Characterising Exoplanet Satellite

Similar documents
CHARACTERIZING EXOPLANETS SATELLITE

The CHEOPS Mission Consortium David Ehrenreich

R. Alonso, 11th CoRoT Week, La Laguna, 22 Mars The. CHEOPS Mission

CHEOPS stato, problemi, opportunità

La missione CHEOPS ASI, 25 Sep 2013

Detection and characterization of exoplanets from space

arxiv: v1 [astro-ph.ep] 10 May 2013

PoS(FRAPWS2016)089. CHEOPS (CHaracterizing ExOPlanets Satellite) Mission

HARPS-N Contributions to the Mass-Radius

CHEOPS CHaracterising ExOPlanet Satellite

Synergies between E-ELT and space instrumentation for extrasolar planet science

PLATO-2.0 Follow-up. Questions addressed. PLATO Follow-up activities. Mass distribution Spectroscopy. Small mass planets are numerous => huge work

cheops Assemble your own planet watcher cheops Paper Model Scale 1:15

The Search for Habitable Worlds Lecture 3: The role of TESS

PLATO Follow-up. Questions addressed. Importance of the follow-up. Importance of the follow-up. Organisa(on*&*Progress*Report

The Physics of Exoplanets

Exoplanet Science in the 2020s

Planetary Populations through Detection Surveys

Michaël Gillon (Université de Liège, Belgium)

Kepler s Multiple Planet Systems

HD Transits HST/STIS First Transiting Exo-Planet. Exoplanet Discovery Methods. Paper Due Tue, Feb 23. (4) Transits. Transits.

Professional / Amateur collaborations in exoplanetary science

Why Search for Extrasolar Planets?

arxiv: v1 [astro-ph.ep] 2 Oct 2013

Exoplanet Atmospheres Observations. Mercedes López-Morales Harvard-Smithsonian Center for Astrophysics

GJ 436. Michaël Gillon (Geneva)

E-ELT s View of Exoplanetary Atmospheres

PLATO. revealing the interior of planets and stars completing the age of planet discovery for Earth-sized planets constraining planet formation

II Planet Finding.

Comparative Planetology: Transiting Exoplanet Science with JWST

DETECTING TRANSITING PLANETS WITH COROT. Stefania Carpano ESAC (25th of November 2009)

Transit spectrum of Venus as an exoplanet model prediction + HST programme Ehrenreich et al. 2012, A&A Letters 537, L2

A Pathway to Earth-like Worlds:

CASE/ARIEL & FINESSE Briefing

Design Reference Mission. DRM approach

Search for Transiting Planets around Nearby M Dwarfs. Norio Narita (NAOJ)

Exoplanets Atmospheres. Characterization of planetary atmospheres. Photometry of planetary atmospheres from direct imaging

@ CFHT. Isabelle Boisse (LAM) and the SPIRou team France, Canada, CFHT, Brazil, Hawaii, Taiwan, Switzerland & Portugal

Extrasolar Planets: Ushering in the Era of Comparative Exoplanetology

What is to expect from the transit method. M. Deleuil, Laboratoire d Astrophysique de Marseille Institut Universitaire de France

Precise Stellar Parameters are Crucial for Constraining Transiting Exoplanet Interiors

Date of delivery: 29 June 2011 Journal and vol/article ref: IAU Number of pages (not including this page): 5

Internal structure and atmospheres of planets

Extrasolar Transiting Planets: Detection and False Positive Rejection

PLAnetary Transits and Oscillations of stars

Transiting Extrasolar Planets

Transmission spectra of exoplanet atmospheres

PLATO 2.0 Science Workshop

List of submitted target proposals

Scientists are getting closer to discovering Earth-like planets close to Earth

High resolution spectroscopy: what s next?

Atmospheres and evaporation of extrasolar planets

Characterization of Transiting Planet Atmospheres

Challenges in Exoplanet Research for the UV

Science Olympiad Astronomy C Division Event National Exam

Searching for Other Worlds

Science of extrasolar Planets A focused update

Exoplanets: the quest for Earth twins

Adam Burrows, Princeton April 7, KITP Public Lecture

Star-Planet interaction

Exomoons around transiting exoplanets

Interior Structure of Rocky and Vapor Worlds

Laetitia Delrez (University of Cambridge)

arxiv: v2 [astro-ph.ep] 13 Jan 2010

Exoplanetary Science with Mul4- Object Spectrographs (and GLAO) Norio Narita (NAOJ)

The Direct Study of Exoplanet Atmospheres

ESA PROBA-3 MISSION ASPIICS

Actuality of Exoplanets Search. François Bouchy OHP - IAP

The Kepler Exoplanet Survey: Instrumentation, Performance and Results

Evaporation of extrasolar planets

Science with EPICS, the E-ELT planet finder

Future Opportunities for Collaborations: Exoplanet Astronomers & Statisticians

Statistical validation of PLATO 2.0 planet candidates

Amateur Astronomer Participation in the TESS Exoplanet Mission

The Plato Input Catalog (PIC)

Red dwarfs and the nearest terrestrial planets

Evaporation of planetary atmospheres

The obliquities of the planetary systems detected with CHEOPS. Guillaume Hébrard Institut d astrophysique de Paris Observatoire de Haute-Provence

Outline. RV Planet Searches Improving Doppler Precision Population Synthesis Planet Formation Models Eta-Earth Survey Future Directions

Plato, Euclid and the New Hard X-Ray mission

The Transit Method: Results from the Ground

Exploring the Universe: Synergies in the ESA Science Programme

A Large Monolithic-Aperture Optical/UV Serviceable Space Telescope Deployed to L2 by an Ares-V Cargo Launch Vehicle

3.4 Transiting planets

Observations of Extrasolar Planets

First images from exoplanet hunter SPHERE

The James Webb Space Telescope: Capabilities for Transiting Exoplanet Observations

Amateur Astronomer Participation in the TESS Exoplanet Mission

Discovering Exoplanets Transiting Bright and Unusual Stars with K2

Exoplanets Direct imaging. Direct method of exoplanet detection. Direct imaging: observational challenges

Update on asteroseismology with Plato

Extrasolar Planets = Exoplanets III.

ELODIE & SOPHIE spectrographs: 20 years of continuous improvements in radial velocities

Characterizing the Atmospheres of Extrasolar Planets. Julianne I. Moses (Space Science Institute)

The Role of Precision Spectroscopy in the Search for Earth 2.0. Jacob Bean University of Chicago

Challenges and Opportunities in Constraining the Bulk Properties of Super-Earths with Transmission Spectroscopy

Exoplanet Forum: Transit Chapter

Search for & Characterizing Small Planets with NASA s Kepler Mission

Extrasolar planets and their hosts: Why exoplanet science needs X-ray observations

The life of stars & their planets

Transcription:

Exoplanet Science Quy Nhơn, Việt Nam 21 April 2014 Characterising Exoplanet Satellite David Ehrenreich s first small-class mission

Mass-radius diagram 3 distinct families in the Solar System Planet radius (Earth = 1)! 10! 1! icy moons 1.9 1.8 3.4 3.5 1.9 rocky moons high density [g cm -3 ] low density telluric planets 5.4 3.5 5.2 5.5 1.3 ice giants gas giants 0.1! 0.01! 0.1! 1! 10! 100! 1000! 10000! Planet mass (Earth = 1)! 1.6 0.7 1.3 planet bulk densities

Mass-radius diagram Apparent continuity of masses for exoplanets Planet radius (Earth = 1)! 10! 1! icy moons high density [g cm -3 ] low density telluric planets K-78b (5.5) K-11f (0.7) K-10b (8.8) ice giants C-7b (6.2) gas giants 55 Cnc e (4.3) rocky moons 0.1! 0.01! 0.1! 1! 10! 100! 1000! 10000! Planet mass (Earth = 1)!

What are exoplanets made of? GJ 3470b Corot-7b telluric Léger+ 2009 super-earths? Kepler-11f Lissauer+ 2011 gas dwarfs?? Kepler-78b Pepe+, Howard+ 2013? ocean 55planets? Cnc e Winn+, Demory+ 2011 Léger+ 2004 Bonfils+ 2012 massive core HD 149026b Sato+ 2005 subgiants? GJmini 1214b Charbonneau+ 2009 Neptunes? hydrogen/helium envelope thin atmosphere ice mantle/volatile envelope solid core (rocks+metals) Constraints based on bulk densities

How do they evolve? How do they survive under extreme irradiation? GJ 436b Kulow+ 2014 55 Cancri e Winn+ 2011 Demory+ 2011 KIC 12557548b Rappaport+ 2012??? hot & warm Jupiters hot Neptunes? hot super-earths? Kepler-78b Sanchis-Ojeda+ 2013 HD 209458b, HD 189733b, 55 Cancri b Vidal-Madjar+ 2003; Lecavelier+2012; Ehrenreich+ 2012 hydrogen/helium envelope thin atmosphere ice mantle/volatile envelope solid core (rocks+metals)

Which planets are the golden targets for atmospheric characterisation? 55 Cnc e HST 3σ detection limit sodium detection on HD 209458b Charbonneau+ 2002 HD 209458b HD 189733b Density matters for atmospheric studies The less dense at given mass, the easier to characterize (Ehrenreich+ 2006)

Which planets are the golden targets for atmospheric characterisation? 4 5 6 JWST 3σ detection limit water detection on HD 209458b in 1 transit (Deming+ 2013) All transiting planets! Hydrogen-rich atmospheres J magnitude 7 8 9 HST 10 11 12 1 10 100 1000 10000 Absorption signal of one atmospheric scale height in transmission spectroscopy (ppm)

Which planets are the golden targets for atmospheric characterisation? 4 5 6 JWST 3σ detection limit water detection on HD 209458b in 1 transit (Deming+ 2013) Transiting super-earths (<10 ME)! Hydrogen-rich atmospheres J magnitude 7 8 9 HST 10 11 12 1 10 100 1000 10000 Absorption signal of one atmospheric scale height in transmission spectroscopy (ppm)

Which planets are the golden targets for atmospheric characterisation? 4 5 6 JWST 3σ detection limit water detection on HD 209458b in 1 transit (Deming+ 2013) Transiting super-earths (<10 ME)! Water-rich atmospheres J magnitude 7 8 9 HST 10 GJ 1214b 11 12 1 10 100 1000 10000 Absorption signal of one atmospheric scale height in transmission spectroscopy (ppm)

Which planets are the golden targets for atmospheric characterisation? 4 5 6 JWST 3σ detection limit water detection on HD 209458b in 1 transit (Deming+ 2013) Transiting super-earths (<10 ME)! Water-rich atmospheres J magnitude 7 8 9 HST Flat spectrum clouds! 12 HST transits (Kreidberg+ 2014) 10 GJ 1214b 11 12 1 10 100 1000 10000 Absorption signal of one atmospheric scale height in transmission spectroscopy (ppm)

Targets: bright stars Better knowledge of the stars Better knowledge of the planets TESS 1st S-class mission adopted by ESA (Feb 2014) PLATO

CHEOPS main science goals What will do: Perform 1st-step characterization of super-earths & Neptunes Measure accurate radii & bulk densities of super-earths & Neptunes orbiting bright stars Provide golden targets for future atmospheric characterization How CHEOPS will do it: High-precision photometry Achieve a photometric precision similar to Kepler Observing brighter stars anywhere on the sky

CHEOPS strategy: Follow-up TESS (2017) Me asu re a ccu rat e li ght Ground-based transit surveys NGTS (2014) cur ves for Ne ptu n es rths er-ea p u s n w t of kno ransi he t Detect t Ground-based RV surveys HARPS, HARPS-N, HIRES, SOPHIE (on going) ESPRESSO (2017) 20% open time (3.5-yr mission) K2 (2014)

CHEOPS legacy JWST 2018 E-ELT, GMT, TMT ~2020

ESA s first small mission requirements Science Top-rated science in any area of space sciences Cost Total cost < 150 M ESA cost < 50 M (fixed) Schedule Developed and launched within 4 years

ESA s first small mission requirements Science 1st mission dedicated to exoplanet follow-up Top-rated science in any area of space sciences Cost ESA cost < 50 M (fixed) Total cost < 150 M Schedule ~100 M Platform Detector Launch Developed and launched within 4 years

CHEOPS in Europe CHEOPS consortium Small mission, large organization

CHEOPS consortium in Europe Small mission, large organization Switzerland Mission Lead Instrument Team Science Operations Center PI: Prof. Willy Benz, U. Bern

CHEOPS consortium in Europe Small mission, large organization Switzerland Mission Lead Instrument Team Science Operations Center Germany Focal Plane Assembly Belgium Baffle Italy Optics Austria Digital Processing Unit Hungary Radiators

CHEOPS consortium in Europe Small mission, large organization Switzerland Mission Lead Instrument Team Science Operations Center Sweden Data simulator Germany Focal Plane Assembly UK Mission Operations Center France Data Reduction Software Portugal Mission Planning, Archive, & Data Reduction Software Belgium Baffle Italy Optics Austria Digital Processing Unit Hungary Radiators

CHEOPS in Europe CHEOPS consortium Small mission, large organization Switzerland Austria Belgium France Germany Hungary Italy Portugal Sweden UK University of Bern (project lead)! University of Geneva! Swiss Space Center (EPFL)! ETH Zürich Institut für Weltraumforschung, Graz Centre Spatial de Liège! Université de Liège Laboratoire d astrophysique de Marseille DLR Institute for Planetary Research Konkoly Observatory Osservatorio Astrofisico di Catania INAF! Osservatorio Astronomico di Padova INAF! Università di Padova Centro de Astrofisica da Universidade do Porto! Deimos Engenharia Onsala Space Observatory, Chalmers University! University of Stockholm University of Warwick

CHEOPS spacecraft telescope cover radiators instrument baffle star tracker Total weight: 250 kg Total length: 1.3 m platform Two competing platform concepts

CHEOPS instrument system radiator radiator isostatic mount optical bench radiator support and optics hood structure tube CCD & FPA BEO with folding mirror secondary mirror primary mirror Telescope : 32 cm Total weight: 60 kg

CHEOPS observations Frame-transfer CCD telescope FoV: 20 1k 1k subarray image 200 200 pixels (4 arcmin2) On-board data stacking Measurement cadence: 1 min-1 30 pixels (30 ) CHEOPSim defocused PSF CHEOPS photometric precision Pointing stability: 8 (rms) jitter p-flat precision: 0.1% pixel-to-pixel

CHEOPS science requirements Measuring highly accurate signals 20 ppm accuracy over 6 hours for G-type stars with V < 9 mag 85 ppm accuracy over 3 hours for K-type stars with V < 12 mag

CHEOPS science requirements Measuring highly accurate signals 20 ppm accuracy over 6 hours for G-type stars with V < 9 mag 85 ppm accuracy over 3 hours for K-type stars with V < 12 mag Pointing at any location over more than 50% of the sky Can choose the best targets for transit search Can confirm transiting planets on longer orbits (e.g., for TESS) Can search for additional planets

orbit 600 800 km OBSERVATIONS 35 120 Sun

CHEOPS sky

Summary CHEOPS is Europe s next exoplanet mission (2017) is a follow-up machine, CHEOPS Knowing when to look at a star makes CHEOPS extremely efficient Provides a first-step characterization of low-mass exoplanets Collects the golden targets for future in-depth characterization Allows 20% open time for high-precision photometry science Next milestones More information in: Choice of the platform Preliminary Design Review (May-June) ESA CHEOPS Definition Study Report http://sci.esa.int/cosmic-vision/53541-cheops-definition-study-report-red-book/

Summary CHEOPS is Europe s next exoplanet mission (2017) is a follow-up machine, CHEOPS Knowing when to look at a star makes CHEOPS extremely efficient Provides a first-step characterization of low-mass exoplanets Collects the golden targets for future in-depth characterization Allows 20% open time for high-precision photometry science Next milestones More information in: Choice of the platform Preliminary Design Review (May-June) ESA CHEOPS Definition Study Report http://sci.esa.int/cosmic-vision/53541-cheops-definition-study-report-red-book/ Thank you Cảm ơn

CHEOPS prescreening for JWST What TESS can do for CHEOPS: Provide targets for CHEOPS follow-up What CHEOPS can do for TESS: Maximize science impact of JWST transit observations Validate TESS long-period candidates Precise radii & densities for TESS planets: thick atmospheres? Planet parameters vs. cloud correlation? Obtain long-baseline TTVs for TESS planets

CHEOPS in Europe Science Team Board Yann Alibert Universität Bern Tamás Bárczy Admatis François Bouchy Alexis Brandeker Christopher Broeg Juan Cabrera David Ehrenreich Anders Erikson Andrea Fortier Michaël Gillon Manuel Güdel Kevin Heng Laboratoire d'astrophysique de Marseille Stockholms Universitet Universität Bern DLR Institut für Planetenforschung Université de Genève DLR Institut für Planetenforschung Universität Bern Université de Liège Universität Wien Universität Bern Wolfgang Baumjohann Willy Benz Magali Deleuil Michaël Gillon Antonio Gutiérrez Peña László Kiss Alain Lecavelier René Liseau Göran Olofsson Institut für Weltraumforschung Universität Bern Laboratoire d'astrophysique de Marseille Université de Liège Deimos Konkoly Obszervatórium Institut d'astrophysique de Paris Chalmers Tekniska Högskola Stockholms Universitet Gyula Szabó Konkoly Obszervatórium Giampaolo Piotto Università degli Studi di Padova Helmut Lammer Christophe Lovis Michael R. Meyer Isabella Pagano Giampaolo Piotto Didier Queloz Roberto Ragazzoni Sérgio Sousa Institut für Weltraumforschung Université de Genève Eidgenössische Technische Hochschule Zürich INAF Osservatorio Astrofisico di Catania Università degli Studi di Padova Université de Genève INAF Osservatorio Astronomico di Padova Centro de Astrofísica da Universidade do Porto Roberto Ragazzoni Étienne Renotte Nuno C. Santos Tilman Spohn Manfred Steller Nicolas Thomas Stéphane Udry INAF Osservatorio Astronomico di Padova Université de Liège Centro de Astrofísica da Universidade do Porto DLR Institut für Planetenforschung Institut für Weltraumforschung Universität Bern Université de Genève Tilman Spohn DLR Institut für Planetenforschung Valérie Van Grootel Université de Liège