JAHRBUCH DER GEOLOGISCHEN BUNDESANSTALT

Similar documents
Calcareous nannofossil biostratigraphy of the Mühlbach section (Gaindorf Formation, Lower Badenian), Lower Austria

Figure 1. Deep Sea Drilling Project Leg 35 drilling sites.

BADENIAN (MIDDLE MIOCENE) CALCAREOUS NANNOFOSSILS FROM PÂGLIŞA (CLUJ DISTRICT): BIOSTRATIGRAPHICAL IMPORTANCE

Paleoenvironmental dynamics in the southern Pannonian Basin during initial Middle Miocene marine flooding

8. DATA REPORT: CALCAREOUS NANNOFOSSIL DATA FROM THE EOCENE

Late Cretaceous biostratigraphy and adaptive radiation of the calcareous nannofossil genus Eiffellithus

73 ( 4387m > 302lT )

46. DATA REPORT: LATE PLIOCENE DISCOASTER ABUNDANCES FROM HOLE 806C 1

Stratigraphic constraints for the upper Oligocene to lower Miocene Puchkirchen Group (North Alpine Foreland Basin, Central Paratethys)

14. COCCOLITH STRATIGRAPHY LEG 9, DEEP SEA DRILLING PROJECT 1

7. CENOZOIC CALCAREOUS NANNOFOSSILS, DEEP SEA DRILLING PROJECT SITES 415 AND 416, MOROCCAN BASIN

12. ARCHAEOMONADS AS EOCENE AND OLIGOCENE GUIDE FOSSILS IN MARINE SEDIMENTS

Santonian Campanian Calcareous Nannofossil Paleobiogeography

Supplement of Microfossil evidence for trophic changes during the Eocene Oligocene transition in the South Atlantic (ODP Site 1263, Walvis Ridge)

Calcareous Nannofossil Biostratigraphy of A, B, C, D Wells, Offshore Niger Delta, Nigeria

39. DANIAN CALCISPHAERULIDAE OF DSDP LEG 35, SITE 323, SOUTHEAST PACIFIC OCEAN

LITHOSTRATIGRAPHIC SERIES / SUBSERIES BENTHIC UNITS NORDLAND GROUP ELPHIDIUM PLEISTO- CENE EXCAVATUM - NONION CUM ASSEM. GYRIODINA SOLDANII

of Nebraska - Lincoln

36. "BOLBOFORMA": A MIOCENE ALGAE OF POSSIBLE BIOSTRATIGRAPHIC AND PALEOCLIMATIC VALUE 1

Guidelines for determining first and last occurrences of microfossil species, and graphing results

Further details are available at

16. QUANTITATIVE DISTRIBUTION PATTERNS OF OLIGOCENE AND MIOCENE CALCAREOUS NANNOFOSSILS FROM THE WESTERN EQUATORIAL INDIAN OCEAN 1

BIOZONATION AND CORRELATION OF TWO WELLS IN NIGER DELTA USING CALCAREOUS NANNOFOSSILS

British Journal of Applied Science & Technology 4(2): , SCIENCEDOMAIN international

GEOLOGICA CARPATHICA, 55, 2, BRATISLAVA, APRIL 2004 ROGGENDOR -1, A KEY-SECTION OR STRATIGRAPHIC POSITION O GRUND ORMATION 165

Two distinct decadal and centennial cyclicities forced marine upwelling intensity and precipitation during the late Early Miocene in central Europe

K/T BOUNDARY EVENT IN THE ROMANIAN CARPATHIANS

Middle Eocene western north Atlantic biostratigraphy and environmental conditions

SUMMARY OF SCAN SITE 5

THE MIOCENE CALCAREOUS NANNOFOSSILS FROM BISTRIŢA AREA (TRANSYLVANIA, ROMANIA)

Water, that currently bathes Site 593, forms between the two fronts. Map adapted from

Szabolcs-Flavius SZÉKELY 1, 2 Raluca BINDIU-HAITONIC 2, 3 Sorin FILIPESCU 2, 4 Răzvan BERCEA 5

17. CARBONATE SEDIMENTARY ROCKS FROM THE WESTERN PACIFIC: LEG 7, DEEP SEA DRILLING PROJECT

8. PALEOGENE AND UPPER CRETACEOUS CALCAREOUS NANNOFOSSILS FROM DEEP SEA DRILLING PROJECT LEG 74 1

THE USE OF BENTHIC FORAMINIFERAL MORPHOCLASSES IN DETERMINING PALEOCEANOGRAPHIC CONDITIONS: A PARADIGM FROM ITHAKI ISL.

Accuracy of dating methods utilised

CALCAREOUS NANNOFOSSIL BIOSTRATIGRAPHY OF THE SUBSURFACE MIOCENE SEQUENCE, NORTHEAST NILE DELTA, EGYPT

23. MICROFOSSILS IN THIN SECTIONS FROM THE MESOZOIC DEPOSITS OF LEG 11, DEEP SEA DRILLING PROJECT

Development of the Global Environment

Planktic foraminifer census data from Sites V and RC17-44

CALCAREOUS NANNOPLANKTON ACROSS THE PALEOGENE NEOGENE BOUNDARY IN THE MOLDOVIŢA PALTINU AREA (BUCOVINA, ROMANIA)

23. THE GENUS BOLBOFORMA DANIELS AND SPIEGLER IN THE OLIGOCENE AND MIOCENE SEDIMENTS OF THE NORTH ATLANTIC AND NORTHERN EUROPE 1

Marine ecology conditions at Weda Bay, North Maluku based on statistical analysis on distribution of recent foraminifera

4. DATA REPORT: PALEOCENE MIOCENE NANNOFOSSIL BIOSTRATIGRAPHY, ODP LEG 197 HOLES 1203A AND 1204A (DETROIT SEAMOUNT, NORTHWESTERN PACIFIC) 1

STUDY OF THE MARINE OFFSHORE OLIGOCENE AND EARLY MIOCENE FORAMINIFERA ASSEMBLAGES FROM THE NORTHWESTERN TRANSYLVANIAN BASIN. PHD THESIS SUMMARY

7. DATA REPORT: CALCAREOUS NANNOFOSSIL STRATIGRAPHY (ODP LEG 177, SOUTHERN OCEAN) 1 AT SITES 1088 AND 1090 INTRODUCTION MATERIAL AND METHODS

IRIS II THE INTERACTIVE RAW MATERIAL INFORMATION SYSTEM OF AUSTRIA

Nannostratigraphy of Gurpi Formation (Cretaceous -Tertiary Boundary) In Zagros Basin, Southwestern Iran

Lecture 18 Paleoceanography 2

Geologia Croatica 65/ Figs. 2 Tabs. 2 Pls. Zagreb 2012

Calcareous nannofossils from the stratotype section of the Upper Cretaceous Mzamba Formation, Eastern Cape, South Africa

Chapter 3 Microfossils and Biostratigraphy

Correlation of bio- and magnetostratigraphy of Badenian sequences from western and northern Hungary

Stratigraphy. The part of geology that deals with the formation, composition, sequence, and correlation of rocks, especially stratified rocks

The Lithosphere and the Tectonic System. The Structure of the Earth. Temperature 3000º ºC. Mantle

Muted calcareous nannoplankton response at the Middle/Late Eocene Turnover event in the western North Atlantic Ocean

Chapter 4 Implications of paleoceanography and paleoclimate

11. DATA REPORT: RELATIVE ABUNDANCE

RESULTS ABSTRACT. Ludwig, W. J., Krasheninnikov, V. A., et al., Init. Repts. DSDP, 71: Washington (U.S. Govt. Printing Office).

22. FLUCTUATIONS IN THE PAST RATES OF CARBONATE SOLUTION IN SITE 149: A COMPARISON WITH OTHER OCEAN BASINS AND AN INTERPRETATION OF THEIR SIGNIFICANCE

IODP EXPEDITION 306: NORTH ATLANTIC CLIMATE II SITE U1314 SUMMARY

33. EVIDENCE FOR DISSOLUTION AND SORTING OF PLANKTONIC FORAMINIFERS IN PLEISTOCENE SEDIMENTS AT HOLE 708A 1

5. DATA REPORT: SURVEY OF DIATOMS SITES 1257 AND 1258: DEMERARA RISE, WESTERN ATLANTIC 1 IN OCEAN DRILLING PROGRAM LEG 207, INTRODUCTION AND METHODS

Field trip to Racine Reef Complex, Thornton Quarry, Illinois

By Paul M. (Mitch) Harris 1 and Barry J. Katz 2. Search and Discovery Article #40305 (2008) Posted September 4, Abstract

INTRODUCTION. Dominika LELEK, Marta OSZCZYPKO-CLOWES & Nestor OSZCZYPKO

Supplemental Information for. Persistent intermediate water warming during cold stadials in the SE Nordic seas. during the last 65 kyr

Early Miocene foraminifers from the Upper Marine Molasse of the North Alpine Foreland Basin Proxies for biostratigraphy and palaeoenvironmental change

PLANKTIC FORAMINIFERA IN SURFACE SEDIMENTS AROUND THE CAVALLI ISLANDS, NORTHERN NEW ZEALAND. by Bruce W. Hayward SUMMARY

THE FORAMINIFERAL FAUNA AND AGE OF SAMPLES FROM THE WIDE BAY-OPEN BAY AREA, EAST NEW BRITAIN. Records 1968/82

16. LOW-LATITUDE COCCOLITH BIOSTRATIGRAPHIC ZONATION 1. David Bukry, U. S. Geological Survey, La Jolla, California

41. UPPER JURASSIC CALCISPHAERULIDAE FROM DSDP LEG 44, HOLE 391C, BLAKE-BAHAMA BASIN, WESTERN NORTH ATLANTIC

J. Nannoplankton Res. 29 (1), 2007, pp International Nannoplankton Association ISSN Printed by Cambridge University Press, UK

Chapter 12. Life of the Paleozoic

FORAMINIFERS AND OSTRACODES BIOSTRATIGRAPHY OF THE BADENIAN-SARMATIAN SEDIMENTS FROM THE VCR-1 CORE, THE KOLUBARA BASIN, SERBIA

Newsletters on Stratigraphy, Vol. 51/3 (2018), Article Published online July 2017; published in print June 2018

GEOLOGIC MAPS AND GEOLOGIC STRUCTURES A TEXAS EXAMPLE

Joides Resolution at Hong-Kong

CARBONATES. part 3 MICRITES, CHALK and CHERTS: a very simple introduction to carbonates and silica in deep ocean waters

Section 7. Reading the Geologic History of Your Community. What Do You See? Think About It. Investigate. Learning Outcomes

Simon F. Mitchell. Field Trip 1: Geology of the White Limestone between Middlesex and Riverhead, Parish of St. Ann, Jamaica

Figure 1. Locations of Sites 280 and 281.

Marine Sediments EPSS15 Spring 2017 Lab 4

Meutia Farida1, Pratiwi1, Ratna Husain1

Ch. 17 Review. Life in the Cretaceous

Sediment and sedimentary rocks Sediment

GY 112: Earth History. Fossils Part:

Different stacking patterns along an active fold and thrust belt Acerenza Bay, Southern Apennines (Italy)

Kastens, K. A., Mascle, J., et al., 1990 Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 107

16. FURTHER COMMENTS ON COCCOLITH STRATIGRAPHY, LEG 12, DEEP SEA DRILLING PROJECT 1. David Bukry, U. S. Geological Survey, La Jolla, California

Miocene Calcareous Nannofossils of the Bihoku Group. the Shobara area, Hiroshima Prefecture, SW Japan.

TEMPERATE AND TROPICAL SHELF- CARBONATE SEDIMENTATION IN THE WESTERN MEDITERRANEAN DURING THE NEOGENE: CLIMATIC AND PALAEOCEANOGRAPHIC IMPLICATIONS

Results of a 3D facies modelling attempt in the Lower Main Plains (Frankfurt, Germany)

Integrated high-resolution stratigraphy of a Middle to Late Miocene sedimentary sequence in the central part of the Vienna Basin

Age Dating and the Oceans

Calcareous nannofossils from the Eocene North Atlantic Ocean (IODP Expedition 342 Sites U )

Tracers. 1. Conservative tracers. 2. Non-conservative tracers. Temperature, salinity, SiO 2, Nd, 18 O. dissolved oxygen, phosphate, nitrate

BUREAU OF MINERAL RESOURCES GEOLOGY AND GEOPHYSICS.

THE ORDOVICIAN EXTINCTION. 444 million years ago

10. CARBON-CARBONATE CONTENT OF SEDIMENTS FROM THE WESTERN EQUATORIAL PACIFIC: LEG 7, GLOMAR CHALLENGER

Transcription:

JAHRBUCH DER GEOLOGISCHEN BUNDESANSTALT Jb. Geol. B.-A. ISSN 0016 7800 Band 154 Heft 1 4 S. 115 124 Wien, Dezember 2014 Fauna and flora of the Älterer Schlier -marl of Uttendorf in Lower Austria (upper Egerian, Early Miocene) Holger Gebhardt*, Stjepan Ćorić*, Hans Georg Krenmayr* & Ilka Wünsche* 2 Text-Figures, 1 Table, 2 Plates Österreichische Karte 1:50.000 Blatt 55 Ober-Grafendorf Älterer Schlier Egerian planktic foraminifera calcareous nannofossils macroalgae Contents Zusammenfassung... 115 Abstract... 115 Introduction.... 116 Methods... 116 Results... 118 Interpretation and discussion... 118 Conclusions... 119 Acknowledgements.... 119 References... 119 Plates... 120 Appendix.... 124 Fauna und Flora des Älteren Schliers von Uttendorf in Niederösterreich (oberes Egerium, frühes Miozän) Zusammenfassung Wegen der in ihnen vorkommenden Konservatlagerstätten ziehen die Sedimente des Älteren Schliers zunehmende Aufmerksamkeit auf sich. Wir analysierten Foraminiferen-, kalkige Nannofossil- und Tang- (Makroalgen) Assoziationen von Mergeln dieser informellen lithostratigrafischen Einheit aus Uttendorf in Niederösterreich. Basierend auf kalkigen Nannofossilien und planktischen Foraminiferen wurde das Alter der Sedimente als spätes Egerium eingestuft (miozäner Anteil des Egerium, Nannoplanktonzone NN1). Die planktische Foraminiferenassoziation deutet auf warm-gemäßigte Meeresoberflächentemperaturen hin. Sowohl kalkige Nannofossil- als auch benthische Foraminiferenassoziationen weisen auf nährstoffreiche Oberflächenwässer mit hoher Exportproduktion und daraus resultierendem Sauerstoffmangel im Bodenwasser hin. Unsere Ergebnisse bestätigen die weite Verbreitung von reduziertem Sauerstoffgehalt am Meeresboden der westlichen und zentralen Paratethys während des späten Egerium. Abstract Sediments of the Älterer Schlier attract increasing interest because of its Konservat-Lagerstätten. We analysed foraminifera, calcareous nannofossil, and macroalgae assemblages of marls of this informal lithostratigraphic unit from Uttendorf in Lower Austria. Based on calcareous nannofossils and planktic foraminifera, the sediments were deposited during the Miocene part of the Egerian Stage (nannoplankton zone NN1, late Egerian). The planktic foraminiferal assemblage indicates warm temperate sea surface temperatures. Calcareous nannofossil as well as benthic foraminifera assemblages point to nutrient rich surface waters with high export production and consequent oxygen deficiency at the sea floor. Our results confirm the widespread reduced oxygen content in Western to Central Paratethyan bottom waters during the late Egerian. * Holger Gebhardt, Stjepan Ćorić, Hans Georg Krenmayr & Ilka Wünsche: Geologische Bundesanstalt, Neulinggasse 38, 1030 Wien. holger.gebhardt@geologie.ac.at, stjepan. coric@geologie.ac.at, hans-georg.krenmayr@geologie.ac.at 115

Introduction The so-called Älterer Schlier in Lower Austria consists of dark brownish coloured marls and clays. It is an informal lithostratigraphic unit and experienced rising interest because the unit accommodates well known Konservat-Lagerstätten and yielded spectacular vertebrate and invertebrate fossil assemblages (Gregorova et al., 2009; Grunert et al., 2010). Furthermore, within the scope of the lithostratigraphic formalization and paleoecological interpretations of coeval units in adjacent regions, e.g., the Ebels berg Formation in Upper Austria (Rupp & Ćorić, 2012), the occurrence described here is of special importance. In particular the stratigraphic position and depositional environments compared to neighbouring occurrences attracts special attention. The sampled marl has been gained from a collapsed undercut bank of the Weitendorf stream ENE of Uttendorf (Text-Fig. 1). In this contribution, we document and analyse the major faunal and floral components of a representative sample. This includes planktic and benthic foraminifera, calcareous nannofossils, and macroalgae, which occur in high quantities in the sediments. Also very frequent are fish remains. According to the state of preservation of the sediment, we expect a high potential for occurrences of other fossil groups, in particular such with organic walls. Methods To collect and study smaller benthic and planktic foraminifera (Plate 1) of the sample investigated, 200 g of dry sediment were disintegrated with hydrogen peroxide and washed over a 0.063 mm sieve. The residue was dried and dry sieved into 0.063 to 0.125 and 0.125 to 1 mm fractions in order to prevent coverage by large tests during scanning under light microscope. The sample was split into manageable subsamples (aliquots) and completely picked for foraminifera. Foraminiferal specimens were identified (see Appendix) and counted, numbers for individual fractions were recombined according to the split (Tab. 1). In order to get an overview on the complete foraminiferal assemblage, we picked and identified additional rare representatives of benthic species. For investigations on calcareous nannoplankton (Text- Fig. 2), smear slides were prepared using standard procedures described by Perch-Nielsen (1985). All samples were examined under light microscope with 1000 x magnification. Well preserved fragments of macroalgae were selected for photographical documentation (Plate 2). No further preparation has been done before photography. Text-Fig. 1. A. Location of outcrop within Austria. B. Geological map of surrounding of sample location southeast of Prinzersdorf (from map sheet 55 Ober-Grafendorf, Schnabel et al., 2012). Explanation of lithologic units: 1 Antropogenic cover, 2 stream and river deposits, 3 solifluction and sheetflow deposits, 4 Loess and Loess loam covering gravel terraces, 5 younger gravel terraces ( Jüngere Deckenschotter ), 6 older gravel terraces ( Ältere Deckenschotter ), 7 Robulus-marl (lower Ottnangian), 8 Prinzersdorf Formation (lower Ottnangian), 9 Älterer Schlier (clay and marl, upper Egerian). 116

Text-Fig. 2. Calcareous nannofossils: 1 Reticulofenestra bisecta. 2, 3 Sphenolithus conicus. 4 Sphenolithus moriformis. 5a Coronocyclus nitescens. 5b, 11 Reticulofenestra pseudoumbilica. 6 Coccolithus pelagicus. 7 Pontosphaera multipora. 8 Reticulofenestra gelida. 9 Reticulofenestra lockeri. 10 Watznaueria barnesae. 12 Arkhangelskiella cymbiformis. Length of scale bar (for all nannofossils): 10 µm. 10, 12 reworked from Cretaceous rocks. Fraction Fraction 0.125 1 mm split 1/64 total 0.063 0.125 mm both proportion or benthic planktic split 1/2048 total fractions (%) only (%) Species no. no. Planktic foraminifera Globigerina anguliofficinalis 17 1,088 31 63,488 64,576 12.3 15.8 Globigerina praebulloides 17 1,088 22 45,056 46,144 8.8 11.2 Globigerina ottnangiensis 12 768 768 0.1 0.2 Globigerina cf. ottnangiensis (collapsed) 147 9,408 9,408 1.8 2.3 Tenuitella cf. munda 46 94,208 94,208 18.0 23.0 Tenuitellinata angustiumbilicata 54 110,592 110,592 21.1 26.0 unclassified planktic foraminifera 418 26,752 28 57,344 84,096 16.0 20.5 total amount of planktic foraminifera 409,792 78.1 Benthic foraminifera Angulogerina angulosa 1 64 64 0.0 0.1 Bolivina trunensis 11 704 2 4,096 4,800 0.9 4.2 Bolivina fastigia 1 64 2 4,096 4,160 0.8 3.6 Cibicidoides spp. 8 16,384 16,384 3.1 14.3 Eponides cf. pusillus 1 2,048 2,048 0.4 1.8 Fursenkoina spp. 96 6,144 33 67,584 73,728 14.1 64.1 Caucasina coprolithoides 1 64 64 0.0 0.1 Favolina hexagona 1 64 64 0.0 0.1 Globocassidulina spp. 2 128 128 0.0 0.1?Haplophragmoides sp. 16 1,024 6 12,288 13,312 2.5 11.6 Uvigerina mantaensis 2 128 128 0.0 0.1 Uvigerina steyri 1 64 64 0.0 0.1 total amount of benthic foraminifera 114,944 21.9 Tab. 1. Quantitative analysis of planktic and benthic foraminifera found at Uttendorf. 117

We applied the taxonomic concepts published in standard literature on the region. This includes Cicha et al. (1998) for foraminifera, Martini (1971) for calcareous nannofossils (standard nannoplankton zonation), and Kovar (1982) for macroalgae. Results Foraminifera A large part of the found foraminiferal tests collapsed during diagenesis (Plate 1: Figs. 23, 24). Thus, only a classification on genus level was possible in many cases. This concerns mostly planktic foraminifera. Among benthic taxa, particularly the genus Fursenkoina is affected. Within planktic foraminifera, Globigerina is the most frequent genus (29 %), followed by Tenuitellinata (27 %), and Tenuitella (23 %). These taxa are complemented by Globoquadrina and Globoturborotalita. About 20 % of the planktic foraminiferal assemblage could not be classified, because of its state of preservation (broken or collapsed). The proportion of planktic foraminifera among the total assemblage is 78 %. The genus Fursencoina dominates the benthic assemblage (64 %). Also frequent are Cibicidoides (14 %), Haplophragmoides (12 %), and Bolivina (8 %). Additional benthic elements with higher numbers are Angulogerina, Eponides, Caucasina, Favulina, Globocassidulina and Uvigerina. Calcareous nannofossils The autochtonous calcareous nannofossil assemblage consists of the genera Coccolithus, Coronocyclus, Cyclicargolithus, Umbilicosphaera, Pontosphaera, Reticulofenestra, Sphenolithus, and Zygrhablithus. Coccolithus and Reticulofenestra show the highest diversity. In addition to the Lower Miocene assemblage, numerous reworked species of Cretaceous to lower Oligocene origin occur. The calcareous nannoflora is very rich and well preserved. Macroalgae and fish remains The found brown algae (Phaeophyceae) consists almost completely of Cystoseirites altoaustriacus. The species is well known from the late Oligocene of the Paratethys realm (Kovar, 1982). Among the fish remains, we found single, mostly broken bones as well as fin rays, and rather large scales (Plate 2: Fig. 4a, b) Interpretation and discussion Biostratigraphy The planktic foraminiferal assemblage indicates a late Egerian age if the concept of Cicha et al. (1998) is applied. Globoquadrina langhiana as well as Globoturborotalita connecta appear for the first time in the Paratethys during this interval, while Globigerina officinalis became extinct at the end of the Egerian. Five-chambered specimens classified as Globigerina ottnangiensis (FO base Eggenburgian according to Cicha et al., 1998) were also reported from Egerian deposits of Upper Austria (Rupp & Ćorić, 2012). The occurrences of Sphenolithus conicus and Zygrhablithus bijugatus, and the lack of Helicosphaera recta and Discoaster druggii allows the attribution to nannoplankton Zone NN1 (Martini, 1971). This zone can be correlated to the late Egerian (lower Miocene). The investigated sediments contain Pontosphaera ebelsbergi, originally described from the Miocene part of Egerian Ebelsberg Formation from Upper Austria (Rupp & Ćorić, 2012). The association with Cyclicargolithus floridanus, Pontosphaera latelliptica, P. multipora, Reticulofenestra gelida, R. bisecta, Reticulofenestra lockeri, Reticulofenestra minuta, R. pseudoumbilicus, Sphenolithus conicus, S. moriformis, and Umbilicosphaera rotula confirms the stratigraphic classification. Paleoecology The planktic foraminiferal assemblage shows warm-water species (G. anguliofficinalis, 16 %), warm temperate species (T. angustiumbilicata, 26 %), as well as cool species (T. cf. munda, 23 %), according to the upper Oligocene and lower Miocene index groups of Spezzaferri (1995). Thus, a warm temperate sea surface temperature during deposition is most probable. The calcareous nannoplankton association is dominated by Coccolithus pelagicus and Pontopshaera multipora and points to a shallow marine environment rich in nutrients (e.g. Ćorić & Rögl, 2004; Gebhardt et al., 2013). Reworking of Upper Cretaceous (Arkhangelskiella cymbiformis, Broinsonia parca parca, Prediscosphaera cretacea, Cribrosphaerella ehrenbergii) and Eocene/ lower Oligocene specimens (Coccolithus formosus, Reticulofenestra umbilicus) is evident and indicates erosional processes in the hinterland. The benthic foraminiferal assemblage is dominated by infaunal and detritivor Fursenkiona spp. (64 %). Other frequent taxa are small (< 0.125 mm) Cibicidoides spp. (14 %), arenaceous?haplophragmoides sp. (12 %), and Bolivina spp. (8 %). The strong dominance of the flattened, biserial morphogroup (Fursenkiona, Bolivina) and arenaceous forms, together with small Cibicidoides and the lack of macrobenthos gives a clear evidence for oxygen deficiency, most likely caused by excessive food supply (e.g. Bernhard, 1986, Bernhard & Sen Gupta, 1999, Murray, 1991, or Gebhardt et al., 2013, with further references therein). Also the only occurrence of small sized epifaunal Cibicidoides-specimens and the low diversity indicates such conditions for the bottom waters. We suggest increased primary productivity as the main cause for such conditions. Van der Zwaan et al. (1990, 1999) and Gooday (2003) demonstrated the strong dependence of benthic foraminifera abundances on food availability. The original habitat of the occurring attached species (Lobatula, Biapertorbis) was probably the macroalgae. They become transported into the final depositional area by the floating Cystoseyrites-thallus fragments. The dysoxic bottom waters distinctively enhanced the preservation of the macroalgae and the fish remains. Due to the lack of further shallow water indicators and characteristic sediment structures within sandy layers, as well as the absence of other deep water indicators, we suggest a depositional depth below the wave base but above the bathyal zone (i.e. between c. 50 and 200 m paleo-water depth). 118

Conclusions The sampled marls yielded abundant micro- and macrofossils: foraminifera, calcareous nannofossils, macroalgae and fish remains. We analysed the calcareous nannofossil, foraminifera and macroalgae assemblages in detail, the fora miniferal assemblage also quantitatively. Based on calcareous nannofossils and planktic foraminifera, the sediments were deposited during the Miocene part of the Egerian Stage (nannoplankton zone NN1, late Egerian). The planktic foraminiferal assemblage indicates warm temperate sea surface temperatures. Calcareous nannofossil as well as benthic foraminifera assemblages point to nutrient rich surface waters with increased primary productivity (high export production) and consequent oxygen deficiency at the sea floor. Our results confirm the widespread reduced oxygen content in Western to Central Paratethyan bottom waters during the late Egerian. Acknowledgements Christian Rupp (GBA) kindly assisted in foraminifera classification. Christoph Janda and Christian Cermak (both GBA) are thanked for the careful editorial handling of the manuscript. References Bernhard, J.M. (1986): Characteristic assemblages and morphologies of benthic foraminifera from anoxic, organic-rich deposits: Jurassic through Holocene. J. Foram. Res., 16, 207 215, Washington D.C. Bernhard, J.M. & Sen Gupta, B.K. (1999): Foraminifera of oxygendepleted environments. In: Sen Gupta, B.K. (Ed.): Modern Foraminifera, 201 216, Dordrecht (Kluver Akademic Publishers). Cicha, I., Rögl, F., Rupp, C. & Ctyroka, J. (1998): Oligocene Miocene foraminifera of the Central Paratethys. Abh. Senckenberg. Naturforsch. Ges., 549, 1 325, Frankfurt am Main. Ćorić, S. & Rögl, F. (2004): Roggendorf-1 Borehole, a key-section for lower Badenian transgressions and the stratigraphic position of the Grund Formation (Molasse Basin, Lower Austria). Geologica Carpathica, 55, 165 178, Bratislava. Gebhardt, H., Ćorić, S., Darga, R., Briguglio, A., Schenk, B., Werner, W. & Andersen, N. (2013): Middle to Late Eocene paleoenvironmental changes in a marine transgressive sequence from the northern Tethyan margin (Adelholzen, Germany). Austr. J. Earth Sc., 160, 45 72, Wien. Gooday, A.J. (2003): Benthic Foraminifera (Protista) as tools in deep-water palaeoceanography: environmental influences on faunal characteristics. Adv. Marine Biology, 46, 1 90, Amsterdam. Gregorova, R., Schultz, O., Harzhauser, M., Kroh, A. & Ćorić, S. (2009): A giant Early Miocene sunfish from the North Alpine Foreland Basin (Austria) and its implication for molid phylogeny. J. Vertebrate Paleont., 29, 359 371, Abingdon. Grunert, P., Harzhauser, M., Rögl, F., Sachsenhofer, R.F., Gratzer, R., Soliman, A. & Piller, W. (2010): Oceanographic conditions as a trigger for the formation of an Early Miocene (Aquitanian) Konservat-Lagerstätte in the Central Paratethys Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 292, 425 442, Amsterdam. Martini, E. (1971): Standard Tertiary and Quaternary calcareous nannoplankton zonation. Proc. II Planktonic Conference. Ed. Tecnoscienza, 739 785, Rome. Murray, J.W. (1991): Ecology and palaeoecology of benthic foraminifera. 397 p., Harlow (Longman Scientific & Technical). Kovar, J. (1982): Eine Blätterflora des Egerien (Ober-Oligozän) aus marinen Sedimenten der Zentralen Paratethys im Linzer Raum (Österreich). Beitr. zur Paläont. von Österr., 9, 1 209, Wien. Perch-Nielsen, K. (1985): Cenozoic calcareous nannofossils. In: Bolli, H.M., Saunders, J.B. & Perch-Nielsen, K. (Eds.): Plankton stratigraphy, 427 554, Cambridge (Cambridge University Press). Rupp, C. & Ćorić, S. (2012): Zur Ebelsberg-Formation. Jb. Geol. B.-A., 152, 67 100, Wien. Schnabel, W., Krenmayr, H.G. & Linner, M. (2012): Geologische Karte der Republik Österreich 1:50.000, Blatt 55 Ober-Grafendorf. Geol. B.-A., Wien. Spezzaferri, S. (1995): Planktonic foraminiferal paleoclimatic implications across the Oligocene-Miocene transition in the oceanic record (Atlantic, Indian and South Pacific). Palaeogeography, Palaeoclimatology, Palaeoecology, 114, 43 74, Amsterdam. van der Zwaan, G.J., Jorissen, F.J. & de Stigter, H.C. (1990): The depth dependency of planktonic/benthic foraminiferal ratios: Constraints and applications. Marine Geology, 95, 1 16, Amsterdam. van der Zwaan, G.J., Duijnstee, I.A.P., den Dulk, M., Ernst, S.R., Jannink, N.T. & Kouwenhoven, T.J. (1999): Benthic foraminifers: proxies or problems? A review of paleocological concepts. Earth Sci. Rev., 46, 213 236, Amsterdam. 119

Plate 1 Planktic and benthic foraminifera: Figs. 1, 2: Globigerina anguliofficinalis. Fig. 3: Globigerina cf. officinalis. Fig. 4: Globigerina ottnangiensis. Fig. 5: Globigerina praebulloides. Fig. 6: Globoquadrina cf. langhiana. Fig. 7: Globoturborotalita connecta. Figs. 8, 9: Tenuitellinata angustiumbilicata. Fig. 10: Tenuitella cf. munda. Fig. 11: Angulogerina angulosa. Fig. 12: Biapertorbis cf. biaperturatus. Fig. 13: Bolivina aenariensiformis. Fig. 14: Bolivina fastigia. Fig. 15: Bolivina trunensis. Fig. 16: Caucasina coprolithoides. Fig. 17: Caucasina elongata. Fig. 18: Cibicidoides cf. tenellus. Fig. 19: Cibicidoides cf. praelopjanicus. Fig. 20: Eponides cf. pusillus. Fig. 21: Escornebovina orthorapha. Fig. 22: Favulina hexagona. Fig. 23: Fursencoina cf. acuta. Fig. 24: Fursencoina cf. mustoni. Fig. 25: Globocassidulina oblonga. Fig. 26:?Haplophragmoides sp. Fig. 27: Lagena semistriata. Fig. 28: Lenticulina cf. umbonata. Fig. 29: Semivulvulina deperdita. Fig. 30: Lobatula lobatula. Fig. 31: Reophax sp. Fig. 32: Uvigerina mantaensis. Fig. 33: Uvigerina cf. semiornata. Fig. 34: Uvigerina cf. steyri. Fig. 35: Valvulineria complanata. Length of scale bars: 0.1 mm. 120

121

Plate 2 Algal floral elements. Figs. 1 4: Thallus fragments of Cystoseyrites altoaustriacus. Left side (a) overviews, right side (b) details. 1, 3, 4 with fish scales, 4 with fin rays and bones of fish. Length of scale bars: 1 cm. 122

123

Appendix List of identified species Planktic foraminifera (Plate 1, Figs. 1 10) Globigerina anguliofficinalis Blow Globigerina cf. officinalis Subbotina Globigerina ottnangiensis Rögl Globigerina praebulloides Blow Globoquadrina cf. langhiana Cita & Gelati Globoturborotalita connecta (Jenkins) Tenuitella cf. munda (Jenkins) Tenuitellinata angustiumbilicata (Bolli) Benthic foraminifera (Plate 1, Figs. 11 35) Angulogerina angulosa (Williamson) Biapertorbis cf. biaperturatus Pokorny Bolivina aenariensiformis Myatlyuk Bolivina cf. dilatata Reuss Bolivina fastigia Cushman Bolivina trunensis Hofmann Caucasina coprolithoides (Andreae) Caucasina elongata (d Orbigny) Cibicidoides cf. tenellus (Reuss) Cibicidoides cf. praelopjanicus Myatlyuk Cibicidoides sp. Elphidium sp. Eponides cf. pusillus Parr Escornebovina orthorapha (Egger) Favulina hexagona (Williamson) Fursencoina cf. acuta (d Orbigny) Fursencoina cf. mustoni (Andreae) Globocassidulina oblonga (Reuss) Globocassidulina sp.?haplophragmoides sp. Islandiella sp. Lagena semistriata Williamson Lenticulina cf. umbonata (Reuss) Lenticulina sp. Lobatula lobatula (Walker & Jacob) Reophax sp. Semivulvulina deperdita (d Orbigny) Uvigerina mantaensis Cushman & Edwards Uvigerina cf. semiornata d Orbigny Uvigerina cf. steyri Papp Valvulineria complanata (d Orbigny) Calcareous nannofossils (Text-Fig. 2) Coccolithus cachaoi Bown, 2005 Coccolithus pelagicus (Wallich, 1877) Schiller, 1930 Coccolithus sp. Coronocyclus nitescens (Kamptner, 1963) Bramlette & Wilcoxon, 1967 Cyclicargolithus floridanus (Roth & Hay, in Hay et al., 1967) Bukry, 1971 Umbilicosphaera rotula (Kamptner, 1956) Varol, 1982 Pontosphaera latelliptica (Baldi-Beke & Baldi, 1974) Perch-Nielsen 1984 Pontosphaera multipora (Kamptner, 1948) Roth, 1970 Pontosphaera ebelsbergi Coric, 2013 Reticulofenestra gelida (Geitzenauer, 1972) Backman, 1978 Reticulofenestra bisecta (Hay, Mohler & Wade, 1966) Roth, 1970 Reticulofenestra lockeri Müller, 1970 Reticulofenestra minuta Roth, 1970 Reticulofenestra pseudoumbilica (Gartner, 1967) Gartner, 1969 Reticulofenestra sp. Sphenolithus conicus Bukry, 1971 Sphenolithus moriformis (Bronnimann & Stradner, 1960) Bramlette & Wilcoxon, 1967 Zygrhablithus bijugatus (Deflandre in Deflandre & Fert, 1954) Deflandre, 1959 Reworked from Eocene/Lower Oligocene rocks: Chiasmolithus sp. Coccolithus formosus (Kamptner, 1963) Wise 1973 Reticulofenestra umbilicus (Levin, 1965) Martini & Ritzkowski, 1968 Reworked from Cretaceous rocks: Arkhangelskiella cymbiformis Vekshina 1959 Broinsonia parca parca (Stradner, 1963) Bukry, 1969 Cribrosphaerella ehrenbergii (Arkhangelsky, 1912) Deflandre in Piveteau, 1952 Eiffellithus gorkae Reinhardt, 1965 Eiffellithus turriseiffelii (Deflandre in Deflandre & Fert, 1954) Reinhardt, 1965 Micula decussata Vekshina, 1959 Prediscosphaera cretacea (Arkhangelsky, 1912) Gartner, 1968 Watznaueria barnesae (Black in Black & Barnes, 1959) Perch-Nielsen, 1968 Macroalgae (Plate 2) Cystoseyrites altoaustriacus Kovar, 1982 Received: 9. September 2014, Accepted: 10. November 2014 124