Course Nov 03, Statistische Mechanik plus. Course Hartmut Ruhl, LMU, Munich. People involved. Hinweis.

Similar documents
Course Okt 28, Statistische Mechanik plus. Course Hartmut Ruhl, LMU, Munich. Personen. Hinweis. Rationale

Lecture Models for heavy-ion collisions (Part III): transport models. SS2016: Dynamical models for relativistic heavy-ion collisions

PHY305: Notes on Entanglement and the Density Matrix

Linear Algebra and Dirac Notation, Pt. 1

Advanced Computational Physics Course Hartmut Ruhl, LMU, Munich. People involved. People involved. Literature. Schrödinger equation.

FRAMES IN QUANTUM AND CLASSICAL INFORMATION THEORY

( r) = 1 Z. e Zr/a 0. + n +1δ n', n+1 ). dt ' e i ( ε n ε i )t'/! a n ( t) = n ψ t = 1 i! e iε n t/! n' x n = Physics 624, Quantum II -- Exam 1

Derivation of Mean-Field Dynamics for Fermions

5.4 Given the basis e 1, e 2 write the matrices that represent the unitary transformations corresponding to the following changes of basis:

Combined systems in PT-symmetric quantum mechanics

Massachusetts Institute of Technology Physics Department

1 Fundamental physical postulates. C/CS/Phys C191 Quantum Mechanics in a Nutshell I 10/04/07 Fall 2007 Lecture 12

Wigner function description of a qubit-oscillator system

Solution Set 3. Hand out : i d dt. Ψ(t) = Ĥ Ψ(t) + and

S.K. Saikin May 22, Lecture 13

Physics 5153 Classical Mechanics. Canonical Transformations-1

Ensembles and incomplete information

22.51 Quantum Theory of Radiation Interactions

An introduction to Birkhoff normal form

Quantum Memory in Atomic Ensembles BY GEORG BRAUNBECK

Introduction. Statistical physics: microscopic foundation of thermodynamics degrees of freedom 2 3 state variables!

Quantum Mechanics C (130C) Winter 2014 Final exam

11 Perturbation Theory

Physics 212: Statistical mechanics II Lecture IV

Quantum control of dissipative systems. 1 Density operators and mixed quantum states

The Quantum Heisenberg Ferromagnet

C/CS/Phys C191 Quantum Mechanics in a Nutshell 10/06/07 Fall 2009 Lecture 12

Quantum Mechanics I Physics 5701

Kinetic theory of gases

Quantum mechanics without the measurement axiom. Jiří Souček

arxiv:math/ v5 [math.ac] 17 Sep 2009

An Exactly Solvable 3 Body Problem

A quantum heat equation 5th Spring School on Evolution Equations, TU Berlin

a = ( a σ )( b σ ) = a b + iσ ( a b) mω 2! x + i 1 2! x i 1 2m!ω p, a = mω 2m!ω p Physics 624, Quantum II -- Final Exam

Physics 239/139 Spring 2018 Assignment 2 Solutions

Quantum physics from coarse grained classical probabilities

The hybrid-epistemic model of quantum mechanics and the solution to the measurement problem

On some special cases of the Entropy Photon-Number Inequality

An Introduction to Quantum Computation and Quantum Information

A diamagnetic inequality for semigroup differences

What is the Gibbs Paradox

Mathematical Quantum Mechanics Final exam, Mathematische Quantenmechanik Endklausur,

arxiv: v1 [quant-ph] 11 Nov 2014

The general reason for approach to thermal equilibrium of macroscopic quantu

1 Quantum field theory and Green s function

Second quantization: where quantization and particles come from?

Chapter 3 : Linear Differential Eqn. Chapter 3 : Linear Differential Eqn.

Lecture: Quantum Information

PHY 114 A General Physics II 11 AM-12:15 PM TR Olin 101

C/CS/Phys 191 Quantum Mechanics in a Nutshell I 10/04/05 Fall 2005 Lecture 11

arxiv:quant-ph/ v2 23 Mar 2001

Classical Mechanics Comprehensive Exam

2 The Density Operator

Solving PDEs Numerically on Manifolds with Arbitrary Spatial Topologies

MAT 5330 Algebraic Geometry: Quiver Varieties

8.05 Quantum Physics II, Fall 2011 FINAL EXAM Thursday December 22, 9:00 am -12:00 You have 3 hours.

04. Five Principles of Quantum Mechanics

Quantum Physics II (8.05) Fall 2004 Assignment 3

Physics 342 Lecture 4. Probability Density. Lecture 4. Physics 342 Quantum Mechanics I

arxiv: v2 [quant-ph] 14 Mar 2018

Lecture 6 Quantum Mechanical Systems and Measurements

SUMMER SCHOOL - KINETIC EQUATIONS LECTURE II: CONFINED CLASSICAL TRANSPORT Shanghai, 2011.

Potentially useful reading Sakurai and Napolitano, sections 1.5 (Rotation), Schumacher & Westmoreland chapter 2

A note on Steiner symmetrization of hyperbolic triangles

Physics 576 Stellar Astrophysics Prof. James Buckley. Lecture 13 Thermodynamics of QM particles

Physics 115C Homework 2

Some Bipartite States Do Not Arise from Channels

Mean-Field Limits for Large Particle Systems Lecture 2: From Schrödinger to Hartree

Quantum Physics II (8.05) Fall 2002 Assignment 3

Meixner matrix ensembles

Two and Three-Dimensional Systems

Quantum mechanics in one hour

MP 472 Quantum Information and Computation

Einstein s Boxes: Quantum Mechanical Solution

arxiv: v3 [cond-mat.stat-mech] 7 Jan 2015

arxiv: v2 [quant-ph] 19 Jul 2011

arxiv:quant-ph/ v5 10 Feb 2003

The quantum speed limit

2.1 Definition and general properties

From unitary dynamics to statistical mechanics in isolated quantum systems

6.1 Main properties of Shannon entropy. Let X be a random variable taking values x in some alphabet with probabilities.

2 Canonical quantization

PHYSICS 721/821 - Spring Semester ODU. Graduate Quantum Mechanics II Midterm Exam - Solution

The Ideal Gas. One particle in a box:

The stability of the QED vacuum in the temporal gauge

Liouville Equation. q s = H p s

Global Maxwellians over All Space and Their Relation to Conserved Quantites of Classical Kinetic Equations

The query register and working memory together form the accessible memory, denoted H A. Thus the state of the algorithm is described by a vector

Qubits vs. bits: a naive account A bit: admits two values 0 and 1, admits arbitrary transformations. is freely readable,

QUANTUM MECHANICS I PHYS 516. Solutions to Problem Set # 5

Statistical Methods in Particle Physics

The Effective Equations for Bianchi IX Loop Quantum Cosmology

PHYS 771, Quantum Mechanics, Final Exam, Fall 2011 Instructor: Dr. A. G. Petukhov. Solutions

Chapter 5. Density matrix formalism

Quantum Dynamics. March 10, 2017

( ). Expanding the square and keeping in mind that

5.1 Classical Harmonic Oscillator

The Vlasov equation for cold dark matter and gravity

Phase-space approach to bosonic mean field dynamics

Quantum Mechanics Exercises and solutions

Transcription:

Nov 03, 016

ASC, room A 38, phone 089-180410, email hartmut.ruhl@lmu.de Patrick Böhl, ASC, room A05, phone 089-1804640, email patrick.boehl@physik.uni-muenchen.de.

Das folgende Material ist nicht prüfungsrelevant. Das folgende Material dient der physikalischen Motivation der Betrachtung des Konzepts der Dichteoperatoren. Das folgende Material dient der Wiederholung elementarer Konzepte aus der Quantenmechanik vieler Teilchen.

Im Quantenfall lassen sich Mehrteilchensysteme mit Hilfe des Dichteoperators beschreiben. Der Dichteoperator gehorcht der Von Neumann-Gleichung. Für praktische Anwendungen benutzt man das Konzept der reduzierten Dichteoperatoren, welches dem reduzierter Wahrscheinlichkeitsdichten im klassischen Fall entspricht. Die dynamischen Gleichungen reduzierter Dichteoperatoren bilden eine BBGKY-Hierarchie wie im klassischen Fall. Aus der BBGKY-Hierarchie lassen sich unter bestimmten Voraussetzungen Einteilchendichteoperatoren im Gleichgewicht ableiten. In der vorliegenden Vorlesung spielen nur Dichteoperatoren im Gleichgewicht eine Rolle.

Density matrix and equation Today we derive the for reduced density operators to represent N-particle quantum systems. Let us assume that we have a Hilbert space of a N-particle system. Let ψ be a state vector in our Hilbert space. Let us define a density operator ρ ψ ψ, Tr (ρ 1, A Tr (ρ A. (1 With the help of our ρ the probability of finding the system in state ψ can be calculated. density operator ρ has an equation of motion i t ρ i t ( ψ ψ Hρ ρh +, ( where use of the Schrödinger equation has been made. For simplicity let us assume that we have a one-particle density operator in space representation. We find i t x ρ y x Hρ y x ρh + y (3 ( i t ρ(x, y, t H(x H + (y ρ(x, y, t. (4 As an example we calculate the average energy of the system E d 3 x x ρh x d 3 x d 3 y x ρ y y H x (5 d 3 x d 3 y H(x x ρ y δ 3 (x y d 3 x [H(x ρ(x, y, t] xy.

Wigner for free particles Let us next introduce a Wigner function defined by ρ (r η, r + η, t where W is the Wigner function. We have used x r η, y r + η, r x + y, η y x x 1 r 1 η, y 1 r + 1 η, m dp π e ipη W (r, p, t, (6 ( x y (7 r η. (8 m equation for the one-particle density operator in space representation yields H(x x m, 0 i t y m dp π i + x ρ (9 m (i t m r η e ipη W (r, p, t dp π e ipη ( t + pm r W (r, p, t. In a weak sense we find ( t + pm r W (r, p, t 0. (10

density matrix for free particles Let us assume that the quantum particles have an initial distribution W (r, p, 0 1 r r e p p 0 e 0. (11 πr 0 p 0 We obtain with the help of the equation of motion for the Wigner W (r, p, t 1 (r vt r e p p 0 e 0, v p πr 0 p 0 m. (1 We obtain for the density operator ρ (r η, r + η, t dp π e ipη W (r, p, t (13 dp 1 π e ipη e πr 0 p 0 ( r p m t r 0 p p e 0 1 1 π 3 r 0 + p 0 t m 4r +η p 0 r 0 +4iηr p 0 m t 4 r e 0 + p 0 t m.

Wigner for particles in a potential A one-particle Hamilton operator in an external field in space representation is We find where H(x H(y ( V r ± η H(x x m m dp + V (x. (14 ( r η + V r η ( V r + η, (15 π e ipη W (r, p, t (16 ( dp π e ipη V r ± p W (r, p, t. i

Wigner for particles in a potential equation becomes 0 i t dp π i [ x m dp π e ipη In a weak sense we find + V (x ] + y m + V (y ρ (17 (i t m ( r η V r η ( + V r + η e ipη W (r, p, t ( t + p m r + i [ ( V r ( p V r + ] p W (r, p, t. i i ( t + p m r + i [ ( V r ( p V r + ] p W (r, p, t 0. (18 i i This equation can be called, following our nomenclature, the quantum Vlasov equation for an ensemble of particles in an external force field. operators showing up in Wigner space are called pseudo differential operators. It is quite complicated to solve the above equation for an arbitrary potential V. With respect to a probabilistic interpretation of W one can ask if W is always a positive definite entity or if not what this would imply.

Density matrix for a quadratic potential Let us assume that V (x 1 D x. (19 This implies We obtain ( t + pm r D r p W (r, p, t 0. (0 r + D r 0 r(t A cos ωt + B sin ωt (1 m ω D m, r 0 A, p 0 mbω r(t r 0 cos ωt + p 0 mω sin ωt, p(t p 0 cos ωt r 0 mω sin ωt. We obtain r 0 r cos ωt p sin ωt ( mω p 0 p cos ωt + mωr sin ωt.

Density matrix for a quadratic potential Assuming we obtain W (r, p, t W (r, p, 0 1 r r e p p 0 e 0 (3 πr 0 p 0 ( r cos ωt p mω sin ωt 1 r e 0 πr 0 p 0 (p cos ωt+mωr sin ωt p e 0. (4 Transforming back to Hilbert space is left as an excercise.

question arises if there is a quantum BBGKY hierarchy as in the classical case. ensemble average of an N-particle operator A is defined as where A N is given by sums over one- and two-particle operators A; ρ N>0 Tr 1..N (A N ρ N, (5 N A N a(i + 1 N b(i, j (6 i1 i,j1,i j and the operator ρ N is the N-particle density operator. One can show that A; ρ Tr 1 (a(1 f (1 (1 + 1 ( Tr 1 b(1, f ( (1 (7 holds with f (1 (1 N 1 N Tr...N (ρ(1...n, (8 f ( (1 N N(N 1 Tr 3...N (ρ(1...n. (9

To proof the assertions we obtain for the ensemble average A; ρ (α 1 α...α N ρa α 1 α...α N (30 N>0 α 1...α N (α 1 α...α N ρ ᾱ 1...ᾱ N (ᾱ 1...ᾱ N A α 1 α...α N N>0 α 1...α N ᾱ 1...ᾱ N Next we define an N-particle state composed of a product of single particle states of non-interacting particles denoted by α 1...α N. N-particle state is either symmetric or anit-symmetric. This implies (ᾱ 1...ᾱ N a(i α 1...α N (ᾱ 1...ᾱ N a(1 α 1...α N, i (31 (ᾱ 1...ᾱ N b(i, j α 1...α N (ᾱ 1...ᾱ N b(1, α 1...α N, i, j. (3 Making use of the relations Eqn. (31 and (3 we can write A; ρ (α 1 α...α N ρ ᾱ 1...ᾱ N (33 N>0 α 1...α N ᾱ 1...ᾱ N ( N(N 1 (ᾱ 1...ᾱ N Na(1 + b(1, α 1 α...α N (α 1 f (1 (1 ᾱ1 (ᾱ 1 a(1 α 1 α 1 ᾱ 1 + 1 (α 1 α f ( (1 ᾱ1 ᾱ (ᾱ 1 ᾱ b(1, α 1 α, α 1 α ᾱ 1 ᾱ

where (α 1 f (1 (1 ᾱ 1 N (α 1 α...α N ρ ᾱ 1 α...α N, N 1 α...α N (34 (α 1 α f ( (1 ᾱ 1 ᾱ N(N 1 (α 1 α α 3...α N ρ ᾱ 1 ᾱ α 3...α N. N α 3...α N (35 Hence, to calculate ensemble averages with at most binary operators only the reduced distribution functions f (1 (1 and f ( (1 are required. For the reduced s-particle density operators f (s (1...s the equations hold, where i t f (s [ (1...s A(1...s, f (s ] (1...s s i1 Tr s+1 ([b(i, s + 1, f (s+1 ] (1..s + 1 (36 f (s (1..s N! (N s! Tr s+1...n (ρ(1...n. (37 N s To prove Eqn. (36 the starting point is the Von Neumann equation ( 1 i t ρ [A, ρ]. (38

When leaving the sum over N in Eqn. (5 away for a moment we obtain (α 1...α N i t ρ α 1...α N [ (α 1...α N A ᾱ 1...ᾱ N (ᾱ 1...ᾱ N ρ α 1...α N ᾱ 1...ᾱ N ] (α 1...α N ρ ᾱ 1...ᾱ N (ᾱ 1...ᾱ N A α 1...α N, (39 where an identity operation has been introduced. Next we rewrite the Hamiltonian A as A 1 a(i δ ij + 1 b(i, j (40 i,j ij 1 1 s s s N N s N N b(i, j + + + b(i, j ij i1 j1 i1 js+1 is+1 j1 is+1 js+1 1 s s s N N N + + b(i, j, i1 j1 i1 js+1 is+1 js+1

where b(i, j b(j, i and b(i, i 0 have been assumed i, j. Now we perform partial traces in Eqn. (39 ( i t α1...α sα s+1...α N ρ α 1...α s α s+1...α N (41 α s+1...α N [ (α1...α sα s+1...α N A ᾱ 1...ᾱ N (ᾱ 1...ᾱ N ρ α 1...α s α s+1...α N α s+1...α N ᾱ 1...ᾱ N ( ] α 1...α sα s+1...α N ρ ᾱ1...ᾱ N (ᾱ 1...ᾱ N A α 1...α s α s+1...α N. term on the left hand side of Eqn. (41 can be rewritten as ( (N s! i t f (s (1...s N! ( α1...α sα s+1...α N ρ α 1...α s α s+1...α N, (4 α s+1...α N where f (s N! ( (1...s α1...α sα s+1...α N ρ (N s! α 1...α s α s+1...α N. (43 α s+1...α N

Now we insert the partial sums from Eqn. (40. For the first one we obtain α s+1...α N ᾱ 1...ᾱ N ( 1 s s α 1...α sα s+1...α N b(i, j ᾱ 1...ᾱ N (44 i1 j1 (ᾱ 1...ᾱ N ρ α 1...α s α s+1...α N ( α 1...α sα s+1...α N ρ ᾱ 1...ᾱ N (ᾱ 1...ᾱ N 1 s s b(i, j α 1...α s α s+1...α N i1 j1 (α 1...α 1 s s s b(i, j ᾱ 1...ᾱ s ᾱ 1...ᾱs i1 j1 (ᾱ1...ᾱ sα s+1...α N ρ α 1...α s α s+1...α N α s+1...α N ( α1...α sα s+1...α N ρ ᾱ 1...ᾱ sα s+1...α N α s+1...α N (ᾱ 1...ᾱ 1 s s s b(i, j α 1...α s i1 j1 (N s! [ A(1...s, f (s ] (1...s, N!

where A(1...s (α 1...α 1 s s s b(i, j α 1...α s. (45 i1 j1 second contribution from the partial sum in Eqn. (40 yields ( s N α 1...α sα s+1...α N b(i, j ᾱ 1...ᾱ N (46 α s+1...α N ᾱ 1...ᾱ N i1 js+1 (ᾱ 1...ᾱ N ρ α 1...α s α s+1...α N ( α 1...α sα s+1...α N ρ ᾱ1...ᾱ N s N (ᾱ 1...ᾱ N b(i, j α 1...α s α s+1...α N i1 js+1 s [( α1...α sα s+1 (N s b(i, s + 1 ᾱ1...ᾱ s+1 i1 α s+1 ᾱ 1...ᾱ s+1 (ᾱ1...ᾱ s+1 α s+...α N ρ α 1...α s α s+1...α N α s+...α N ( α1...α s+1 α s+...α N ρ ᾱ1...ᾱ s+1 α s+...α N α s+...α N (ᾱ1...ᾱ s+1 (N s b(i, s + 1 α ] 1...α s α s+1

(N s! N! s i1 Tr s+1 ([b(i, s + 1, f (s+1 ] (1...s + 1, where f (s+1 (1...s + 1 (47 N! ( α1...α s+1 α s+...α N ρ α 1 (N (s + 1!...α s+1 α s+...α N. α s+...α N Use has been made of the relations (α 1...α N a(i α 1...α N (α 1...α N a(j α 1...α N, i, j, (48 (α 1...α N b(i, j α 1...α N (α 1...α N b(k, l α 1...α N, i, j, k, l. (49

last contribution from the sum in Eqn. (40 gives ( 1 N N α 1...α sα s+1...α N b(i, j ᾱ 1...ᾱ N α s+1...α N ᾱ 1...ᾱ N is+1 js+1 (50 (ᾱ 1...ᾱ N ρ α 1...α s α s+1...α N ( α 1...α sα s+1...α N ρ ᾱ 1...ᾱ N (ᾱ 1...ᾱ N 1 N N B(i, j α 1...α s α s+1...α N is+1 js+1 [( αs+1 α s+ (N (s + 1 (N (s + b(s + 1, s + ᾱ s+1 ᾱ s+ α s+1 α s+ ᾱ s+1 ᾱ s+ ( α1...α sᾱ s+1 ᾱ s+ α s+3...α N ρ α 1...α s α s+1α s+ α s+3...α N α s+3...α N ( α1...α sα s+1 α s+ α s+3...α N ρ α 1...α sᾱs+1ᾱ s+ α s+3...α N α s+3...α N (ᾱs+1 ᾱ s+ (N (s + 1 (N (s + b(s + 1, s + αs+1 α s+ ] 0 since the indices α s+1, ᾱ s+1 and α s+, ᾱ s+ can be exchanged in the second term of the last part of Eqn. (50. Taking all terms together Eqn. (36 is obtained. quantum BBKY-hierachy has exactly the same structure as the

As in the classical case a hierachy for the reduced density operators is obtained.

David B. Boercker and James W. Dufty, Degenerate Quantum Gases in the Binary Collision Approximation, Annals of Physics 119 43 (1979.