SUPPLEMENTARY MATERIAL

Similar documents
SUPPLEMENTARY INFORMATION

GSA Data Repository

TABLE DR1. Summary of SHRIMP U-Pb zircon results for migmatitic rocks at Stowe Mountain. Total Radiogenic ratios Ages (in Ma) 204 Pb f U/ ±

Metamorphic Petrology GLY 262 P-T and T-X phase diagrams

Grimmer et al. GSA DATA REPOSITORY

DATA REPOSITORY ITEM: METAMORPHIC-AGE DATA AND TEXTURES

Breeding et al., Data Repository Material Figure DR1. Athens. Study Area

Metcalf and Buck. GSA Data Repository

The microstructural and metamorphic history. preserved within garnet porphyroblasts

Activity-composition relationships

TABLE DR1. SUMMARY OF SHRIMP U-Pb ZIRCON RESULTS FOR SAMPLES D2-83 AND D2-24.

APPENDICES. Appendix 1

GEOLOGY 285: INTRO. PETROLOGY

Metamorphic Petrology GLY 712 Geothermo-barometry

This file is part of the following reference: Access to this file is available from:

XM1/331 XM1/331 BLFX-3 XM1/331

Cloudland gneisses, Mars Hill terrane, NC-TN: New SHRIMP U-Pb ages for detrital zircon and. monazite

GSA DATA REPOSITORY Topuz et al. ANALYTICAL PROCEDURE

from the Sierra Nevada Fault Project

TABLE DR2. Lu-Hf ISOTOPIC DATA FOR WHOLE ROCK SAMPLES AND ZIRCONS [Lu] [Hf]

Supplementary Table 1.

Data Repository for 40 Ar/ 39 Ar Age Constraints on the Duration of Resurgence at the Valles Caldera, New Mexico

GSA DATA REPOSITORY

APPENDIX TABLES. Table A2. XRF analytical results for samples from drill hole AP5 (Areachap)

Chapter - IV PETROGRAPHY. Petrographic studies are an integral part of any structural or petrological studies in

DR DATA REPOSITORY

Gondwana Research 20 (2011) Contents lists available at ScienceDirect. Gondwana Research. journal homepage:

In this practical we study the AKF and the Thompson AFM diagrams for pelites.

METAMORPHISM OF PRECAMBRIAN ROCKS IN THE SOUTHERN HIGHLAND MOUNTAINS, SOUTHWESTERN MONTANA

Chapter 6: Phase equilibria modelling of complex coronas in pelitic granulites from the Vredefort Dome

Data Repository DR Supplemental Data File. Feinberg et al., Figure DR2. Isothermal remanent magnetization data for typical lapillus

Chapter 18: Granitoid Rocks. Chapter 18: Granitoid Rocks. Melting of crustal materials at high pressure

McClelland & Oldow, p. 1

Q. WANG, Q-K. XIA, S. Y. O REILLY, W. L. GRIFFIN, E. E. BEYER AND H. K. BRUECKNER

Chapter IV MINERAL CHEMISTRY

GSA DATA REPOSITORY

Header. Volcanic matrix from three basalts and one dacite sample from the Black Mountains and Black Hills, respectively, were separated to perform

Massachusetts Institute of Technology. Dr. Nilanjan Chatterjee

Supplementary Materials for

Sample and analytical information:

GEOL3313 Petrology of Igneous and Metamorphic Rocks G. Mattioli, Dept. of Geosciences, Univ. of Arkansas, Spring 2008

Supplemental Material, Kohn et al., p.1 Mineral compositions from Darondi rocks, central Nepal

SUPPLEMENTARY INFORMATION

Spot Name U-Pb ages (Ma) Plagioclase ages (Ma) Biotite age (Ma) Whole rock age (Ma)

Ultrahigh-temperature Metamorphism (1150 C, 12 kbar) and Multistage Evolution of Mg-, Al-rich Granulites from the Central Highland Complex, Sri Lanka

Diffusion in minerals and melts

Previous Tectonic Models for the Eastern Fold Belt, Mt Isa Inlier

Analytical methods. Electron Microprobe

published sources and U-Pb geochronology performed in this study. We analyzed six

Lecture 14: A brief review

Supplementary information

Investigation of metamorphic zonation and isogrades of Garnet rocks in Hamadan area

Melt loss and the preservation of granulite facies mineral assemblages

GEOSCIENCE FRONTIERS 3(5) (2012) 603e611. available at China University of Geosciences (Beijing) GEOSCIENCE FRONTIERS

Mechanisms of metamorphism and metasomatism on the local mineral scale : The role of dissolution-reprecipitation during mineral re-equilibration

WORKING WITH ELECTRON MICROPROBE DATA FROM A HIGH PRESSURE EXPERIMENT CALCULATING MINERAL FORMULAS, UNIT CELL CONTENT, AND GEOTHERMOMETRY

MET LABS 3 and 4: METABASITES

Origin of Grandite Garnet in Calc-Silicate Granulites: Mineral Fluid Equilibria and Petrogenetic Grids

Metaperidotites and Marbles. Marbles and Metaperidotites; Geothermobarometry. Low Grade Reactions in. Metaperidotites

Feldspar in felsic orthogneiss as indicator for UHT crustal processes

SECTION B A METHOD FOR CALCULATING EFFECTIVE BULK COMPOSITION MODIFICATION DUE TO CRYSTAL FRACTIONATION IN GARNET-

The Palmer Hill ore body consists of massive magnetite, with quartz, apatite, microcline, albite, fluorite, and zircon. Disseminated magnetite is

40 Ar (10-14 mol) 40 Ar* %

Metastable presence of Andalusite to partial melting conditions in migmatites of the Simin area, Hamadan, Iran

Metamorphic history of Nuvvuagittuq greenstone belt, Northeastern Superior Province, Northern Quebec, Canada

EPSC 233. Compositional variation in minerals. Recommended reading: PERKINS, p. 286, 41 (Box 2-4).

A Projection for Analysis of Mineral Assemblages in Calc-Pelitic Metamorphic Rocks

EPMA IMAGES. Figure 9. Energy-dispersive spectra of spot mineral analyses in sample 89GGR-33A for locations 1-5 in Figure 8.

Supplementary Materials

Metamorphic Petrology GLY 262 Metamorphic fluids

Mechanically- v. diffusion-controlled metamorphic microstructure: a symplectite example from Rhodope Metamorphic Complex (Greece)

EMMR25 Mineralogy: Ol + opx + chlorite + cpx + amphibole + serpentine + opaque

Supplementary Information

CHLORITE-CHLORITOID-GARNET EQUILIBRIA AND GEOTHERMOMETRY IN THE SANANDAJ-SIRJAN METAMORPHIC BELT, SOUTHERN IRAN * M. MOAZZEN

U-Pb zircon geochronology, Hf isotope, latest Neoarchean, magmatic event, Douling Complex, Yangtze craton

Additional Analytical Methods. Detrital zircon samples were collected from nine fine-, medium-, and coarse-grained

CLOSURE TEMPERATURES OF ACCESSORY MINERALS

Geodiversity Research Centre, Australian Museum, Sydney, NSW 2010, Australia.

Supplementary Information for: Giant Kiruna-type deposits form by. efficient flotation of magmatic magnetite suspensions

Common non-silicate planetary minerals

Calculating pressures and temperatures of petrologic events: geothermobarometry

THERMOCALC Course 2009: Day 3. Chemical systems, phase diagrams, tips & tricks. Richard White. Institute for Geosciences University of Mainz

Appendix A2: Detailed description of all results

Metamorphic Facies. Metamorphic Facies. Metamorphic Facies. ERSC 3P21 Metamorphic Petrology II 03/11/2005. Facies

Geogenic versus Anthropogenic Metals and Metalloids

LAB 6: COMMON MINERALS IN IGNEOUS ROCKS

DIFFERENTIATION OF MAGMAS BY FRACTIONAL CRYSTALLIZATION THE M&M MAGMA CHAMBER

What is going on here?

Treatment of Data. Methods of determining analytical error -Counting statistics -Reproducibility of reference materials -Homogeneity of sample

Reactions take place in a direction that lowers Gibbs free energy

Electronic Appendix-Analytical methods

Geothermobarometry of metapelites of southwest Mahneshan, using multiple equilibria curves and THERMOCALC program

Notes for Use of the Cpx-Plag-Ol Thermobar Workbook Last Updated:

Metamorphic Petrology GLY 262 Metamorphic reactions and isograds

Geology, Alteration and. Petrogenesis

GSA Data Repository

Petrogenetic modelling of strongly residual metapelitic xenoliths within the southern Platreef, Bushveld Complex, South Africa

Electron probe microanalysis - Electron microprobe analysis EPMA (EMPA) What s EPMA all about? What can you learn?

Earth Science 232 Petrography

Supporting Information

Transcription:

GSA DATA REPOSITORY 2014105 Earth s youngest-known ultrahigh-temperature granulites discovered on Seram, eastern Indonesia Jonathan M. Pownall 1, Robert Hall 1, Richard A. Armstrong 2, and Marnie A. Forster 2 1 SE Asia Research Group, Department of Earth Sciences, Royal Holloway University of London, Egham TW20 0EX, UK 2 Research School of Earth Sciences, The Australian National University, Canberra, ACT 0200, Australia SUPPLEMENTARY MATERIAL Methods Tables DR1 DR6 Figures DR1 DR9 METHODS GEOCHEMICAL ANALYSIS Whole-rock X-Ray fluorescence analyses and electron microprobe mineral chemical analyses are presented in Tables DR1 and DR4, respectively. Major element mineral chemistry was determined by analysis of polished thin section using a JEOL JXA-8100 Superprobe paired with an Oxford Instruments INCA energy-dispersive microanalytical system (EDS) at Birkbeck College, University of London. Analyses were performed using an accelerating voltage of 15 kv, a beam current of 10 na, and a beam diametre of 1 μm. Calibration was against standards of natural silicates, oxides, and Specpure metals, and a ZAF correction procedure was applied. Whole-rock major element chemistry was measured on fused disks using a PANalytical Axios sequential wavelength-dispersive (WDS) X-ray fluorescence spectrometer (XRF) fitted with a 4 kw Rh-anode X-ray tube at Royal Holloway University of London. PHASE EQUILIBRIA MODELLING Pseudosections were calculated using the thermodynamic calculation programme THERMOCALC (version 3.33; Powell and Holland, 1988) and the ds55s internally-

consistent thermodynamic dataset (Holland and Powell, 1998), both available from http://www.metamorph.geo.uni-mainz.de/thermocalc/software/. Modelling was performed in the 10 component Na 2 O CaO K 2 O FeO MgO Al 2 O 3 SiO 2 H 2 O TiO 2 Fe 2 O 3 (NCKFMASHTO) chemical system considering the activity-composition models of phases that are listed and referenced in Table DR5. Effective bulk compositions input to THERMOCALC (Table DR6) are based on a H 2 O-absent and all-fe-as-fe 3+ whole-rock XRF analysis of sample KP11 588 (Table DR1) to which H 2 O has been added and Fe 2+ substituted accordingly, as inferred from the T M H2O and T M O modelling (Figs. DR2 and DR3, respectively), in which an M H2O value of 1 is defined as equivalent to adding 1 wt% (~3.7 mol%) H 2 O to the dry bulk composition. For this study, an M O value of 1 is defined as equivalent to an XFe 3+ value of ⅔, in order that XFe 3+ was varied over the range of the redox reaction 3FeO = Fe 2 O 3 + Fe. T M H2O and T M O pseudosections were necessarily constructed using an iterative procedure because the mol% H 2 O or XFe 3+ value indicated by the respective pseudosection was required for the calculation of the other pseudosection in the pair. T M H2O and T M O pseudosections were calculated at a pressure of 7.5 kbar based on preliminary P T pseudosection modelling at estimated mol% H 2 O and O content. M H2O and M O values were chosen that resulted in the rock s observed (slightly) post-peak mineral assemblage (Grt + Crd + Sill + Sp + Qtz + Pl + Ilm + Liq) in the vicinity of Sa-bearing fields being predicted as stable by the respective pseudosection. Once determined, these mol% H 2 O and O values were used to calculate the effective bulk composition (Table DR6) input for the calculation of the P T pseudosection (Fig. 2a). Absolute uncertainties on the location of THERMOCALC-calculated reaction lines are typically quoted at ± 1 kbar and ± 50 C. U Pb ZIRCON GEOCHRONOLOGY Zircon crystals were separated from 63 250 μm diameter crushed rock fractions using standard heavy-liquid, magnetic, and hand-picking separation techniques. The zircons were then mounted in epoxy resin, ground to half-thickness, and coated with gold. Analyses were performed by sensitive high-resolution ion microprobes SHRIMP-II and SHRIMP-RG (reverse geometry) over several analytical sessions at the Research School of Earth Sciences at The Australian National University. Temora-II zircon standards were used for calibration, and the data were reduced using the SQUID-2 Excel macro (Ludwig, 2009) and plotted using Isoplot-3 (Ludwig, 2003) see Supplementary Table DR2. Common Pb was corrected for Phanerozoic zircon by assuming 206 Pb/ 238 U 208 Pb/ 232 Th age concordance, and was corrected

for Proterozoic and Archaean zircon using measured 204 Pb/ 206 Pb ratios. Ages are given at 95% confidence. 40 Ar/ 39 Ar BIOTITE GEOCHRONOLOGY Ar Ar dating of 2.7 mg biotite separated from sample KP11-619 was performed by a furnace step-heating method at The Australian National University argon laboratory. The sample was irradiated by the USGS TRIGA Reactor in Denver, USA, in a cadmium-shielded canister for 12 MWh. Biotite standard GA1550 (98.5 ± 0.8 Ma; Spell and McDougall, 2003) was used as the neutron flux monitor. The sample was incrementally step-heated 21 times in a tantalum crucible using a double-vacuum resistance furnace and analysed using a VG1200 gas-source mass spectrometer with a sensitivity of 7.6 10 17 mol mv 1. Correction factors applied were as follows: 36 Ar/ 37 Ar 0.000219; 39 Ar/ 37 Ar 0.00538; 40 Ar/ 39 Ar 0.00469; ( 36 Ar) Cl /( 37 Ar) K 0.0270; ( 38 Ar) K /( 39 Ar) K 0.0129; Ca/K 1.90; λ 40 K 5.543 10 10. A J- factor of 2.737 10 3 was applied to sample KP11-619. 40 K abundances and decay constants are taken from standard values recommended by the IUGS subcommission on geochronology (Steiger and Jäger, 1977). Data were reduced with the software Noble v1.8 and analysed with eargon software developed by G. S. Lister (available from http://rses.anu.edu.au/tectonics/programs/) using methods outlined by Forster and Lister (2004). Plots of log 10 (D 0 /r 2 ) against T -1 (Arrhenius plot; Fig. DR6) and log 10 (r/r 0 ) against % 39 Ar release (Fig. DR7), where D 0 = frequency factor of diffusion, r 0 = radius of the reference domain, and r = radius of domain under consideration (see Forster and Lister, 2004), demonstrate that two distinct reservoirs for argon retention existed within the mineral grains, calculated to have a closure temperatures (T C ) of 289 C and 228 C, respectively. As shown by the apparent age spectrum (Fig. DR8), the grain domains with T C = 289 C were degassed by heating steps 10 to 12 (accounting for 37% of total 39 Ar release) relating to a cooling age of 16.34 ± 0.04 Ma and the grain domains with T C = 228 C were degassed by heating steps 1 and 2 (accounting for 10% of total 39 Ar release) relating to a cooling age of 14.83 ± 0.29 Ma. Both domains are confirmed by the 36 Ar/ 40 Ar versus 39 Ar/ 40 Ar plot (York plot; Fig. DR9) to have housed negligible atmospheric argon. TABLES & FIGURES

KP11-588 KP11-619 KP11-621 residuum melanosome crd diatexite 129.4786 E, 3.0019 S 129.4735 E, 3.0168 S 129.4783 E, 3.0017 S SiO 2 49.48 56.08 65.47 Al 2 O 3 28.07 19.86 17.57 Fe 2 O 3 * 13.25 10.22 6.09 MgO 3.70 4.56 1.88 CaO 1.12 3.12 1.45 Na 2 O 0.574 1.566 1.614 K 2 O 0.918 2.234 3.422 TiO 2 1.735 1.122 0.728 MnO 0.563 0.275 0.219 P 2 O 5 0.027 0.063 0.103 SO 3 0.06 0.10 0.03 Total 99.49 99.20 98.56 LOI 0.99 3.59 2.97 X Mg 0.218 0.309 0.236 Table DR1 XRF major element bulk composition (wt.%) for Kobipoto Complex samples. *Total iron measured as Fe 2 O 3. LOI = loss on ignition (wt.%). X Mg = Mg/(Mg + Fe total ).

spot U (ppm) 206 Pb* (ppm) Th (ppm) 232 Th / 238 U 206 Pb c (%) Ratios 238 U / 206 Pb ±σ (%) 207 Pb / 206 Pb ±σ (%) Ages (Myr) 206 Pb/ 238 U ±σ 207 Pb/ 206 U ±σ KP11-588: Cenozoic zircon (rims) 1.1 689 2.0 9.9 0.01 2.63 284 2.4 0.0672 6.1 22.08 0.55 2.1 918 3.0 10.0 0.01 1.97 261 5.2 0.0621 4.9 24.20 1.30 3.1 575 5.2 61.7 0.04 2.40 93 4.2 0.0664 6.3 67.17 2.82 4.1 1338 2.8 11.9 0.01 1.33 403 1.8 0.0569 5.3 15.76 0.29 5.1 301 1.0 23.4 0.08 6.36 247 4.5 0.0968 7.0 24.39 1.12 6.1 1035 2.2 23.7 0.02 2.84 398 2.0 0.0688 17.9 15.70 0.41 7.1 1134 2.3 10.9 0.01 1.76 408 1.9 0.0603 9.2 15.50 0.31 7.2 1197 2.5 9.7 0.01 1.55 404 2.1 0.0586 13.1 15.71 0.37 8.1 680 1.8 8.6 0.01 4.77 302 1.1 0.0842 5.3 20.30 0.26 9.1 711 4.0 12.7 0.02 1.96 148 2.3 0.0624 12.3 42.50 1.07 10.1 1365 2.9 19.3 0.01 2.61 389 1.6 0.0670 8.4 16.10 0.28 11.1 1270 2.7 12.0 0.01 5.03 389 3.3 0.0861 17.2 15.73 0.61 13.1 890 1.9 11.7 0.01 3.20 398 2.2 0.0716 5.9 15.68 0.36 13.3 1075 2.3 9.4 0.01 1.31 399 2.8 0.0567 14.2 15.92 0.48 14.1 934 3.4 13.5 0.01 2.05 232 2.2 0.0628 4.6 27.19 0.62 16.1 959 7.3 39.3 0.04 0.96 111 3.9 0.0547 5.0 57.04 2.25 17.1 745 1.5 16.2 0.02 4.35 396 3.8 0.0808 7.4 15.55 0.60 KP11-588: Mesozoic and older zircon (cores) 2.2 908 0.9 257.8 0.29 0.86 4 3.4 0.0969 3.6 1440.8 43.5 1564.7 68.2 5.2 248-0.5 321.0 1.34-0.52 16 5.3 0.0521 9.5 387.8 19.8 291.5 217.8 6.2 367 1.2 26.7 0.08 1.21 36 1.3 0.0531 5.0 178.2 2.3 333.2 112.5 6.3 951 0.3 1466.8 1.59 0.28 17 1.2 0.0548 1.5 373.2 4.5 402.7 34.2 10.2 151 2.7 139.2 0.95 2.69 6 2.7 0.0871 4.0 931.8 23.6 1362.3 78.0 10.3 490 0.5 27.2 0.06 0.48 35 1.5 0.0478 4.7 180.4 2.7 89.4 112.2 12.1 772 1.0 25.3 0.03 0.98 42 2.6 0.0484 5.9 152.9 3.9 117.6 139.6 12.2 566 0.9 677.8 1.24 0.93 17 6.7 0.0529 4.1 363.7 23.9 324.6 93.0 13.2 285 1.0 177.1 0.64 0.97 23 1.7 0.0501 6.0 274.4 4.5 199.8 138.2 14.2 211 1.0 164.1 0.80 1.03 23 1.8 0.0500 8.6 279.0 4.8 193.8 200.4 16.2 446 0.9 111.8 0.26 0.85 40 1.3 0.0609 7.0 160.9 2.1 634.2 150.1 17.2 192 0.7 155.6 0.84 0.71 24 1.5 0.0588 3.9 262.4 3.9 561.4 84.6 18.1 777 0.4 11.6 0.02 0.43 35 3.4 0.0520 8.1 183.3 6.2 286.2 185.7 20.1 255 0.0 21.6 0.09-0.02 31 1.3 0.0527 1.6 201.7 2.6 316.9 36.5 21.1 373 0.0 31.7 0.09-0.02 29 1.8 0.0519 1.5 218.7 3.9 280.2 33.4 23.1 396 0.2 30.1 0.08 0.20 37 1.5 0.0495 1.8 174.2 2.5 171.9 40.9 KP11-619: Cenozoic zircon (rims) 8.1 101 0.2 1.0 0.01 8.43 370 1.9 0.1130 6.8 15.92 0.34 9.1 490 1.1 5.3 0.01 1.97 390 1.2 0.0619 8.4 16.20 0.23 10.1 61 0.1 0.5 0.01 16.26 354 6.1 0.1748 7.1 15.23 0.97 11.1 130 0.3 1.0 0.01 6.02 374 2.2 0.0940 7.3 16.19 0.38 12.1 50 0.1 0.6 0.01 20.53 319 3.0 0.2086 8.1 16.06 0.64 13.1 45 0.1 0.4 0.01 18.35 327 4.7 0.1914 8.9 16.06 0.87 14.1 61 0.1 0.9 0.01 13.30 378 2.3 0.1514 8.7 14.75 0.44 15.1 36 0.1 1.3 0.04 27.88 278 1.4 0.2667 8.6 16.68 0.71 16.1 49 0.1 0.5 0.01 22.74 310 1.3 0.2260 7.4 16.05 0.49 16.1 99 0.2 2.8 0.03 24.98 294 4.1 0.2438 11.8 16.45 1.05 17.1 33 0.1 0.2 0.01 43.76 220 13.0 0.3922 22.3 16.49 3.89 18.1 47 0.1 0.2 0.00 42.16 231 10.9 0.3795 13.4 16.11 2.51 Table DR2 U-Pb zircon geochronology results for Kobipoto granulites. For Cenozoic zircons, the quoted 207 Pb/ 206 Pb and 238 U/ 206 Pb ratios relate to total Pb and U, and common Pb is corrected by assuming 206 Pb/ 238 U- 208 Pb/ 232 Th age-concordance. For older zircons, the quoted 207 Pb/ 206 Pb and 238 U/ 206 Pb ratios relate to radiogenic Pb only and common Pb was corrected using measured 204 Pb/ 206 Pb ratios. Pb c and Pb* indicate the common and radiogenic portions, respectively.

spot U (ppm) 206 Pb* (ppm) Th (ppm) 232 Th / 238 U 206 Pb c (%) Ratios 238 U / 206 Pb ±σ (%) 207 Pb / 206 Pb ±σ (%) Ages (Myr) 206 Pb/ 238 U ±σ 207 Pb/ 206 U ±σ KP11-619: Mesozoic and older zircon (cores) 1.1 113 0.6 1.0 0.01 4.42 164 4.4 0.0529 25.1 39.3 1.7 322.4 569.9 1.2 373 91.4 238.0 0.66 1.63 3 1.6 0.1138 0.8 1642.2 23.4 1861.5 15.2 1.3 501 77.0 197.0 0.41 4.11 5 2.3 0.1089 0.4 1103.2 23.8 1781.9 7.2 2.1 159 1.3 1.3 0.01 2.22 106 2.9 0.0468 17.5 60.6 1.7 41.2 419.7 2.2 446 19.6 181.7 0.42 0.03 20 1.4 0.0534 1.2 321.0 4.4 346.5 26.4 3.4 415 9.9 60.2 0.15 0.24 36 1.4 0.0519 1.3 176.7 2.5 280.1 29.2 7.2 504 14.0 7.7 0.02 0.11 31 1.5 0.0526 3.0 205.6 2.9 310.9 69.2 8.2 525 5.7 22.1 0.04 0.42 79 1.7 0.0489 2.8 81.1 1.4 141.8 64.9 8.3 918 228.3 825.7 0.93 1.34 3 1.3 0.1122 0.2 1657.6 19.2 1835.6 4.1 9.2 520 13.6 9.6 0.02 0.20 33 2.1 0.0527 3.4 193.5 4.0 316.5 76.8 16.2 209 93.8 114.5 0.57 11.54 2 1.9 0.2897 0.5 2995.5 45.4 3415.8 8.2 18.2 206 9.0 403.4 2.03 1.18 19 2.6 0.0562 6.2 322.9 8.1 459.3 137.9 20.1 384 11.0 37.6 0.10 0.21 30 2.0 0.0517 1.2 212.1 4.2 270.7 27.0 30.1 55 1.7 1.3 0.02 11.61 24 1.8 0.1341 2.7 262.0 4.7 2152.9 46.9 31.1 55 2.3 0.6 0.01 11.07 19 1.5 0.1331 3.3 339.2 5.0 2139.8 57.0 KP11-621: Cenozoic zircon (rims) 8.1 956 2.0 11.3 0.01 0.44 423 2.0 0.0195 45.8 15.71 0.27 1.3 1557 3.4 21.9 0.01 0.93 425 3.7 0.0129 126.3 16.22 0.33 8.2 1461 3.2 11.1 0.01 2.50 416 4.0 0.0008 3407.1 16.26 0.34 1.1 1311 2.8 18.1 0.01 0.99 403 1.6 0.0298 27.1 16.30 0.20 16.1 625 0.0 9.8 0.02 1.00 407 2.9 0.0229 70.6 16.36 0.35 1.4 1388 3.1 19.8 0.01 1.22 1066 28.9 1.3031 43.1 16.49 0.37 8.3 2128 4.8 7.9 0.00 1.00 382 3.1 0.0409 27.6 17.02 0.48 18.1 694 0.0 11.9 0.02 0.66 370 2.7 0.0053 323.8 18.27 0.33 19.1 654 0.0 4.3 0.01 6.66 332 3.1 0.0281 85.3 19.78 0.54 4.1 1696 4.5 33.8 0.02 1.58 321 1.8 0.0601 4.2 19.82 0.36 3.3 959 2.6 5.9 0.01 5.71 326 4.9 0.0270 119.5 20.40 0.63 11.1 575 1.9 7.2 0.01 1.26 265 4.9 0.0324 22.0 24.66 1.20 3.1 757 4.1 5.4 0.01 2.24 161 3.2 0.0385 22.6 40.62 1.25 25.1 592 0.0 7.0 0.01 0.15 151 1.3 0.0479 3.8 42.39 0.56 KP11-621: Mesozoic and older zircon (cores) 1.2 743 41.3 191.7 0.27 0.13 15 1.1 0.0542 2.1 404.4 4.3 378.2 47.5 2.1 974 16.3 18.3 0.02 0.01 51 2.0 0.0509 3.4 124.8 2.4 234.8 78.5 3.2 958 25.1 5.9 0.01 0.44 33 1.2 0.0526 2.3 194.0 2.3 312.2 52.9 5.1 662 18.4 5.7 0.01 0.12 31 1.1 0.0499 1.5 205.0 2.1 192.0 34.1 6.1 558 5.8 4.7 0.01 0.26 82 1.8 0.0502 2.5 77.9 1.4 204.6 59.0 7.1 812 22.5 9.8 0.01 0.02 31 1.3 0.0578 1.2 204.4 2.6 523.0 25.3 8.5 263 56.7 72.7 0.29 0.06 4 2.1 0.1079 2.7 1444.5 26.8 1763.7 48.5 9.1 1018 27.6 4.0 0.00 0.08 32 1.0 0.0500 1.2 200.4 2.1 194.3 27.0 10.1 966 120.4 7.1 0.01 0.00 7 4.3 0.0739 1.1 873.5 35.1 1038.1 21.4 12.1 1295 33.7 8.9 0.01 0.02 33 1.0 0.0500 1.0 192.1 2.0 197.1 22.3 13.1 284 3.3 2.3 0.01 0.33 73 1.2 0.0463 3.9 87.7 1.0 10.8 93.6 14.1 985 0.0 40.2 0.04-0.11 86 3.7 0.0508 2.2 74.7 2.7 230.3 51.0 15.1 1098 30.1 6.5 0.01 0.06 31 1.6 0.0504 1.1 202.5 3.2 213.2 24.8 17.1 431 0.0 3.9 0.01 1.63 76 3.0 0.0504 4.5 84.7 2.6 213.0 104.5 21.1 367 0.0 4.4 0.01 0.34 88 2.1 0.0512 3.6 73.1 1.6 250.1 82.7 22.1 1587 0.1 10.4 0.01-0.03 35 1.5 0.0501 1.0 182.7 2.6 200.5 23.9 23.1 190 0.0 105.7 0.57 6.92 37 1.6-0.0091 29.8 170.0 2.6 - - 24.1 3134 0.1 21.7 0.01 0.02 41 1.6 0.0511 0.9 155.9 2.5 245.9 20.2 Table DR2 (continued)

KP11-619 ; biotite; 21 steps; λ 40 K = 5.5430E-10; J = 2.7370E-3 Temp 36 Ar 37 Ar 38 Ar 39 Ar 40 Ar % 40 Ar* 40 Ar*/ 39 Ar (K) Cumulative Calculated Age Ca/K Cl/K ( o C) (mol) (% err.) (mol) (% err.) (mol) (% err.) (mol) (% err.) (mol) (% err.) 39 Ar (%) (Ma ± 1σ) 450 2.47E-16 1.04 1.05E-14 32.90 4.24E-16 3.97 2.07E-14 0.47 1.35E-13 0.68 45.9 3.015 3.05 14.83 ± 0.29 9.67E-01 2.00E-01 500 3.39E-16 3.50 5.32E-15 41.02 7.98E-16 1.78 5.36E-14 0.05 2.68E-13 0.33 61.8 3.089 10.99 15.19 ± 0.33 1.89E-01 3.03E-02 533 3.11E-16 0.72 4.95E-15 71.26 6.80E-16 4.25 4.80E-14 0.27 2.44E-13 0.61 61.7 3.144 18.10 15.46 ± 0.17 1.96E-01 2.37E-03 566 2.77E-16 0.92 9.42E-15 12.48 6.43E-16 6.33 4.52E-14 0.37 2.29E-13 0.45 63.5 3.224 24.79 15.85 ± 0.14 3.97E-01 7.32E-03 600 2.22E-16 2.03 1.11E-15 191.03 9.62E-16 3.35 5.06E-14 0.55 2.34E-13 0.61 70.9 3.273 32.29 16.09 ± 0.19 4.17E-02 1.95E-01 633 2.10E-16 1.03 4.67E-15 49.24 6.32E-16 2.86 4.55E-14 0.37 2.13E-13 0.46 69.9 3.273 39.04 16.09 ± 0.13 1.95E-01 4.07E-03 666 2.11E-16 1.06 4.71E-15 47.55 5.62E-16 3.09 3.79E-14 0.12 1.90E-13 0.22 66.4 3.325 44.65 16.34 ± 0.1 2.36E-01 3.28E-02 700 2.05E-16 0.71 8.35E-15 29.04 5.07E-16 3.28 3.41E-14 0.07 1.75E-13 0.40 64.6 3.311 49.71 16.28 ± 0.12 4.65E-01 3.07E-02 733 2.10E-16 1.04 2.99E-17 25.52 6.18E-16 1.28 3.86E-14 0.39 1.92E-13 0.48 66.9 3.335 55.43 16.39 ± 0.14 1.47E-03 7.84E-02 766 1.78E-16 1.03 3.36E-15 30.23 7.80E-16 0.45 5.54E-14 0.18 2.36E-13 0.33 76.7 3.269 63.64 16.07 ± 0.08 1.15E-01 2.12E-02 800 2.26E-16 1.18 7.13E-15 33.03 1.46E-15 1.13 1.06E-13 0.76 4.11E-13 0.79 82.6 3.204 79.37 15.75 ± 0.15 1.28E-01 1.51E-02 833 2.97E-16 1.06 2.55E-15 71.97 1.22E-15 0.49 8.71E-14 0.27 3.60E-13 0.42 74.6 3.085 92.29 15.17 ± 0.1 5.55E-02 1.76E-02 866 3.13E-16 2.25 4.92E-15 18.00 5.25E-16 6.77 3.43E-14 0.17 1.94E-13 0.29 51.6 2.923 97.37 14.38 ± 0.31 2.73E-01 2.67E-02 900 3.68E-16 1.17 2.61E-15 14.85 2.68E-16 8.21 1.51E-14 0.30 1.44E-13 0.37 24.2 2.321 99.60 11.42 ± 0.45 3.29E-01 1.01E-02 950 4.59E-16 1.51 3.00E-17 68.65 2.90E-17 18.17 9.12E-16 0.40 1.12E-13 0.46-21.3 0.001 99.73 0.005 ± 11.445 6.26E-02-2.81E+00 1000 5.23E-16 1.98 6.98E-15 45.31 2.17E-16 2.79 6.13E-16 1.84 1.35E-13 1.87-14.3 0.001 99.82 0.005 ± 32 2.31E+01 6.74E+00 1050 5.60E-16 1.33 7.67E-15 39.28 1.57E-16 1.15 6.84E-16 0.81 1.76E-13 0.83 6.1 16.64 99.91 80.35 ± 18.47 2.27E+01 2.34E+00 1100 7.32E-16 4.05 3.01E-17 6.57 1.01E-16 22.28 1.46E-16 3.56 2.12E-13 3.57-2.1 0.001 99.94 0.005 ± 391.423 3.93E-01-9.66E+00 1200 1.68E-15 5.58 3.01E-17 27.63 3.91E-16 5.66 3.12E-16 5.43 4.68E-13 5.44-5.8 0.001 99.98 0.005 ± 594.529 1.84E-01 8.53E+00 1300 3.13E-15 20.08 3.75E-15 41.01 5.55E-16 20.06 1.30E-16 20.06 9.44E-13 20.06 2.0 173.165 100.00 699.89 ± 6815.95 6.45E+01-9.94E+00 1450 4.70E-15 20.19 1.87E-14 20.74 8.46E-16 20.19 1.09E-16 20.18 1.46E-12 20.18 4.9 8740.714 100.00 5801.55 ± 741.34 4.35E+03-1.31E+01 Total 1.54E-14 1.07E-13 1.24E-14 6.75E-13 6.73E-12 16.27 ± 1.71 Table DR3 Data from 40 Ar/ 39 Ar step-heating experiments of biotite from sample KP11-619. Biotite standard GA1550 (98.5 ± 0.8 Myr; Spell and McDougall, 2003) was used as the neutron flux monitor. 40 K abundances and decay constants are taken from standard values recommended by the IUGS sub commission on Geochronology (Steiger and Jäger, 1977). Biotite compostion (cpfu based on 22 oxygens) is as follows: 5.06 Si; 0.46 Ti; 3.16 Al; 0.16 Cr; 0.42 Fe3+; 2.42 Fe2+; 0.02 Mn; 2.50 Mg; 0.02 Ca; 0.10 Na; 1.20 K.

KP11-588 Garnet Cordierite Spinel Sapphirine Ilmenite Sillimanite Plagioclase Chlorite Biotite core rim coronae symplectite inclusions in grt with spinel inclusions in grt wt.% SiO 2 39.07 38.59 49.31 0.12 0.37 11.95 0.16 37.87 59.30 24.00 36.41 TiO 2 0.11 0.02 0.00 0.26 0.28 0.29 51.53 0.05 0.03 0.00 3.33 Al 2 O 3 22.34 22.01 34.09 60.24 60.12 60.84 0.18 64.62 27.51 22.48 17.70 Cr 2 O 3 0.00 0.06 0.03 0.15 0.11 0.00 0.10 0.03 0.05 0.00 0.02 Fe 2 O 3 * 1.62 1.62 2.26 2.03 3.63 0.00 2.19 0.25 0.37 0.00 2.62 FeO 29.08 30.71 8.14 34.01 27.08 16.20 43.69 0.34 0.00 27.39 13.38 MnO 2.97 5.12 0.68 0.87 0.30 0.31 2.21 0.02 0.02 0.40 0.34 MgO 7.45 3.94 7.41 4.35 7.73 5.82 0.32 0.31 0.08 11.75 14.17 CaO 1.47 1.64 0.03 0.00 0.06 0.13 0.00 0.01 8.54 0.11 0.00 Na 2 O 0.31 0.24 0.27 0.24 0.69 0.70 0.00 0.11 6.17 0.26 0.47 K 2 O 0.00 0.01 0.00 0.04 0.06 0.02 0.01 0.00 0.85 0.06 7.20 ZnO 0.63 1.56 Totals 104.42 103.96 102.23 102.32 100.44 96.26 100.39 103.62 102.92 86.45 95.64 Oxygens 12 12 18 4 4 20 3 30 8 14 11 c.p.f.u. Si 2.94 2.97 4.93 0.00 0.01 1.54 0.00 5.94 2.58 2.61 2.67 Ti 0.01 0.00 0.00 0.01 0.01 0.03 0.97 0.01 0.00 0.00 0.18 Al 1.98 2.00 4.01 1.95 1.93 9.24 0.01 11.95 1.41 2.88 1.53 Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Fe 3+ 0.09 0.09 0.17 0.04 0.07 0.00 0.04 0.03 0.01 0.00 0.15 Fe 2+ 1.83 1.98 0.68 0.78 0.62 1.75 0.92 0.05 0.00 2.49 0.82 Mn 0.19 0.33 0.06 0.02 0.01 0.03 0.05 0.00 0.00 0.04 0.02 Mg 0.84 0.45 1.10 0.18 0.31 1.12 0.01 0.07 0.01 1.90 1.55 Ca 0.12 0.14 0.00 0.00 0.00 0.02 0.00 0.00 0.40 0.01 0.00 Na 0.05 0.04 0.05 0.01 0.04 0.18 0.00 0.03 0.52 0.06 0.07 K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.01 0.68 Sum 8 8 11 3 3 14 2 18 5 10 8 Table DR4 Representative electron microprobe (EMP) mineral chemical analyses of KP11-588. *Fe 2 O 3 was calculated from all-fe-as-fe 2+ microprobe analyses by the programme AX (Holland, 2012).

a-x model Reference *Amphibole Diener et al. (2007) (Diener et al., 2007) Biotite White et al. (2007) (White et al., 2007) *Clinopyroxene Green et al. (2007) (Green et al., 2007) Cordierite Holland & Powell (1998) (Holland and Powell, 1998) *Epidote Holland & Powell (1998) (Holland and Powell, 1998) Garnet White et al. (2007) (White et al., 2007) *Hematite White (2000) (White, 2000) Ilmenite White (2000) (White, 2000) K-feldspar Holland & Powell (2003) (Holland and Powell, 2003) Magnetite White et al. (2002) (White et al., 2002) Melt White et al. (2007) (White et al., 2007) *Muscovite Coggon & Holland (2002) (Coggon and Holland, 2002) *Orthopyroxene White et al. (2002) (White et al., 2002) Osumilite Holland et al. (1996) with 2010 update by T.J.B. Holland(Holland et al., 1996) Plagioclase Holland & Powell (2003) (Holland and Powell, 2003) Sapphirine Taylor-Jones & Powell (2010) (Taylor-Jones and Powell, 2010) Spinel White et al. (2002)(White et al., 2002) Table DR5 a-x models used in NCKFMASHTO modelling. a-x models preceeded by an asterisk were not utilised in the modelling, but were included in the script file.

KP11-588 pseudosection H 2 O SiO 2 Al 2 O 3 CaO MgO FeO K 2 O Na 2 O TiO 2 O P-T (Fig. 3A) M H2O = 0.42; M O = 0.50 1.565 55.28 18.481 1.341 6.157 12.38 0.654 0.622 1.458 2.061 T-M H2O (Fig. DR2) M H2O = 0.00; M O = 0.50 0 56.159 18.775 1.362 6.255 12.577 0.665 0.632 1.482 2.094 M H2O = 1.00; M O = 0.50 3.647 54.111 18.09 1.312 6.027 12.118 0.640 0.640 1.427 2.018 T-M O (Fig. DR3) M O = 0.00; M H2O = 0.42 1.598 56.444 18.87 1.369 6.287 12.641 0.668 0.635 1.489 0 M O = 1.00; M H2O = 0.42 1.533 54.164 18.108 1.314 6.033 12.13 0.641 0.609 1.429 4.039 Table DR6 Effective bulk compositions (mol%) in the NCKFMASHTO chemcial system, as input to THERMOCALC for calculation of pseudosections for sample KP11-588. An M H2O of 1 is equivalent to adding 1 wt.% water to the dry bulk composition and an M O value of 1 is equivalent to an XFe 3+ value of 2/3.

A 100 90 80 3:5:1 SAPPHIRINE KP11-588 KP11-581C ideal Sa OTHER PHASES FROM KP11-588 Sp Crd Crn Chl Al (wt% ) 70 60 7:9:3 2:2:1 mixing line 50 40 30 B 20 0 5 10 15 20 25 30 35 40 45 50 Si (wt% ) 7.0 6.5 6.0 SAPPHIRINE KP11-588 KP11-581C ideal Sa A l 5.5 5.0 4.5 3:5:1 7:9:3 4.0 2:2:1 3.5 3.0 2.5 2.0 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 Figure DR1 Sapphirine compositional plots. A: Al v. Si (wt.%) plot of sapphirine compositions (normalised to 100%) for granulites KP11-588 and KP11-581C compared to corundum, chlorite, spinel, and cordierite. Sapphirine analyses plot on a mixing line passing through the 2:2:1-7:9:3-3:5:1 sapphirine solid solution (red), demonstrating the reaction Sa + H 2 O Crn + Chl (± Sp). B: Al v. Si (cations per formula unit) plot of sapphirine compositions for granulties KP11-588 and KP11-581C compared to the 2:2:1-7:9:3-3:5:1 sapphirine solid solution (red). Si

KP11-588 M O = 0.50 & P = 7.5 kbar NCKFMASHTO (+ qtz + pl + ilm + sill) 1000 sa sp ksp liq sa sp liq sa crd sp liq crd sp liq T ( C) T ( C) 1050 KP11-588 ksp liq 950 1000 900 850 950 800 900 mt ksp sa grt sp 4 5 7 grt sp ksp liq 6 sa sp osm liq sp osm liq sp crd 9 ksp osm sp crd osm sp crd grt 50liq sp ksp crd ksp osm grt ksp grt sp crd ksp bt mt 52bi 51cd grt mt crd ksp osm 14g 8 25osm 29sa 31osm 33mt 32sp 12ksp grt mt ksp liq sp crd osm liq sa sp liq 11 grt bt sp crd ksp 43cd osm liq mt liq 49liq grt sp mt crd ksp 13ksp 26ksp 24osm 27ksp 28sa 23osm 30ksp sa sp crd osm liq mt ksp liq 53liq sa grt sp liq grt sp liq 34ksp 3 7g 4sa 19mt 20sp sp crd ksp liq 47cd grt mt liq 10 8cd 35ksp 2cd sa sp crd liq 17cd 41cd 1 grt sp crd 44bi ksp liq 48ksp 12 54liq grt sp mt 55cd bt mt crd ksp liq 0 1sa 2 3g 45ksp 42ksp sp liq 9cd @ 7 kbar & M O = 0.50 NCKFMASHTO (+ qtz + pl + ilm + sill) 5sa mt liq 15mt 16sp sp crd liq 1) sa sp liq 2) sp mt liq 3) grt sp mt liq bt mt liq 4) sa osm grt sp ksp liq 5) sa osm grt sp liq grt sp crd liq 6) osm grt sp ksp liq 7) osm grt sp liq 46bi 8) grt sp mt ksp liq grt sp mt crd liq 9) ksp bt mt 10) bt mt ksp liq 11) grt ksp bt mt liq 12) grt bt mt grt mt crd liq 6g 0.42 62cd 0 grt mt crd ksp 0.2 56ksp 0.4 grt mt crd ksp liq 0.6 0.8 1 60liq M H 2 O (where an M H O of 1 = 1 wt% H O added to dry bulk composition) 2 2 Figure DR2 T-M H2O pseudosection of granulite KP11-588. Diagram is calculated at 7.5 kbar 850 pressure and with 0 M O = 0.50 (XFe 0.2 3+ = 0.33). The 0.4 grey line indicates 0.6 the chosen 0.8 M H2O value 1 used 0.11 in the T-MO pseudosection (Supplementary Fig. DR3) M H 2 Oand the P-T (where an M H 2 O of 1 = pseudosection 1 wt% H 2 O added to dry bulk composition) (Fig. 3A). The target field is outlined in blue (and neighbouring sa-present field is dotted). Minerals are abbreviated as follows: bt biotite; crd cordierite; grt garnet; ilm ilmenite; ksp K-feldspar; liq liquid; mt magnetite; osm osumilite; pl plagioclase; qtz quartz; sa sapphirine; sill sillimanite; sp spinel.

KP11-588 M H2O = 0.42 & P = 7.5 kbar NCKFMASHTO (+ qtz + pl + ilm + sill) 1000 sa sp liq sa sp mt liq sa crd mt liq 950 grt liq grt sp liq sa grt sp liq 2 grt mt liq 1 sp liq mt liq sa crd sp liq 3 sa crd sp mt liq 4 5 6 sa mt liq crd ksp mt liq T ( C) 900 grt ksp liq grt ksp mt liq ksp mt liq 8 ksp mt crd ksp mt 850 800 grt bt ksp liq grt bt liq grt bt mt liq 10 9 bt mt liq bt mt bt ksp mt 1) sa sp liq 2) grt sp mt liq 3) sp mt liq 4) sa sp mt liq 5) sa mt liq 6) sa crd ksp mt liq 7) crd bt ksp mt 8) bt ksp mt liq 9) grt bt ksp mt liq 10) bt liq 7 0.50 0 0.2 0.4 0.6 0.8 1 XFe M 3+ = 0 XFe 3+ = ⅔ O Figure DR3 T-M O pseudosection of granulite KP11-588. Diagram is calculated at 7.5 kbar pressure and with M H2O = 0.42. The grey line indicates the chosen M O value used in the T-M H2O pseudosection (Fig. DR2) and the P-T pseudosection (Fig. 3A). The target field is outlined in red (and neighbouring sa-present field is dotted). Minerals are abbreviated as follows: bt biotite; crd cordierite; grt garnet; ilm ilmenite; ksp K-feldspar; liq liquid; mt magnetite; pl plagioclase; qtz quartz; sa sapphirine; sill sillimanite; sp spinel.

0.6 KP11-619 Mean 206 Pb/ 238 U age: 16.00 ± 0.52 Ma MSWD = 1.08 probability = 0.37 16.05 Ma 194 Ma 3,416 Ma 1,836 Ma 15.92 Ma 207 Pb/ 206 Pb 0.4 20 μm 0.2 16.20 Ma Lower intercept: 15.98 ± 0.38 Ma MSWD = 1.00; probability = 0.44 60 50 40 30 20 Ma 0.0 100 200 300 400 238 U/ 206 Pb Figure DR4 Tera-Wasserburg plot of Miocene metamorphic zircon rims from migmatite sample KP11 619. Mean 206 Pb/ 238 U age is quoted at 95% confidence. Data-point error ellipses are drawn at 68.3% confidence. MSWD mean square weighted deviation. Representative cathodoluminescence images of the zircon grains are shown top-right, annotated with individual analytical spots. See Table DR2 for full dataset. 0.07 KP11-621 Mean 206 Pb/ 238 U age: 16.24 ± 0.23 Ma MSWD = 1.20 probability = 0.30 to common Pb 16.30 Ma 20 μm 404 Ma 1,764 Ma 207 Pb/ 206 Pb 0.06 16.24 Ma 0.05 0.04 19 18 17 16 15 Ma Lower intercept: 16.26 ± 0.23 Ma (anchored at 207 Pb/ 206 Pb = 0.836) MSWD = 1.07; probability = 0.38 340 360 380 400 420 440 238 U/ 206 Pb Figure DR5 Tera-Wasserburg plot of Miocene metamorphic zircon rims from migmatite sample KP11 621. Mean 206 Pb/ 238 U age is quoted at 95% confidence. Data-point error ellipses are drawn at 68.3% confidence. MSWD mean square weighted deviation. Representative cathodoluminescence images of the zircon grains are shown top-right, annotated with individual analytical spots. See Table DR2 for full dataset.

-2-3 log 10 D0/r 2-4 -5-6 (D 0 /r 2 = 2.73 x 10 4 s -1 ) T c = 366 C (D 0 /r 2 = 9.13 x 10 9 s -1 ) (D 0 /r 2 = 1.53 x 10 7 s -1 ) T c = 289 C T c = 228 C -7-8 6 8 10 12 14 10 4 / T Kelvin Figure DR6 Arrhenius plot for Ar-Ar step-heating experiments of KP11-619 biotite. Blue dots relate to heating steps 1 and 2 and red dots are from heating steps 9 to 12 (compare with apparent age plot in Supplementary Fig. DR8). Closure temperatures (T c ) of 289 C and 228 C, respectively, can be related to these steps which are interpreted to have degassed argon from two separate reservoirs within the biotite. D 0 = frequency factor of diffusion and r = radius of domain under consideration (Forster and Lister, 2004). Calculations performed by eargon.

CAN ANU#13, Foil P13; Sample KP11-619, Biotite, 21 steps 3 2 log 10 r / r0 1 0-1 0 20 40 Percentage 39 60 80 100 Ar released Figure DR7 log 10 (r/r 0 ) vs. % 39 Ar released plot for Ar-Ar step-heating experiments of KP11-619 biotite. Blue dots relate to heating steps 1 and 2 and red dots are from heating steps 9 to 12 (compare with apparent age plot in Supplementary Fig. DR8). Two distinct reservoirs with different radii are shown by the plot, which correspond to the different closure temperatures inferred from the Arrhenius plot (Supplementary Fig. DR6). r = radius of domain under consideration and r 0 = radius of the reference domain (Forster and Lister, 2004). Calculations were performed by eargon.

20.0 Sample KP11-619, Biotite, 21 steps Apparent Age (Myr) 18.0 16.0 14.0 Upper limit 16.34 ± 0.04 Myr MSWD = 0.73 (T c = 289 C) Lower limit 14.83 ± 0.29 Myr (T c = 228 C) 12.0 10.0 0 20 40 60 80 100 Percentage 39 Ar released Figure DR8 Apparent age spectrum for Ar-Ar step-heating experiments of KP11-619 biotite. Heating steps 1 and 2 are shaded blue and heating steps 9 to 12 are shaded red, which relate to the plots shown in Supplementary Figures DR6, DR7, and DR9. The upper limit 16.34 ± 0.04 Ma age is interpreted to relate to cooling through 289 C and the lower limit 14.83 ± 0.29 Ma age is interpreted to relate to cooling through 228 C (see Arrhenius plot in Supplementary Figure DR6). Calculations were performed by eargon.

Sample KP11-619, Biotite, 21 steps 0.004 36 Ar/ 40 Ar 0.003 0.002 0.001 0.000 0.00 0.05 0.10 0.15 0.20 0.25 0.30 39Ar /40 Ar Figure DR9 York plot for Ar-Ar step-heating experiments of KP11-619 biotite. Atmospheric argon composition is shown by the red cross. Red and blue spots, which relate to heating steps from which ages have been interpreted, plot away from this point and are therefore shown to have not been contaminated with atmospheric argon (colours correspond to Supplementary Figures DR6, DR7, and DR8).

REFERENCES CITED Coggon, R., and Holland, T.J.B., 2002, Mixing properties of phengitic micas and revised garnet-phengite thermobarometers: Journal of Metamorphic Geology, v. 20, p. 683 696. Diener, J.F.A., Powell, R., White, R.W., and Holland, T.J.B., 2007, A new thermodynamic model for clino- and orthoamphiboles in the system Na 2 O CaO FeO MgO Al 2 O 3 SiO 2 H 2 O O: Journal of Metamorphic Geology, v. 25, p. 631 656, doi: 10.1111/j.1525-1314.2007.00720.x. Forster, M.A., and Lister, G.S., 2004, The interpretation of 40 Ar/ 39 Ar apparent age spectra produced by mixing: application of the method of asymptotes and limits: Journal of Structural Geology, v. 26, p. 287 305. Green, E., Holland, T., and Powell, R., 2007, An order-disorder model for omphacitic pyroxenes in the system jadeite-diopside-hedenbergite-acmite, with applications to eclogitic rocks: American Mineralogist, v. 92, p. 1181 1189, doi: 10.2138/am.2007.2401. Holland, T.J.B., Babu, E.V.S.S.K., and Waters, D.J., 1996, Phase relations of osumilite and dehydration melting in pelitic rocks: a simple thermodynamic model for the KFMASH system: Contributions to Mineralogy and Petrology, v. 124, p. 383 394. Holland, T.J.B., and Powell, R., 1998, An internally consistent thermodynamic data set for phases of petrological interest: Journal of Metamorphic Geology, v. 16, p. 309 343. Holland, T., and Powell, R., 2003, Activity-composition relations for phases in petrological calculations: an asymmetric multicomponent formulation: Contributions to Mineralogy and Petrology, v. 145, p. 492 501, doi: 10.1007/s00410-003-0464-z. Holland, T.J.B., AX: A programme to calculate activities of mineral endmembers from chemical analyses: http://www.esc.cam.ac.uk/research/research-groups/holland/ax (last updated July 2012). Ludwig, K.R., 2003, Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel: Berkeley Geochronology Centre Special Publication, v. 4. Ludwig, K.R., 2009, SQUID 2: A User s Manual: Berkeley Geochronology Centre Special Publication, v. 5. Powell, R., and Holland, T.J.B, 1988, An internally consistent thermodynamic dataset with uncertaintites and correlations: 3. Applications to geobarometry, worked examples and a computer program: Journal of Metamorphic Geology, v. 6, p. 173 204. Spell, T.L., and McDougall, I., 2003, Characterization and calibration of 40 Ar/ 39 Ar dating standards, Chemical Geology, v. 198, p. 189 211. Steiger, R.H., and Jäger, E., 1977, Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology: Earth and Planetary Science Letters, v. 36, p. 359 362. Taylor-Jones, K., and Powell, R., 2010, The stability of sapphirine + quartz: calculated phase equilibria in FeO MgO Al 2 O 3 SiO 2 TiO 2 O: Journal of Metamorphic Geology, v. 28, p. 615 633, doi: 10.1111/j.1525-1314.2010.00883.x. White, R.W., 2000, The effect of TiO 2 and Fe 2 O 3 on metapelitic assemblages at greenschist and amphibolite facies conditions: mineral equilibria calculations in the system K 2 O FeO MgO Al 2 O 3 SiO 2 H 2 O TiO 2 Fe 2 O 3 : v. 18, p. 497 511. White, R.W., Powell, R., and Clarke, G.L., 2002, The interpretation of reaction textures in Fe-rich metapelitic granulites of the Musgrave Block, central Australia: constraints from mineral equilibria calculations in the system K 2 O FeO MgO Al 2 O 3 SiO 2 H 2 O TiO 2 Fe 2 O 3 : Journal of Metamorphic Geology, v. 20, p. 41 55. White, R.W., Powell, R., and Holland, T.J.B., 2007, Progress relating to calculation of partial melting equilibria for metapelites: Journal of Metamorphic Geology, v. 25, p. 511 527, doi: 10.1111/j.1525-1314.2007.00711.x.