1 Abstract Vector Spaces. 1. (commutativity of vector addition) u + v = v + u. 2. (associativity of vector addition)

FREMLIN TENSOR PRODUCTS OF CONCAVIFICATIONS OF BANACH LATTICES

SCALARIZATION APPROACHES FOR GENERALIZED VECTOR VARIATIONAL INEQUALITIES

Konstrukcija i analiza algoritama

CARISTI TYPE OPERATORS AND APPLICATIONS

General Convexity, General Concavity, Fixed Points, Geometry, and Min-Max Points

Linearno uređena topologija

University of East Sarajevo Mathematical Society of the Republic of Srpska. Third Mathematical Conference of the Republic of Srpska PROCEEDINGS

CHARACTERIZATION OF (QUASI)CONVEX SET-VALUED MAPS

Representation theorems for connected compact Hausdorff spaces

Minimax Inequalities and Related Theorems for Arbitrary Topological Spaces: A Full Characterization

Journal of Inequalities in Pure and Applied Mathematics

AKSIOME TEORIJE SKUPOVA

AKSIOM IZBORA I EKVIVALENCIJE

Implications of the Constant Rank Constraint Qualification

LECTURE: KOBORDISMENTHEORIE, WINTER TERM 2011/12; SUMMARY AND LITERATURE

814 Sehie Park Hoonjoo Kim equilibrium points of n-person games with constraint preference correspondences on non-compact H-spaces. In 1967, motivated

Cobordism Categories

arxiv: v1 [math.oc] 21 Mar 2015

1. Introduction and preliminaries

Remarks on multifunction-based. dynamical systems. Bela Vizvari c. RRR , July, 2001

ON THE UNIQUENESS PROPERTY FOR PRODUCTS OF SYMMETRIC INVARIANT PROBABILITY MEASURES

Existence and data dependence for multivalued weakly Ćirić-contractive operators

1 Introduction The study of the existence of solutions of Variational Inequalities on unbounded domains usually involves the same sufficient assumptio

A CHARACTERIZATION OF STRICT LOCAL MINIMIZERS OF ORDER ONE FOR STATIC MINMAX PROBLEMS IN THE PARAMETRIC CONSTRAINT CASE

SOME REMARKS ON SUBDIFFERENTIABILITY OF CONVEX FUNCTIONS

Closedness of the solution mapping to parametric vector equilibrium problems

Boolean Algebra and Propositional Logic

Coincidence and Fixed Points on Product Generalized Convex Spaces

SECTION 2: THE COMPACT-OPEN TOPOLOGY AND LOOP SPACES

Fixed Point Theorems for -Monotone Maps on Partially Ordered S-Metric Spaces

Scalar Asymptotic Contractivity and Fixed Points for Nonexpansive Mappings on Unbounded Sets

Journal of Inequalities in Pure and Applied Mathematics

On intermediate value theorem in ordered Banach spaces for noncompact and discontinuous mappings

ON THE DIAMETER OF THE ATTRACTOR OF AN IFS Serge Dubuc Raouf Hamzaoui Abstract We investigate methods for the evaluation of the diameter of the attrac

P.S. Gevorgyan and S.D. Iliadis. 1. Introduction

Toposym 2. Zdeněk Hedrlín; Aleš Pultr; Věra Trnková Concerning a categorial approach to topological and algebraic theories

Quantizations and classical non-commutative non-associative algebras

Lecture 1. Toric Varieties: Basics

KLASIFIKACIJA NAIVNI BAJES. NIKOLA MILIKIĆ URL:

ALGEBRAICALLY TRIVIAL, BUT TOPOLOGICALLY NON-TRIVIAL MAP. Contents 1. Introduction 1

Transcription:

Redakcija Prof. dr Milenko Pikula, Univerzitet u Istočnom Sarajevu, BiH Prof. dr Žarko Mijajlović, Matematički fakultet Beograd, Republika Srbija Akademik prof. dr Svjetlana Terzić, Univerzitet Crne Gore, Crna Gora Prof. dr Radoje Šćepanović, Univerzitet Crne Gore, Crna Gora Prof. dr Vidan Govedarica, Univerzitet u Istočnom Sarajevu, BiH Akademik prof. dr Milojica Jaćimović, Univerzitet Crne Gore, Crna Gora Prof. dr Vučić Dašić, Univerzitet Crne Gore, Crna Gora Prof. dr Zoran Petrić, Matematički institut SANU, Republika Srbija dr Dord e Baralić, Matematički institut SANU, Republika Srbija Prof. dr Huse Fatkić, Univerzitet u Sarajevu, BiH Prof. dr Slobodan Vujošević, Univerzitet Crne Gore, Crna Gora Doc. dr Savo Tomović, Univerzitet Crne Gore, Crna Gora Doc. dr Vladimir Božović, Univerzitet Crne Gore, Crna Gora Prof. dr Dušan Jokanović, Univerzitet u Istočnom Sarajevu, BiH Prof. dr Tomislav Šekara, Univerzitet u Beogradu, Republika Srbija Izdavač Univerzitet u Istočnom Sarajevu Fakultet za proizvodnju i menadžment Trebinje Stepe Stepanovića bb, 89 101 Trebinje, BiH Telefon: +387 (0)59 490 654 E-mail: fpmtrebinje@gmail.com

University of East Sarajevo Mathematical Society of the Republic of Srpska FOURTH MATHEMATICAL CONFERENCE OF THE REPUBLIC OF SRPSKA PROCEEDINGS Trebinje, 06-07 June 014 VOLUME I Trebinje, 015

ČETVRTA MATEMATIČKA KONFERENCIJA REPUBLIKE SRPSKE ZBORNIK RADOVA TOM I Izdavač: Fakultet za proizvodnju i menadžment Trebinje, Univerzitet u Istočnom Sarajevu Za izdavača: Prof. dr Dušan Jokanović Glavni urednik: Prof. dr Milenko Pikula Tehnički urednik i kompjuterski slog: Marina Milićević Lektura i korektura: Tamara Dursun Štampa: Grafokomerc a. d. Trebinje Tiraž: 300 Trebinje, 015. COBISS.RS-ID 5048600 ISBN 978-99976-600-3-9

Sadržaj 1. Zoran Petrić Monoids, Segal s condition and bisimplicial spaces 7. Zoran Mitrović The Remarks on Best and Coupled Best Approximation 17 3. Predrag Tanović O invarijantama u strukturama prvog reda 3 4. Dušan Jokanović Some Properties of Semicommutative Rings 31 5. Milenko Pikula, Biljana Vojvodić, Nataša Pavlović The boundary value problem with one delay and two potentilas-construction of the solution and asimptotic of eigenvalues 37 6. Vesna Mišić, Ivan Arand elović On a fixed point theorem of Rezapour and Hamlbarani 59 7. Branko Sarić, Esad Jakupović Totalization of the Riemann integral 63 8. Biljana Vujošević Sistemi inkluzija Hilbertovih modula 69 9. Ivana Kuzmanović, Zoran Tomljanović, Ninoslav Truhar Applications of Lyapunov and T -Lyapunov equations in mechanics 83 10. Jelena Katić, Jovana -Duretić, Darko Milinković Hofer s geometry for Lagrangian submanifolds and Hamiltonian diffeomorphisms 93 11. Dejan Ilić, Predrag Tanović O razlaganju linearno uredjenih struktura 101 1. Jovana -Duretić Piunikhin Salamon Schwarz isomorphisms and symplectic invariants obtained using cobordisms of moduli spaces 111 i

13. Elmir Čatrnja, Milenko Pikula Rješavanje Sturm-Liouvilleovog problema sa konstantnim kašnjenem metodom upucavanja 11 14. Jelena Vujaković Weakly compatible mappings in Menger spaces and fixed point results 19 15. Halima Elfaghihe, Kristina Veljković, Vesna Jevremović Optimal Process Calibration for Some Examples of Non-symmetric Loss Functions 141 16. Huse Fatkić, Slobodan Sekulović, Fatih Destović, Hana Fatkić On Harmonic Mean Values and Weakly Mixing Transformations151 17. Kristina Veljković O Design of X bar control chart for non-normal symmetric distribution of quality characteristic 161 18. Vidan Govedarica, Marko Ćitić, Milan R. Rapaić, Tomislav B. Šekara Optimizacija površine u konveksnim cjelobrojnim petouglovima 173 19. Nenad Stojanović, Vidan Govedarica Diofantove jednačine i parketiranje rani polupravilnim poligonima jedne vrste 183 0. Petar Mandić, Tomislav Šekara, Mihailo Lazarević Primena PID kontrolera necelobrojnog reda za stabilizaciju linearnih sistema upravljanja 197 ii

FOURTH MATHEMATICAL CONFERENCE OF THE REPUBLIC OF SRPSKA Trebinje, 6 and 7 June 014 Monoids, Segal's condition and bisimplicial spaces Zoran Petric Mathematical Institute SANU Knez Mihailova 36 P.F. 367, 11001 Belgrade, Serbia zpetric@mi.sanu.ac.rs Abstract Original scientic paper A characterization of simplicial objects in categories with nite products obtained by the reduced bar construction is given. The condition that characterizes such simplicial objects is a strictication of Segal's condition guaranteeing that the loop space of the geometric realization of a simplicial space X and the space X 1 are of the same homotopy type. A generalization of Segal's result appropriate for bisimplicial spaces is given. This generalization gives conditions guaranteing that the double loop space of the geometric realization of a bisimplicial space X and the space X 11 are of the same homotopy type. Mathematics Subject Classication (010): 18G30, 57T30, 55P35 Keywords : reduced bar construction, simplicial space, loop space Acknowledgements : I am grateful to Rade Zivaljevic and Matija Basic for some useful discussions during the CGTA Colloquium in Belgrade. This work was supported by project ON17406 of the Ministry of Education, Science, and Technological Development of the Republic of Serbia. 1 Introduction This paper is based on the author talks delivered in 014 at the Fourth Mathematical Conference of the Republic of Srpska and at the CGTA Colloquium of the Faculty of Mathematics in Belgrade. Its rst part gives a condition which is necessary and sucient for a simplicial object to be obtained by the reduced bar construction. It turns out that this condition is a strictication of Segal's condition guaranteeing that the loop space of the geometric realization of a simplicial space X and the space X 1 are of the same homotopy type. The second part of this paper is devoted to a generalization of Segal's result. This generalization gives conditions guaranteing that the double loop space of the geometric realization of a bisimplicial space X and the space X 11 are of the same homotopy type. We refer to [8] for a complete generalization of Segal's result. 7

Monoids and the reduced bar construction A strict monoidal category (M,, I) is a category M with an associative bifunctor : M M M, (A B) C = A (B C) and (f g) h = f (g h), and an object I, which is a left and right unit for, A I = A = I A and f 1 I = f = 1 I f. A strict monoidal functor between strict monoidal categories is a functor that preserves strict monoidal structure on the nose, i.e., F (A B) = F (A) F (B), F (I) = I, etc. Algebraist's simplicial category is an example of strict monoidal category. The objects of are all nite ordinals 0 =, 1 = {0},..., n = {0,..., n 1}, etc. The arrows of from n to m are all order preserving functions from the set n to the set m, i.e., f : n m satisfying: if i < j and i, j n, then f(i) f(j). We use the standard graphical presentation for arrows of. For example, the unique arrows from to 1 and from 0 to 1 are graphically presented as: 1 0 1 0 0 1 0 A bifunctor : is dened on objects as addition and on arrows as placing side by side, i.e., for f : n m and f : n m { (f f f(i), when 0 i n 1, )(i) = m + f (i n), when n i n + n 1, and 0 serves as the unit I. A monoid in a strict monoidal category (M,, I) is a triple (M, µ : M M M, η : I M) such that µ (µ 1 M ) = µ (1 M µ) and µ (1 M η) = 1 M = µ (η 1 M ). For example, (1,, ) is a monoid in, where and are the above graphical presentations of the arrows of from to 1, and from 0 to 1. The following result, taken over from [3, VII.5, Proposition 1], shows the universal property of this monoid. Proposition.1. Given a monoid (M, µ, η) in a strict monoidal category M, there is a unique strict monoidal functor F : M such that F (1) = M, F ( ) = µ and F ( ) = η. Let par be the category with the same objects as, whose arrows are order preserving partial functions. Then (1,, ) is a monoid in the strict monoidal 8

category par with the same tensor and unit as. The empty partial function from 1 to 0 is graphically presented as. By [7, Proposition 6.] we have the following universal property of this monoid. Proposition.. Given a monoid (M, µ, η) in a strict monoidal category M whose monoidal structure is given by nite products, there is a unique strict monoidal functor F : par M such that F (1) = M, F ( ) = µ, F ( ) = η and F ( ) is the unique arrow from M to the unit (a terminal object of M). Topologist's simplicial category is the full subcategory of on nonempty ordinals as objects. We identify this category with the subcategory of Top. The object n + 1 is identied with the standard ordered simplex n = {(t 0,..., t n ) t 0,..., t n 0, i t i = 1}, and an arrow f : n+1 m+1 is identied with the ane map dened by f(t 0,..., t n ) = (s 0,..., s m ), where s j = t i. f(i)=j We denote by op the opposite of topologist's simplicial category and rename its objects so that the ordinal n + 1 is denoted by [n], i.e., [n] = {0,..., n}. Let Int be the subcategory of whose objects are nite ordinals greater or equal to and whose arrows are interval maps, i.e., order-preserving functions, which preserve, moreover, the rst and the last element. The categories op and Int are isomorphic by the functor J (see [7, Section 6]). This functor maps the object [n] to n + and it maps the generating arrows of op in the following way. 0 i 1 i i+1 n 0 i i+1 n+1............ 0 i 1 i n 1 0 i n 0 i 1 i n 1...... 0 i 1 i i+1 n 0 i n...... 0 i i+1 n+1 The functor J may be visualized as the following embedding of op into. (I am grateful to Matija Basic for this remark.) op [] [1]... [0] 4 3 1 0 (1) 9

Throughout this paper, we represent the arrows of op by the graphical presentations of their J images in Int. We have a functor H: Int par dened on objects as H(n) = n, and on arrows, for f : n m, as 0 1 m m 1 0 n 3...... H(f) = f 1 m 3 0 1 n n 1 (Intuitively, H(f) is obtained by omitting the vertices 0, n 1 from the source, and 0, m 1 from the target in the graphical presentation of f together with all the edges incident to these vertices.) It is not dicult to see that H(1 n ) = 1 n, and that for a pair of arrows f : n m and g : m k of Int we have { g(f(i + 1)) 1, f(i+1) {0, m 1} g(f(i+1)) {0, k 1} H(g) H(f)(i) = and H(g f)(i) = undefined, otherwise, { g(f(i + 1)) 1, g(f(i+1)) {0, k 1} undefined, otherwise. Since g(f(i+1)) {0, k 1} implies f(i+1) {0, m 1}, we have that H(g) H(f)(i) = H(g f)(i), and H so dened is indeed a functor. A simplicial object X in a category M is a functor X : op M. The following proposition is a corollary of Proposition.. Proposition.3. Given a monoid (M, µ, η) in a strict monoidal category M whose monoidal structure is given by nite products, there is a simplicial object X in M such that X([n]) = M n, X( ) = µ, X( ) = η. Proof. Take X to be the composition F H J, for F as in Proposition.. Note that both and are mapped by X to the unique arrow from M to the unit M 0 (a terminal object of M). We say that a simplicial object in M obtained as the composition F H J, for F as in Proposition., is the reduced bar construction based on M (see [10] and [7]). For X a simplicial object, we abbreviate X([n]) by X n. Also, for f an arrow of op, we abbreviate X(f) by f whenever the simplicial object X is determined by the context. For n, consider the arrows i 1,..., i n : [n] [1] of op graphically presented as follows. i 1 : 0 1... n n+1 i : 0 1 0 1 3 n+1...... i n : 0 1 0 1 n 1... n n+1 0 1 (It would be more appropriate to denote these arrows by i n 1,..., in n, but we omit the upper indices taking them for granted.) 10

For arrows f : C A and g : C B of a strict monoidal category M whose monoidal structure is given by nite products, we denote by f, g : C A B the arrow obtained by the universal property of product in M. For X a simplicial object in M, we denote by p 0 the unique arrow from X 0 to the unit, i.e., a terminal object (X 1 ) 0 of M, and we denote by p 1 the identity arrow from X 1 to X 1. For n and the above mentioned arrows i 1,..., i n : [n] [1] of op, we denote by p n the arrow i 1,..., i n : X n (X 1 ) n, where by our convention, i j abbreviates X(i j ). Let X be the reduced bar construction based on a monoid M. Since X 0 is the unit M 0 and for n, the arrow i j : M n M is the jth projection, we have that for every n 0, the arrow p n is the identity. We show that this property characterizes the reduced bar construction based on a monoid in M. Proposition.4. Let M be a strict monoidal category whose monoidal structure is given by nite products. A simplicial object X in M is the reduced bar construction based on a monoid in M if and only if for every n 0, the arrow p n : X n (X 1 ) n is the identity. Proof. The only if part of the proof is given in the paragraph preceding this proposition. For the if part of the proof, let us denote X 1 by M. By our convention, the X images of arrows of op are denoted just by their names or graphical presentations. We show that (M,, ) is a monoid in M. Let km 1,M : M M M and km,m : M M M be the rst and the second projection respectively. Since p 3 = i 1, i, i 3 : M 3 M 3 is the identity, we have that km 1,M = i 1, i and km,m = i 3 =. For arrows f : C A, g : C B, h : D C, f 1 : A 1 B 1, f : A B and projections ka 1 1,A : A 1 A A 1 and ka 1,A : A 1 A A, the following equations hold in M f h, g h = f, g h, f 1 f = f 1 k 1 A 1,A, f k A 1,A. We have km 1,M = i 1, i =, =, = p. Hence, km 1,M =. Analogously, we prove that km,m =. Also, µ 1 = µ km 1,M, k M,M =, =, = p. Hence, µ 1 =. Analogously, we prove that 1 µ =. Now, µ (µ 1) = µ (1 µ), since = 11

That km,m 1 = 0 1 =, and k M,M 0 = follows from the fact that M 0 is the strict unit and a terminal object of M. Hence, 1 η = km,m 1, η k 0 M,M = 0, =, = p =. Now, µ (1 η) = 1, since = = 1. Analogously, we prove that µ (η 1) = 1, and conclude that M is a monoid in M. Let Y be the reduced bar construction based on M. We show that X = Y. It is clear that the object parts of the functors X and Y coincide. We prove that for every arrow f : [m] [n] of op, the arrows X(f) and Y (f) are equal in M. If n = 0, then this is trivial since X 0, which is equal to M 0, is a terminal object of M. If n = 1, then f has one of the following forms or or In the rst case, f = and the X and Y images of the upper part are equal as in the case n = 0, while X( ) = Y ( ) by the denition of Y. In the second case, f is either identity and X(f) = Y (f) holds, or f is i j for some 1 j m. From X(i 1 ),..., X(i m ) = 1, we conclude that X(i j ) is the jth projection from M m to M. On the other hand, by the denition of Y, we have that Y (i j ) is the jth projection from M m to M. Hence X(f) = Y (f). l {}}{ In the third case, when f is, we proceed by induction on l. In the proof we use the fact that two arrows g, h : C M are equal in M i km,m 1 g = k1 M,M h and k M,M g = k M,M h, where k1 M,M and k M,M are the rst and the second projection from M to M. Also, we know from above that km,m 1 = X( ) = Y ( ), k M,M = X( ) = Y ( ). If l =, then f is equal to. Since X( ) = Y ( ), in order to prove that X(f) = Y (f), it suces to prove that g = X( ) is equal to h = Y ( ). By relying on the second case for, we have that km,m 1 g = X( ) = Y ( ) = km,m 1 h. Analogously, we prove that km,m g = k M,M h. Hence, g = h. If l >, then f is equal to, and it suces to prove that g = X( ) is equal to h = Y ( ). By relying on the induction hypothesis for, we have that km,m 1 g = X( ) = Y ( ) = km,m 1 h. 1

By relying on the second case for, we have that km,m g = X( ) = Y ( ) = k M,M h. Hence, g = h. This concludes the case when f maps [m] to [1]. Suppose now that f : [m] [n] is an arrow of op and n. As in the case when n = 1, we conclude that for every 1 j n, Since, we have that X(i j f) = Y (i j f). X(i 1 ),..., X(i n ) = Y (i 1 ),..., Y (i n ) = 1 M n, X(f) = X(i 1 ),..., X(i n ) X(f) = X(i 1 ) X(f),..., X(i n ) X(f) = Y (i 1 ) Y (f),..., Y (i n ) Y (f) = Y (i 1 ),..., Y (i n ) Y (f) = Y (f). 3 Segal's simplicial spaces Let Top be the category of compactly generated Hausdor spaces. For a simplicial object in Top, i.e., a simplicial space X, a relaxed form of the condition reads for every n, p n : X n (X 1 ) n is the identity, for every n, p n : X n (X 1 ) n is a homotopy equivalence. Segal, [9], used simplicial spaces satisfying this relaxed condition for his delooping constructions and we call them Segal's simplicial spaces. (Note that, for the sake of simplicity, this notion is weaker than the one dened in [8].) Essentially as in the proof of Proposition.4, one can show the following. Proposition 3.1. If X : op Top is Segal's simplicial space, then X 1 is a homotopy associative H-space whose multiplication is given by the composition (X 1 ) p 1 d X 1 X 1, where p 1 is an arbitrary homotopy inverse to p, and whose unit is s 1 0 (x 0), for an arbitrary x 0 X 0. (A complete proof of this proposition is given in [8, Appendix, Proof of Lemma 3.1].) The realization of a simplicial space X, is the quotient space ( ) / X = X n n, n 13

where is the smallest equivalence relation on n X n n such that for every f : [n] [m] of, x X m and t n (f op (x), t) (x, f(t)). A simplicial map is a natural transformation between simplicial spaces. Note that the realization is functorial, i.e., it is dened also for simplicial maps. For simplicial spaces X and Y the product X Y is dened so that (X Y ) n = X n Y n and (X Y )(f) = X(f) Y (f). The nth component of the rst projection k 1 : X Y X is the rst projection kn 1 : X n Y n X n and analogously for the second projection. The realization functor preserves products of simplicial spaces (see [4, Theorem 14.3], [, III.3, Theorem] and [5, Corollary 11.6]) in the sense that k 1, k : X Y X Y is a homeomorphism. The following two propositions stem from [9, Proposition 1.5 (b)] and from [6, Appendix, Theorem A4 (ii)] (see also [8, Lemma.11]). Proposition 3.. Let X : op Top be Segal's simplicial space such that for every m, X m is a CW-complex. If X 1 with respect to the H-space structure is grouplike, then X 1 Ω X. Proposition 3.3. Let f : X Y be a simplicial map of simplicial spaces such that for every m, X m and Y m are CW-complexes. If each f m : X m Y m is a homotopy equivalence, then f : X Y is a homotopy equivalence. 4 Segal's bisimplicial spaces A bisimplicial space is a functor X : op op Top and it may be visualized as the following graph (see the red subgraph of (1))..... X. X 1. X 0... X 1 X 11 X 01... X 0 X 10 X 00 Let Y n, for n 0, be the realization of the nth column, i.e., Y n = X n the realization is functorial, we obtain the simplicial space Y.. Since... Y Y 1 Y 0 14

The realization X of the bisimplicial space X is the realization Y of the simplicial space Y. If the simplicial space X 1 is Segal's, then, by Proposition 3.1, X 11 is a homotopy associative H-space and this is the H-space structure we refer to in the following proposition. Proposition 4.1. If X : op op Top is a bisimplicial space such that X 1 is Segal's, X 11 with respect to the H-space structure is grouplike, for every m 0, X m is Segal's, and for every n, m 0, X nm and Y n are CW-complexes, then X 11 Ω X. Proof. Since X 1 is Segal's simplicial space such that for every m, X 1m is a CW-complex and X 11 with respect to the H -space structure is grouplike, by Proposition 3. we have that X 11 Ω X 1 = ΩY 1. For every m, X m is Segal's. Hence, for every n, the map p nm : X nm (X 1m ) n, is a homotopy equivalence. The map p 0m is the unique map from X 0m to (X 1m ) 0, the map p 1m is the identity on X 1m, and for n, the map p nm is (i 1, m),..., (i n, m) : X nm (X 1m ) n. Also, for every f : [m] [m ] of op and every n the following diagram commutes: (n, f) X nm X nm p nm p nm (X 1m ) n (1, f) n (X 1m ) n Hence, for every n, p n is a simplicial map.. X n X n1 X n0 p n p n1 p n0. (X 1 ) n (X 11 ) n (X 10 ) n Every (X 1m ) n is a CW-complex since the product of CW-complexes in Top is a CW-complex. By Proposition 3.3, for every n, p n : Y n (X 1 ) n is a homotopy equivalence. Since (X 1 ) 0 is a singleton it is homeomorphic to (Y 1 ) 0 and we have that p 0 : Y 0 (Y 1 ) 0, as a composition of a homeomorphism with p 0, is a homotopy equivalence. The map p 1 : Y 1 Y 1 is the identity. For n, k 1,..., k n : (X 1 ) n X 1 n is a homeomorphism and for 1 j n, (i j, ) = X(i j, ) = Y (i j ). Hence, the map p n = Y (i 1 ),..., Y (i n ) = k 1,..., k n (i 1, ),..., (i n, ), 15

as a composition of a homeomorphism with p n, is a homotopy equivalence between Y n and (Y 1 ) n. We conclude that Y is Segal's, and by Proposition 3.1, Y 1 is a homotopy associative H-space. If a simplicial space is Segal's, then its realization is path-connected. This is because its value at [0] is contractible and therefore path-connected (see [5, Lemma 11.11]). Since X 1 is Segal's, we conclude that Y 1 is path-connected. Moreover, it is grouplike since every path-connected homotopy associative H- space, which is a CW-complex, is grouplike (see [1, Proposition 8.4.4]). Applying Proposition 3. to Y, we obtain that Y 1 Ω Y. Hence, X 11 ΩY 1 Ω(Ω Y ) = Ω X. References [1] M. Arkowitz, Introduction to Homotopy Theory, Springer, Berlin, 011 [] P. Gabriel and M. Zisman, Calculus of Fractions and Homotopy Theory, Ergebnisse der Mathematik und Ihrer Grenzgebiete, vol. 35, Springer, Berlin, 1967 [3] S. Mac Lane, Categories for the Working Mathematician, Springer, Berlin, 1971 (expanded second edition, 1998) [4] J.P. May, Simplicial Objects in Algebraic Topology, The University of Chicago Press, Chicago, 1967 [5], The Geometry of Iterated Loop Spaces, Lecture Notes in Mathematics, vol. 71, Springer, Berlin, 197 [6], E -spaces, group completions and permutative categories, New Developments in Topology (G. Segal, editor), London Mathematical Society Lecture Notes Series, vol. 11, Cambridge University Press, 1974, pp. 153-31 [7] Z. Petric and T. Trimble, Symmetric bimonoidal intermuting categories and ω ω reduced bar constructions, Applied Categorical Structures, vol. (014), pp. 467-499 (arxiv:0906.954) [8] Z. Petric, Segal's multisimplicial spaces, preprint (014) (arxiv:1407.3914) [9] G. Segal, Categories and cohomology theories, Topology, vol. 13 (1974), pp. 93-31 [10] R.W. Thomason, Homotopy colimits in the category of small categories, Mathematical Proceedings of the Cambridge Philosophical Society, vol. 85, 91 (1979), pp. 91-109 16

FOURTH MATHEMATICAL CONFERENCE OF THE REPUBLIC OF SRPSKA Trebinje, 6 and 7 June 014 The Remarks on Best and Coupled Best Approximations Zoran D. Mitrovic Faculty of Electrical Engineering, University of Banja Luka 78000 Banja Luka, Patre 5, Bosnia and Herzegovina zmitrovic@etfbl.net Abstract Original scientic paper In this paper we present some recent results on the best and coupled best approximations theorems in normed spaces. 1 Introduction In this paper, we prove the existence of a solution for best approximations problem: "for set-valued maps F, G and H and set K, nd x 0 K such that d(g(x 0 ), F (x 0 )) d(g(x), F (x 0 )) for all x K, and coupled best approximations problem: "nd (x 0, y 0 ) K K such that d(g(x 0 ), F (x 0, y 0 ))+d(h(y 0 ), F (y 0, x 0 )) d(g(x), F (x 0, y 0 ))+d(h(y), F (y 0, x 0 )) for all (x, y) K K", see [1]- [4], [1], [16], [17], [19], [0], [], [6]. Let K be a given nonempty set, f : K K R a given map. The scalar equilibrium problem is: "nd x 0 K such that f(x 0, y) 0, for all y K. (1) Is well known that Problem (1) is a unied model of several problems, such as, variational inequality problems, saddle point problems, optimization problems and xed point problems [11]. In 197, Ky Fan [14] established his famous theorem, which interesting extensions have been given by several authors and a variety of applications, mostly in xed point theory and approximation theory, have also given by many authors, see [5], [7], [13], [15], [18], [1] and references therein. Using the methods of the KKM-theory, we prove some results on scalar equilibrium problem in complete linear space. As corollaries, some results on the best approximations and coupled best approximations are obtained. 17

Preliminaries We need the following denitions and results. Let X and Y be non-empty sets and F : X Y be a multimap (map) from a set X into the power set of a set Y. For A X, let F (A) = {F (x) : x A}. For any B Y, the lower inverse and upper inverse of B under F are dened by F (B) = {x X : F (x) B } and F + (B) = {x X : F (x) B}, respectively. A map F : X Y is upper (lower) semicontinuous on X if and only if for every open V Y, the set F + (V ) ( F (V )) is open. A map F : X Y is continuous if and only if it is upper and lower semicontinuous. A map F : X Y with compact values is continuous if and only if F is a continuous map in the Hausdor distance, see for example [9]. Let X be a normed space. If A and B are nonempty subsets of X and α, β R, we dene αa + βb = {αa + βb : a A, b B} and A = inf{ a : a A}. For a nonempty subset A of vector space X, let conv(a) denote the convex hull of A. Denition.1. (Borwein, [10]) Let X and Y be real vector spaces, K a nonempty convex subset of X and C is a cone in Y. A map F : K Y is said to be C-convex if, λf (x 1 ) + (1 λ)f (x ) F (λx 1 + (1 λ)x ) + C () for all x 1, x K and all λ [0, 1]. A map F is convex if it satises condition () with C = {0}. If F is a single-valued map, Y = R and C = [0, + ), we obtain the standard denition of convex maps. The convex map play an important role in convex analysis, economic theory and convex optimization problems see for example [6], [8], [10]. From Denition.1 we easy obtain the following Lemma. Lemma.1. Let K, U 1 and U be a convex subsets of normed space X and the map F : K X is convex, then the map (x, y) F (x) + U 1 + F (y) + U is a convex. Denition.. (K. Nikodem, [4]). A map F : X X is called quasi-convex if F (x i ) S, i = 1, F (λx 1 + (1 λ)x ) S, (3) for all convex sets S X, x 1, x C and λ [0, 1]. Lemma.. Let K and U be a convex subsets of normed space X if the map G : K X is quasi-convex, then the map x G(x) + U is a quasi-convex. 18

Denition.3. (J. Dugundji, A. Granas, [13]) Let K be a nonempty subset of a topological vector space X. A map H : K X is called KKM map if for every nite set {x 1,..., x n } K, we have conv{x 1,..., x n } n H(x k ). We using denition of measure of non-compactness of L. Pasicki [5]. Denition.4. (L. Pasicki, [5]) Let X be a metric space. Measure of noncompactness on X is an arbitrary map ϕ : P(X) [0, ] which satises following conditions: 1) ϕ(a) = 0 if and only if A is totally bounded set; ) from A B follows ϕ(a) ϕ(b). 5) for each A X and x X ϕ(a {x}) = ϕ(a). k=1 In next section the following theorem will be needed. Theorem.1. (Z. D. Mitrovic, I. D. Arandelovic, [3]) Let X be a metric linear space, K a nonempty convex complete subset of X, ϕ measure of non-compactness on X and f, g, h : K K R are continuous maps such that 1. f(x, x) g(x, x) for all x K,. g(x, λy 1 + (1 λ)y ) max{h(x, y 1 ), h(x, y )} for all x, y 1, y K and λ [0, 1], 3. for each t > 0 there exists y K such that then there exists a point x 0 K such that ϕ({x K : f(x, x) h(x, y)}) t, h(x 0, y) f(x 0, x 0 ) for each y K. 3 Results First, we present the following best approximations theorem. Theorem 3.1. Let (X, ) be a normed space, K a nonempty convex complete subset of X, ϕ measure of non-compactness on X and F : K X and G : K K continuous maps with compact convex values. If there exists a quasi-convex onto map H : K K such that G(x) F (x) H(x) F (x) for all x K (4) and for all t > 0 exists z K such that ϕ({x K : G(x) F (x) H(z) F (x) }) t. (5) 19

Then there exists x 0 K such that Proof. Dene G(x 0 ) F (x 0 ) = inf x K H(x) F (x 0). (6) f(x, y) = G(y) F (x) and g(x, y) = H(y) F (x) for x, y K. Now, the result follows by Theorem.1 and Lemma.. Remark 3.1. If F, G and H are the single-valued maps from Theorem 3.1 we obtain the result of [], (Theorem 3. ). Further we give rhe following coupled best approximations theorem. Theorem 3.. Let (X, ) be a normed space, K a nonempty convex complete subset of X, ϕ measure of non-compactness on X X and F i : K K X, G i : K K continuous maps with compact convex values i = 1,. If there exists a convex onto map H : K X such that G i (x) F i (x, y) H(x) F i (x, y), for all x, y K and i = 1,, (7) and for all t > 0 exists z K such that ϕ({(x, y) K K : G i (x) F i (x, y) H(z) F i (x, y) }) t, i = 1,. (8) Then there exists (x 0, y 0 ) K K such that G 1 (x 0 ) F 1 (x 0, y 0 ) + G (y 0 ) F (y 0, x 0 ) = inf { H(x) F 1(x 0, y 0 ) + H(y) F (y 0, x 0 ) }. (x,y) K K (9) Proof. Let f, g : (K K) (K K) R dened by f((x 1, y 1 ), (x, y )) = G 1 (x ) F 1 (x 1, y 1 ) + G (y ) F (y 1, x 1 ) g((x 1, y 1 ), (x, y )) = H(x ) F 1 (x 1, y 1 ) + H(y ) F (y 1, x 1 ). Now, the result follows by Theorem.1 and Lemma.1. Remark 3.. From Theorem 3. we obtain Theorem.3. of A. Amini-Harandi [4] and the result of [0], (Theorem. 1). Example 3.1. Let C = [0, 1] and dene the maps F, G, H : C C by F (x) = {0}, G(x) = [0, x(x 1) ], H(x) = [0, x]. Then map G is not quasi-convex, note that the maps F, G and H satisfy all hypotheses of Theorem 3.1. 0

References [1] A. Amini-Harandi, A. P. Farajzadeh, A best approximation theorem in hyperconvex spaces, Nonlinear Anal. TMA 70 (009) 453-456. [] A. Amini-Harandi, A. P. Farajzadeh, D. O'Regan, and R. P. Agarwal, Coincidence Point, Best Approximation, and Best Proximity Theorems for Condensing Set-Valued Maps in Hyperconvex Metric Spaces, Fixed Point Theory Appl. 008, Article ID 543154, 8 p. (008). [3] A. Amini-Harandi, A. P. Farajzadeh, Best approximation, coincidence and xed point theorems for quasi-lower semicontinuous set-valued maps in hyperconvex metric spaces, Nonlinear Anal. TMA 71 (009) 5151-5156. [4] A. Amini-Harandi, Best and coupled best approximation theorems in abstract convex metric spaces, Nonlinear Anal., TMA, 74 (011), pp. 9-96. [5] Q. H. Ansari, I. V. Konnov, J. C. Yao, On generalized vector equilibrium problems, Nonlinear Anal., 47 (001), 543554. [6] J.P. Aubin and H. Frankowska, Set-valued analysis, BirkhÂœauser, Boston- Basel-Berlin, 1990. [7] M. Balaj, L.-J. Lin, Fixed points, coincidence points and maximal elements with applications to generalized equilibrium problems and minimax theory, Nonlinear Anal. 70 (009), 393403. [8] C. Berge, Espaces topologiques. Fonctions multivoques, Dunod, Paris, 1966. [9] Ju. G. Borisovic, B. D. Gelman, A. D. Myskis, V. V. Obuhovskii, Topological methods in the xed-point theory of multi-valued maps, (Russian), Uspekhi Mat. Nauk, No.1 (11) 35 (1980), 59-16. [10] J. M. Borwein, Multivalued convexity and optimization: A unied approach to inequality and equality constraints, Math. Programming, 13 (1977), 183-199. [11] E. Blum, W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student, 63 (1994) 13-145. [1] A. Carbone, A note on a theorem of Prolla, Indian J. Pure. Appl. Math. 3 (1991), 5760. [13] J. Dugundji, A. Granas, KKM maps and varational inequalities, Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 4 serie, tome 5, no 4, 679-68 (1978). [14] K. Fan, A minimax inequality and applications, in Inequalities vol. III (0. Shisha, ed.), Academic Press, New York/London, 197. 1

[15] S. Kum, W. K. Kim, On generalized operator quasi-equilibrium problems, J. Math. Anal. Appl. 345 (008), 559565. [16] W. A. Kirk, B. Sims, G. X.-Z. Yuan, The Knaster-Kuratowski and Mazurkiewicz theory in hyperconvex metric spaces and some of its applications, Nonlinear Anal. 39 (000) 611-67. [17] M. A. Khamsi, KKM and Ky Fan Theorems in Hyperconvex Metric Spaces, J. Math. Anal. Appl. 04 (1996) 98-306. [18] M. Lassonde, On use of KKM-multifunctions in xed point theory and related topics, J. Math. Anal. and Appl. 97 (1983), 151-01. [19] Z. D. Mitrovic, On scalar equilibrium problem in generalized convex spaces, J. Math. Anal. Appl. 330 (007) 451-461. [0] Z. D. Mitrovic, A coupled best approximations theorem in normed spaces, Nonlinear Anal. TMA, 7 (010) 4049-405. [1] Z. Mitrovic and M. Merkle. On generalized vector equilibrium problems with bounds, Appl. Math. Lett. 3, (010) 783-787. [] Z. Mitrovic, I. Arandelovic, Existence of generalised best approximations, J. Nonlinear Convex Anal. 15, No. 4 (014) 78779. [3] Z. Mitrovic, I. Arandelovic, On Best and Coupled Best Approximations, (to appear) [4] K. Nikodem, K-Convex and K-Concave Set-Valued Functions, Zeszyty Nauk. Politech. Lodz. Mat. 559, Rozprawy Nauk. 114, Lodz, 1989. [5] L. Pasicki, On the measure of non-compactness, Comment. Math. Prace Mat. 1 (1979), 0305. [6] J. B. Prolla, Fixed point theorems for set-valued mappings and existence of best approximants, Numer. Funct. Anal. Optimiz. 5 (198-83), 449455.

ČETVRTA MATEMATIČKA KONFERENCIJA REPUBLIKE SRPSKE Trebinje, 6. i 7. juni 014. godine 1 Uvod O invarijantama u strukturama prvog reda Predrag Tanović Matematički institut SANU i Matematički fakultet, Beograd, Srbija tane@mi.sanu.ac.rs Originalni naučni rad Jedan od osnovnih zadataka Teorije modela je klasifikacija struktura prvog reda: za datu teoriju prvog reda odrediti uslove pod kojima postoji sistem invarijanta kojima bi se, do na izomorfizam, opisao svaki model teorije. Najpoznatije klasa struktura koje možemo opisati su vektorski prostori nad fiksiranim poljem: do na izomorfizam su odredjeni jednim kardinalnim brojem, svojom dimenzijom. Algebarski zatvorena polja opisujemo sa dva broja: karakteristikom i stepenom transcendentnosti. Svaka Abelova grupa je opisiva nizom trojki kardinala (Ulmove invarijante). Šelah je u svojoj čuvenoj monografiji Classification Theory rešio problem mogućnosti klasifikacije klase neprebrojivih modela date potpune teorije prvog reda u prebrojivom jeziku. Pokazao je da je u klasama u kojima je klasifikacija moguća, invarijanta svakog modela drvo visine ω čiji su čvorovi označeni kardinalnim brojevima; u ostalim klasama moguće je kodirati stacionarne podskupove neprebrojivih kardinala, čija je struktura komplikovana. Primeri neklasifikabilnih klasa su klasa linearnih uredjenja i uopšte bilo koja aksiomatizabilna klasa struktura prvog reda u kojima je moguće definisati parcijalno uredjenje sa beskonačnim lancima. Prema Šelahovoj teoriji jednostavne invarijante u strukturama su kardinali koji spajanjem sa strukturom ω-drveta čine složene invarijante. Kardinali se pojavljuju u strukturama kao dimenzije tzv. pravilnih tipova. Pravilni tipovi indukuju na prirodan način kombinatornu strukturu predgeometrije (ekvivalent matroida u konačnom slučaju) u svakom modelu teorije. U svakoj predgeometriji se, slično vektorskim prostorima, na prirodan način definiše pojam nezavisnosti i baze, tako da svake dve baze imaju isti kardinalni broj elemenata. Na taj način dobijamo dobro definisanu dimenziju pravilnog tipa u datoj strukturi. Na primer, dimenzija vektorskog prostora i stepen transcendentnosti algebarski zatvorenog polja su dimenzije odredjenih tipova. Šelahova teorija ne rešava problem klasifikacije prebrojivih modela date teorije. Na primer klasa neprebrojivih gustih linearnih uredjenja nije klasifikabilna, dok klasa prebrojivih gustih linearnih uredjenja sadrži samo četiri dobro poznata tipa Supported by Ministry of Education, Science and Technological development of Serbia, grant ON 17406 3

izomorfizma, u zavisnosti od toga da li i koje krajnje tačke postoje. To je motivacija zbog koje su u [1] uvedene i asimetrične invarijante: linearni uredjajni tipovi. Pod linearnim uredjajnim tipom podrazumeva se klasa ekvivalencije u odnosu na relaciju izomorfizma linearnih uredjenja. I simetrične i asimetrične invarijante proističu iz izvesnih operatora algebarskog zatvaranja odredjenih pravilnim tipovima, što ćemo i prikazati u ovom radu. Uvodni deo rada sadrži prilično detaljne dokaze, dok u ostalom delu prikazujemo neke od rezultata iz [1] i []. Operatori algebarskog zatvaranja U ovom poglavlju bavimo se operatorima algebarskog zatvaranja i predgeometrijama. Naizgled, predgeometrije su čisto kombinatorne strukture u kojima je pojam zavisnosti (kao i nezavisnosti i baze) prirodno definisan; on uopštava pojmove linearne zavisnosti u vektorskim prostorima i algebarske zavisnosti u poljima. U narednom poglavlju dokazaćemo da svake dve baze (jedne te iste) predgeometrije imaju isti kardinalni broj elemenata, taj broj je dimenzija predgeometrije. Predgeometrija može biti i beskonačno-dimenziona, kao što je vektorski prostor realnih brojeva nad poljem racionalnih brojeva. Glavni rezultat ovog poglavlja opisuje kako se linearni uredjajni tipovi javljaju kao invarijante u jednoj klasi pravih operatora algebarskog zatvaranja. Definicija.1. Neka je V skup i cl : P(V ) P(V ) preslikavanje (odnosno operator na skupu V ). cl je operator algebarskog zatvaranja ako su zadovoljene sledeće tri aksiome: P1 Monotonost X Y povlači X cl(x) cl(y ) ; P Idempotentnost cl(x) = cl(cl(x)) ; P3 Konačan karakter cl(x) = {cl(x 0 ) X 0 X je konačan} ; (V, cl) je predgeometrija ukoliko je zadovoljena i aksioma P4 Aksioma zamene x cl(x, y) cl(x) povlači y cl(x, x). Pravi operator algebarskog zatvorenja je onaj koji ne koji ne zadovoljava aksiomu zamena. cl je operator zatvaranja ukoliko zadovoljava P1-P. Primer takvog oeratora je operator zatvaranja u topološkom prostoru. Ispunjenost aksiome P3 isključuje beskonačne Hausdorfove topološke prostore, pa se takvi operatori prirodno javljaju u algebarskim, i šire, u strukturama prvog reda. cl(a) je zatvarač skupa A V, a skupovi oblika cl(a) su zatvoreni skupovi. a cl(a) čitamo i kao a zavisi od A dok a / cl(a) čitamo i kao a ne zavisi od A. Ova terminologija potiče iz vektorskih prostora i polja. Primer.1. (1) Linearna zavisnost. Neka je (V, +,, f, 0) f F bektorki prostor nad poljem F. Za X V definišemo cl(x) kao potprostor generisan sa X. Nije teško proveriti da je (V, cl) predgeometrija. 4

() Algebarska zavisnost. Neka je (K, +,,, 0, 1) polje i F 0 njegovo osnovno polje (Q ili Z p ). Za X K definišimo acl(x) kao skup svih elemenata polja K koji su algebarski nad poljem F 0 (X). Tada je (K, acl) predgeometrija. Primer.. Neka je (A, <) drvo: < je netrivijalno striktno uredjenje i za svaki a A interval (, a] = {x A x a} je linearno uredjen. U specijalnom slučaju (A, <) može biti i linearno uredjenje. Posmatrajmo operator cl definisan sa cl(x) = x X (, x]. Nije teško proveriti da je cl pravi operator algebarskog zatvorenja na A. Definišimo pojam lokalizacije operatora algebarskog zatvarenja cl na skupu V: ako je A V tada i cl A (X) = cl(x A) definiše operator algebarskog zatvaranja na skupu V. Lema.1. 1. cl(a) = cl(b) ako i samo ako A cl(b) i B cl(a).. Presek zatvorenih skupova je zatvoren. Definicija.. Neka je cl operator zatvaranja na skupu V i I = (I, <) linearno uredjenje. Za niz (a i i I) elemenata skupa V kažemo da je cl-slobodan ako za sve i I važi a i / cl(a j j < i). Nije teško uvideti da cl-slobodni nizovi postoje u svakoj strukturi u kojoj je cl( ) V. Ordinalne cl-slobodne nizove konstruišemo induktivno sledećom procedurom. U prvom koraku uzmimo a 0 / cl( ). Pretpostavimo da je niz (a i i < ξ) konstruisan; ukoliko je njegov zatvarač ceo skup V konstrukcija se završava, a u suprotnom biramo a ξ V cl(a i i < ξ). Ovaj proces se mora završiti na nekom ordinalnom koraku α, t.j kada uslov cl(a i i < α) = V bude ispunjen. Takve nizove zovemo maksimalnim ordinalnim nizovima. U opštem slučaju ordinal α nije jedinstveno odredjen i za razne izbore elemenata niza možemo dobiti različite, čak i po kardinalnosti, ordinale. To pokazuje sledeći primer. Primer.3. Posmatrajmo operator cl iz dela (1) definisan na (ω + 1, <). Nizovi (a ξ = ξ ξ ω + 1) i (a 0 = ω + 1) su maksimalni ordinalni nizovi čije su dužine različitih kardinalnosti. Definicija.3. Operator algebarskog zatvaranja cl na skupu A je totalno degenerisan ako za svaki konačan X A postoji x X takav da je cl(x) = cl(x). Nije teško utvrditi da je totalna degenerisanost ekvivalentna uslovu: za sve x, y važi cl(x, y) = cl(x) ili cl(x, y) = cl(y). Ova činjenica je ključna u dokazu naredne leme. Lema.. Neka je cl totalno degenerisan operator algebarskog zatvaranja na skupu A. Za x A neka je ϵ cl (x) = {y A cl(x) = cl(y). 1. Skup {cl(x) x A} je linearno uredjen inkluzijom. 5

. Skup A cl = {ϵ cl (x) x A} je linearno uredjen relacijom ϵ cl (x) < cl ϵ cl (y) ako i samo ako cl(x) cl(y). 3. Niz (a i i I} je cl-slobodan ako i samo ako je (ϵ cl (a i ) i I) strogo < cl - rastući. Naredna teorema opisuje poreklo uredjajnih tipova kao invarijanata. Teorema.1. Ako je cl totalno degenerisani operator na skupu A, tada za svaki B A važi: svaka dva maksimalna cl-slobodna niza elemenata skupa B imaju isti uredjajni tip. 3 Predgeometrije Naizgled, predgeometrije su čisto kombinatorne strukture u kojima je pojam zavisnosti (kao i nezavisnosti i baze) prirodno definisan; on uopštava pojmove linearne i algebarske zavisnosti. Glavni rezultat ovog poglavlja tvrdi da svake dve baze (jedne te iste) predgeometrije imaju isti kardinalni broj elemenata, taj broj je dimenzija predgeometrije. Predgeometrija može biti i beskonačno-dimenziona, kao što je vektorski prostor realnih brojeva nad poljem racionalnih brojeva. Do kraja poglavlja, fiksirajmo predgeometriju (V, cl). Za neprazan skup A V kažemo da je nezavisan ukoliko za sve a A važi a / cl(a a); drugim rečima a ne zavisi od ostalih elemenata skupa A. Maksimalan u odnosu na inkluziju nezavisan skup se naziva baza. Aksioma izbora nam garantuje da se svaki nezavisan skup može proširiti do baze. Cilj ovog dela je Teorema o jednakobrojnosti baza. Lema 3.1. 1. A je baza ako i samo ako je A nezavisan i cl(a) = V.. Ako a cl(c, b) cl(c) tada cl(c, b) = cl(c, a). U predgeometrijama pojmovi cl-slobodnog niza i nezavisnog skupa su identični. Primetimo da, kako god poredjali elemente nezavisnog skupa u niz, uvek dobijemo cl-slobodan niz. Obrnuti smer je sadržan u sledećoj lemi Lema 3.. Elementi cl-slobodnog niza čine nezavisan skup. Dokaz. Zbog konačnog karaktera dovoljno je dokazati tvrdjenje za konačne nizove. Dokazujemo ga indukcijom po dužini niza. Pretpostavimo da tvrdjenje važi za nizove dužine n. Neka je A = (a 1,..., a n+1 ) cl-slobodan niz. Ukoliko nije nezavisan kao skup, postoji njegov element a j koji pripada zatvorenju preostalih elemenata. Kako je niz A cl-slobodan važi a n+1 / cl((a 1,..., a n ), pa važi j < n + 1. Neka je A = (a 1,..., a j 1, a j+1,..., a n ). Dakle a j cl(a, a n+1 ). Zbog nezavisnosti skupa (a 1,..., a n ) važi a j / cl(a ) pa možemo primeniti aksiomu zamene: a n+1 cl(a, a j ) = cl(a 1,..., a n ). Kontradikcija. 6

Stav 3.1. Ako su A i B nezavisni skupovi i B cl(a), tada važi B A. Dokaz. Razmotrimo prvo slučaj kada je A konačan skup. Neka su b 1,..., b m različiti elementi skupa B. Tvrdimo da postoje medjusobno različiti elementi a 1,..., a m skupa A takvi da za svako k m važe sledeći uslovi: A k = {b 1,..., b k } (A {a 1,..., a k }) je nezavisan skup; A 0 = A. cl(a k ) = cl(a). Primetimo da ovo tvrdjenje povlači B A. Konstrukciju skupova A k vršimo indukcijom po k m. Pretpostavimo da je A k konstruisan za neko k < m. Poredjajmo njegove elemente u niz (b 1,..., b k, a 1,..., a n). Kako b k+1 cl(a) i prema induktivnoj hipotezi važi cl(a k ) = cl(a), zaključujemo da b k+1 cl(b 1,..., b k, a 1,..., a n). Zbog nezavisnosti skupa B važi b k+1 / cl(b 1,..., b k ) pa postoji i n takav da b k+1 cl(b 1,..., b k, a 1,..., a i) cl(b 1,..., b k, a 1,..., a i 1). (1) Dokazaćemo da a k+1 = a i zadovoljava željene uslove. Prvo dokazujemo: (b 1,..., b k, a 1,..., a i 1, a i+1,..., a n, b k+1 ) je nezavisan niz. () Nezavisnost ovog niza sa izostavljenim poslednjim članom je posledica nezavisnosti skupa A k, pa preostaje da dokažemo da b k+1 / cl(b 1,..., b k, a 1,..., a i 1, a i+1,..., a n). Pretpostavimo suprotno: b k+1 cl(b 1,..., b k, a 1,..., a i 1, a i+1,..., a n). (3) Primenom aksiome zamene na (1) dobijamo: a i cl(b 1,..., b k, a 1,..., a i 1, a i+1, b k+1) (4) pa, koristeći (3) i idempotentnost, zaključujemo a i cl(b 1,..., b k, a 1,..., a i 1, a i+1,..., a n). (5) To je u kontradikciji sa induktivnom hipotezom da je skup A k nezavisan. Time smo dokazali (). Prema Lemi 3. skup A k+1 je nezavisan, čime smo dokazali ispunjenost prvog uslova. Preostaje da proverimo drugi uslov: cl(a k+1 ) = cl(a). Imamo: cl(a k+1 ) = cl(cl(a k+1 )) cl(a k+1, a i) cl(a k ), gde jednakost važi zbog idempotentnosti, prva inkluzija zbog (4) i monotonosti, a druga inkluzija zbog monotonosti. Time smo dokazali cl(a k+1 ) cl(a k ) = cl(a) pa, zbog A k+1 A i monotonosti imamo cl(a k+1 ) = cl(a). Time je dokaz u slučaju kada je A konačan skup završen. Pretpostavimo sada da je A = κ beskonačan. Postoji κ različitih konačnih podskupova skupa A, pa postoji najviše κ različitih skupova oblika cl(a 0 ) gde je 7

A 0 konačan podskup od A. Fiksirajmo za momenat konačan skup A 0 A. Neka je B 0 = B cl(a 0 ). Tada su A 0 i B 0 nezavisni skupovi i važi cl(b 0 ) cl(a 0 ). Kako je A 0 konačan skup možemo primeniti dokazani deo teoreme i zaključiti B 0 A 0. Posebno, B 0 = B cl(a 0 ) je konačan. Time smo dokazali da svaki cl(a 0 ) sadrži konačno mnogo elemenata skupa B. S druge strane, svaki element skupa B se nalazi u nekom od skupova oblika cl(a 0 ) prema konačnom karakteru predgeometrije. Prema tome, imamo κ skupova cl(a 0 ) i svaki od njih sadrži konačno mnogo elemenata skupa B. Prema tome B κ. Posledica 3.1. Ako su A i B nezavisni skupovi i cl(a) = cl(b) tada je A = B. Teorema 3.1. Svake dve baze predgeometrije imaju jednake kardinalne brojeve. Broj elemenata baze se naziva dimenzija predgeometrije. Definišemo dimenziju svakog podskupa: ako je A V tada svaka dva njegova nezavisna podskupa imaju istu kardinalnost, koja se zove dimenzija skupa A u predgeometriji. 4 Pravilni tipovi Neka je (M,...) struktura jezika L i A M. Tip po promenljivoj x nad A M je bilo koji skup L A -formula (sa parametrima iz A) koji nema drugih slobodnih promenljivih osim x, takav da je svaki njegov konačan podskup zadovoljiv (a samim tim i realizovan u M). Tip je potpun ako za svaku takvu formulu važi da ili ona ili njena negacija pripadaju tipu. Podsetimo da je model κ-zasićen ako realizuje sve tipove sa < κ parametara iz njegovog domena. U κ-zasićen model elementarno se može utopiti svaka elementarno ekvivalentna struktura moći < κ. Model M je κ-homogen (u jakom smislu) ako se svako parcijalno elementarno preslikavanje skupa A M ( A < κ) u M može produžiti do automorfizma modela M; f : A M je parcijalno elementarno preslikavanje ako za sve ā A i svaku formula ϕ( x) važi: M = ϕ(ā) ako i samo ako M = ϕ(f(ā)). Neka je T fiksirana, kompletna teorija prebrojivog jezika L koja ima beskonačne modele. Zanimaju nas prebrojivi modeli teorije T. Fiksirajmo ℵ 1 -zasićen, ℵ 1 - homogen model U teorije T (takozvani monstrum-model ili univerzum). Zbog zasićenosti svaki prebrojiv model teorije T je izomorfan nekom elementarnom podmodelu univerzuma. Zato ćemo raditi isključivo unutar univerzuma. Sa a, b,... označavamo elemente, sa A, B,... njegove najviše prebrojive podskupove, a sa M, M 1,... označavamo domene elementarnih podmodela univerzuma. Globalni tip je potpun 1-tip nad U, takve tipove označavamo sa p, q,... Za svaki A definišemo definšemo restrikciju p A = {ϕ(x) p ϕ(x) je L A -formula}. p je A-invarijantan ako za svaku A-formulu ϕ(x; ȳ) i za sve n-torke b 1, b važi: tp( b 1 /A) = tp( b /A) povlači (ϕ(x, b 1 ) ϕ(x, b )) p. Neka je p A-invarijantan tip. Niz (a i i < α) je Morlijev niz tipa p nad A ako a β realizuje p A {a ξ ξ < β} za svaki β < α. Za regularne tipove Morlijevi nizovi 8

su isto što i cl-slobodni nizovi: ako je p regularan tada je niz (a i i < α) Morlijev niz tipa p nad A ako i samo ako je cl A p -slobodan. Sledeći primer ukazuje na vezu izmedju globalnih tipova i pojma dimenzije Primer 4.1. Neka je K beskonačno (prebrojivo) polje. Posmatrajmo ℵ 1 -dimenzioni vektorski prostor V = (V, +, k, 0) k K. Poznato je da ova teorija dopušta eliminaciju kvantifikatora, pa je svaki definabilan (sa parametrima) skup D V ili konačan ili ko-konačan (komplement mu je konačan). Označimo sa p skup svih formula sa parametrima koje definišu ko-konačan podskup. Tada je p potpun -invarijantan tip. Formule koje su sadržane u p definišu velike podskupove, dok njihove negacije definišu male podskupove. Za svaki A V označimo sa cl(a) uniju svih malih skupova koji su definabilni formulom sa parametrima iz A. Koristeći eliminaciju kvantifikatora nije teško zaključiti da je cl(a) potprostor generisan sa A. Prema tome, linearna zavisnost u vektorskim prostorima je indukovana operatorom koji je odredjen tipom p: cl(a) = {ϕ(v ) ϕ(x) p A}. Definicija 4.1. Neka je p globalan tip. Definišemo operator cl p na U na sledeći način: cl p (X) = {ϕ(v ) ϕ(x) p A} (za X U). U opštem slučaju cl p nije operator algebarskog zatvaranja. U narednoj definiciji, radi jednostavnosti, koristimo pojam pravilan tip u smislu (p, x = x) is strongly regular over A definisanom u [] i [1]. Definicija 4.. Globalni tip p je pravilan ako je -invarijantan, a cl p operator algebarskog zatvaranja na univerzumu. Stav 4.1. Neka je p pravilan globalni tip. Tada je (U, cl p ) predgeometrija ako i samo ako je svaki (ekvivalentno bar jedan beskonačan) Morlijev niz simetričan. Prethodno tvrdjenje nam daje dihotomiju: postoje simetrični i asimetrični pravilni tipovi. Asimetrični su oni za koje postoji nesimetričan konačan Morlijev niz, dok su simetrični oni kojima su svi Morlijevi nizovi simetrični. Simetrični odredjuju kardinalne invarijante: dim p (M) je dimenzija skupa M u predgeometriji indukovanoj operatorom cl p. Teorema 4.1. ( []) Neka je p globalni tip. Ako je (U, cl p ) predgeometrija, tada je p -invarijantan, definabilan i pravilan. Dajemo primer asimetričnog pravilnog tipa i linearnog uredjajnog tipe kao invarijante koju on odredjuje. Primer 4.. Neka je univerzum (ω + L Z, <); to je linearno uredjenje dobijeno dodavanjem prirodnim brojevima na desni kraj kopije leksikografskog proizvoda nekog ℵ 1 -zasićenog, gustog linearnog uredjenja i celih brojeva. Poznato je da ako u jezik dodamo i simbol za funkciju neposrednog sledbenika, imamo eliminaciju kvantora. Odatle sledi da je svaki prebrojiv elementarni podmodel M opisan do na izomorfizam uredjajnim tipom svoje projekcije na L; pri tome, svaki podskup od L je projekcija nekog modela. 9