Ruthenium redox equilibria 1. Thermodynamic stability of Ru(III) and Ru(IV) hydroxides

Similar documents
Microbial Biogeochemistry & Global Change SWES 410/510 Dr. Jon Chorover 1/31/14

Learning Outcomes: At the end of this assignment, students will be able to:

Solutions Solubility. Chapter 14

Part A Answer all questions in this part.

Miami Dade College CHM Second Semester General Chemistry

Soluble: A solute that dissolves in a specific solvent. Insoluble: A solute that will not dissolve in a specific solvent. "Like Dissolves Like"

1. Forming a Precipitate 2. Solubility Product Constant (One Source of Ions)

AP Chemistry. Introduction to Solubility Equilibria. Slide 1 / 91 Slide 2 / 91. Slide 3 / 91. Slide 4 / 91. Slide 5 / 91.

Topics in the November 2014 Exam Paper for CHEM1101

Identify the bonding types molecular, covalent network, ionic, and metallic - in various solids (11.8)

Chemistry 2000 (Spring 2014) Problem Set #7: Redox Reactions and Electrochemistry Solutions

15.1 The Concept of Equilibrium

RedOx Chemistry. with. Dr. Nick

Solutions. Heterogenous Mixture (Not a Solution) Ice Water (w/ Ice Cubes) Smog Oil and Water

Student Achievement. Chemistry 12

2nd Semester Exam Review. C. K eq = [N 2][H 2 ]

Solutions. Experiment 11. Various Types of Solutions. Solution: A homogenous mixture consisting of ions or molecules

SIR MICHELANGELO REFALO

CHM 152 Final Exam Review

Le Châtelier's Principle. Chemical Equilibria & the Application of Le Châtelier s Principle to General Equilibria. Using Le Châtelier's Principle

Chemistry Grade : 11 Term-3/Final Exam Revision Sheet

SIR MICHELANGELO REFALO SIXTH FORM

5. Which barium salt is insoluble in water? (1) BaCO3 (3) Ba(ClO4)2 (2) BaCl2 (4) Ba(NO3)2

Oxidation-reduction (redox) reactions

CH 223 Sample Exam Exam II Name: Lab Section:

Redox reactions.

Structure & properties of water

Chemistry 1B Experiment 17 89

Chapter Test A. Chapter: Chemical Equilibrium

Wed Sep 5, Characteristics of Water

A.P. Chemistry. Unit #11. Chemical Equilibrium

REACTIONS IN AQUEOUS SOLUTIONS

Chapter 5. Chemistry for Changing Times, Chemical Accounting. Lecture Outlines. John Singer, Jackson Community College. Thirteenth Edition

Chapter Outline. The Dynamics of Chemical Equilibrium

Solubility Equilibria

SOLUBILITY AND PRECIPITATION EQUILIBRIA

SOLUBILITY AND PRECIPITATION EQUILIBRIA

FARMINGDALE STATE COLLEGE DEPARTMENT OF CHEMISTRY

8. Draw Lewis structures and determine molecular geometry based on VSEPR Theory

Table of Contents Preface PART I. MATHEMATICS

Chemistry 12 - Learning Outcomes

Assignment No. 6. Models of solution chemistry

Chapter 2: Equilibrium Thermodynamics and Kinetics

Thermodynamics of Borax Dissolution

CHEMISTRY 12 SYLLABUS Online 2010

UNIVERSITY OF SIERRA LEONE FOURAH BAY COLLEGE. FIRST EXAMINATION FOR THE DEGREE OF B. Sc. HONOURS LEVEL I SECOND SEMESTER EXAMINATION

Chapter 16. Solubility Equilibria 10/14/2010. Solubility Equilibria. Solubility Product (Constant), K sp. Solubility and the Solubility Product

Equation Writing for a Neutralization Reaction

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question.

Redox Reactions. Reduction Oxidation

Week 9 Solubility & Intro electrochem

CHM 213 (INORGANIC CHEMISTRY): Applications of Standard Reduction Potentials. Compiled by. Dr. A.O. Oladebeye

OLI Tips #52 Alloy Manager

Big Idea 1: Structure of Matter Learning Objective Check List

Chemistry 112 ACS Final

Equilibri acido-base ed equilibri di solubilità. Capitolo 16

Chapter 17 Additional Aspects of

LS1a Fall 2014 Practice Problem Set #1. 1. Consider a hypothetical reaction carried out at constant temperature and pressure:

Molar Mass to Moles Conversion. A mole is an amount of substance. The term can be used for any substance and 23

PRACTICE MULTIPLE CHOICE- Chapters 17&18

Stoichiometry: Chemical Calculations. Chemistry is concerned with the properties and the interchange of matter by reaction i.e. structure and change.

Chapter 1 The Atomic Nature of Matter

Proposed Content for the Project (Scope and Sequence)

Enduring Understandings & Essential Knowledge for AP Chemistry

Chapter 17. Additional Aspects of Equilibrium

Brass, a solid solution of Zn and Cu, is used to make musical instruments and many other objects.

Solutions and Solubility. BHS Chemistry

In previous chapters we have studied: Why does a change occur in the first place? Methane burns but not the reverse CH 4 + 2O 2 CO 2 + 2H 2 O

12A Entropy. Entropy change ( S) N Goalby chemrevise.org 1. System and Surroundings

Solubility and Complex-ion Equilibria

Groundwater chemistry

Chemistry 112 Name Exam III Form A Section November 13,

Acid-Base Equilibria and Solubility Equilibria Chapter 17

Chapter 4 Reactions in Aqueous Solution

Copyright 2018 Dan Dill 1

AP CHEMISTRY 2009 SCORING GUIDELINES

I. Multiple Choice Questions (Type-I) is K p

Unit 15 Solutions and Molarity

Lecture 21 Cations, Anions and Hydrolysis in Water:

Operational Skills. Operational Skills. The Common Ion Effect. A Problem To Consider. A Problem To Consider APPLICATIONS OF AQUEOUS EQUILIBRIA

1) REACTIONs: a) Al4C3(s) + H2O (l)=> Al(OH)3 (s) + CH4 (g) Solution : Al4C3(s) + 12 H2O (l)=> 4Al(OH)3 (s) + 3CH4 (g)

AP Chemistry. Introduction to Solubility Equilibria. Slide 1 / 91 Slide 2 / 91. Slide 3 / 91. Slide 4 / 91. Slide 5 / 91.

Department of Chemistry University of Texas at Austin

Properties of Solutions

b. The Arrhenius equation relates the rate constant k of a reaction to its activation energy Ea and the surrounding temperature T:

Modeling of the solubility of Naproxen and Trimethoprim in different solvents at different temperature

Solubility Equilibrium

Chapter 17.3 Entropy and Spontaneity Objectives Define entropy and examine its statistical nature Predict the sign of entropy changes for phase

Chapter 19 Chemical Thermodynamics

Exam3Fall2009thermoelectro

Chemistry 130 (1,2) Dr. J. F. C. Turner Examination 3 2 hours Please answer all parts of all questions and show all your work. ZnS s.

Chapter 19 Chemical Thermodynamics

1. What is a solution? and think

Study Guide for Final Exam, Ch , Chem1B, General Chemistry II

Solubility Equilibria

Name: Class: Date: SHORT ANSWER Answer the following questions in the space provided.

Part One: Solubility Equilibria. Insoluble and slightly soluble compounds are important in nature and commercially.

V(STP) No.of mequivalents = n. Analytical chemistry

15/04/2018 EQUILIBRIUM- GENERAL CONCEPTS

Exp.3 Determination of the Thermodynamic functions for the Borax Solution

Transcription:

J. Electrochem. Sci. Eng. 6(1) (16) 13-133; doi: 1.5599/jese.6 Original scientific paper Open Access : : ISSN 1847-986 www.jese-online.org thenium redox equilibria 1. Thermodynamic stability of (III) and (IV) hydroxides Igor Povar, Oxana Spinu Institute of hemistry of the Academy of Sciences of Moldova, 3 Academiei str., MD 8, hisinau, Moldova orresponding Author: ipovar@yahoo.ca; Tel.: +373 73 97 36; Fax: +373 73 97 36 Received: September 3, 15; Accepted: February 18, 16 Abstract On the basis of the selected thermodynamic data for (III) and (IV) compounds in addition to original thermodynamic and graphical approach used in this paper, the thermodynamic stability areas of sparingly soluble hydroxides as well as the repartition of their soluble and insoluble chemical species towards the solution ph and initial concentrations of ruthenium in heterogeneous mixture solid phase saturated solution have been investigated. By means of the ΔG ph diagrams, the areas of thermodynamic stability of (III) and (IV) hydroxides have been established for a number of analytical concentrations in heterogeneous mixtures. The diagrams of heterogeneous and homogeneous chemical equilibria have been used for graphical representation of complex equilibria in aqueous solutions containing (III) and (IV). The obtained results, based on the thermodynamic analysis and graphic design of the calculated data in the form of the diagrams of heterogeneous chemical equilibria, are in good agreement with the available experimental data. Keywords Heterogeneous chemical equilibria; Sparingly soluble hydroxides; Soluble and insoluble ruthenium chemical species; Thermodynamic analysis Introduction hemistry of ruthenium is characterized by some specific properties, such as the existence of various valences from to 8, the relatively easy formation of stable polynuclear compounds, occurrence of various disproportionation and comproportionation processes etc. Widespread application of ruthenium and its compounds in various practical purposes serves as an impulsion for the development of the ruthenium applied analytical chemistry. urrently, selective fast and doi:1.5599/jese.6 13

J. Electrochem. Sci. Eng. 6(1) (16) 13-133 RUTHENIUM REDOX EQUILIBRIA: 1. THERMODYNAMI STABILITY efficient methods for determination of ruthenium were developed [1-5]. The choice of the appropriate method requires knowledge of the forms of existence of ruthenium in solution and the composition of its complex compounds. Depending on the solution ph, metal ion concentrations in solution, presence of oxidants and reductants as well as their concentration, ruthenium can exist in the form of several complexes, each exhibiting its own catalytic and voltammetric activities [6,7]. Within research of the reduction oxidation mechanism, it is necessary to know if some coexisting species are reduced simultaneously or, conversely, the process has a stepwise character and one species reduces gradually [8]. The knowledge of the forms of metal ion in solution facilitates the choice of optimal sorption and extraction conditions. Therefore, the use of suitable analytical methods and procedures of ruthenium research involves a priori knowledge of its forms of existence for the interpretation of mechanisms of predominant reactions of certain species for selecting a suitable procedure. It is known that the assessment of solubility (S) based on the value of the solubility product can lead to large misinterpretation. This is explained by the fact that the precipitate (solid phase) components in solution are subjected to different reactions of hydrolysis, complex formation etc. Generally, these secondary processes contribute to increasing the precipitate solubility [9-15]. A particularly strong influence on the precipitate solubility (S) exercises the solution ph value. Determination of the dependence of S on ph requires extensive calculations, since this method involves solving systems of nonlinear equations for mass balance (MB). However, from the solubility diagrams one cannot draw conclusions on the thermodynamic stability of the solid phase when the precipitate solubility is relatively high. Authors [9-15] proposed a strict criterion for assessing the solid phase stability, based on the Gibbs energy change value of the precipitation - dissolution process of solid phases. In general, Gibbs energy variation calculations for these systems were examined in [9]. The paper presents a thermodynamic approach for the complex chemical equilibria investigation of two-phase systems containing (III) and (IV) hydroxides. This approach utilizes thermodynamic relationships combined with original mass balance constraints, where the solid phases are explicitly expressed. The factors influencing the distribution and concentrations of various soluble ruthenium species were taken into account. The new type of diagrams, based on thermodynamics, graphical and computerized methods, which quantitatively describe the distribution of soluble and insoluble, monomeric and polymeric ruthenium species in a large range of ph values was used. The developed thermodynamic approach is based on: 1. Analysis of thermodynamic stability areas for the solid phase;. Determination of the molar fractions of chemical species in heterogeneous systems precipitate-solution based on the MB equations of the method of residual concentrations (MR). Theory and calculations Thermodynamic stability areas of sparingly soluble (III) and (IV) hydroxides In the present paper the relations, obtained in [1], will be applied to determine the thermodynamic stability of hydroxides (III) and (IV) under real conditions, different from standard ones. We will expose the quintessence of this method on the example of the equilibrium of (III) hydroxide with aqueous solution: 14

I. Povar et al. J. Electrochem. Sci. Eng. 6(1) (16) 13-133 (OH) H O+3H = +4H O, lgk 1.64 (1) + 3+ 3 S where K S is the equilibrium constant of reaction (1). The variation of the Gibbs energy of reaction (1) under standard conditions is equal to G G ( ) 4 G (H O) G ((OH) H O (s)) RT lnk () 3+ r f f f 3 S where G () i is standard Gibbs energy of formation of species i. The selected values for G () i f f [16] are shown in Table 1. Table 1. The values of standard Gibbs energy of formation of ruthenium chemical species at 98.15 K hemical species G () i / kj f mol-1 hemical species G () i f / kj mol-1 5 4+ H O (aq) -391. H (OH) (aq) -1877 4 1-3+ HO 5 (aq) -35.4 (aq) 173.4 - + O 4 (aq) -5.1 (OH) (aq) -51. + O (aq) -36.6 (OH) (aq) -8.9-4 8+ O H O (am) -691. (OH) (aq) -193.5 4 4 + (OH) 3 HO (am) -766. (aq) 15.3 O 5 (aq) -445 HO (aq) -37.19 + - (OH) (am) -1.8 OH (aq) -157.33 But the G r value cannot serve as a characteristic of thermodynamic stability of (III) hydroxide under real conditions. In this case, the equilibrium is described by the equation of isothermal reaction that for the scheme (1) takes the form: G (s) G (s) RT ln( /[H ] ) (3) + 3 r r where denotes the concentration of ruthenium in heterogeneous mixture. It is easy to see that the Gibbs energy change of reaction (1) depends strongly on the ph value. At the same time the equation (3) can also be applied for the determination of thermodynamic stability of the ruthenium(iii) hydroxide as the 3+ ion, depending on the ph and the initial concentration of the ruthenium,, is subjected to complex chemical transformations in solution: 1. +H O=(OH) +H, lgk.4 3+ + + 1. +H O=(OH) +H, lgk 3.5 3+ + + 3. 4 +4H O= (OH) +4H, lgk 1.8 3+ 8+ + 4 4 44 (4) (The hydrolysis constants were calculated from G r values using the equation Gij RT lnkij). Obviously, the ΔG calculation requires accounting for all equilibria (4). A rigorous thermodynamic analysis shows that the change in Gibbs energy of reaction (1) in real conditions is described by the equation [13]: G (s) G RT ln RT ln( /[ H ] ). (5) 3 r r Here α i represents the hydrolysis coefficient of reactions (4) [13], defined as: doi:1.5599/jese.6 15

J. Electrochem. Sci. Eng. 6(1) (16) 13-133 RUTHENIUM REDOX EQUILIBRIA: 1. THERMODYNAMI STABILITY 1 K [H ] K [H ] 4 K [ ][H ] (6) + -1 + - 3+ + -3 1 44 In relation (6) [ 3+ ] is the equilibrium concentration of the ruthenium(iii) ion, which is calculated for the fixed values of ph and from the MB equation: =[ ]+[R(OH) ]+[(OH) ]+4[ (OH) ] 3+ + + 8+ 4 4 [ ]+ K [ ][H ] K [ [H ] 4 K [ ] [H ] =[ ] 3+ 3+ + -1 3+ + - 3+ 4 + -4 3+ 1 44 The changes in equation (7) are made by using the consequence of mass action law: [ (OH) ] K [ ] [H ] i j ij 3+ i + -j In the case of ruthenium(iv) hydroxide similar relationships are obtained. We present here only the basic equations: O H O+H =(OH) +H O, lgk.91 (8) + + + S G (s) G RT ln( /[H ] ) RT ln (9) + r r G RT lnk r S where α is coefficient of hydrolysis reactions of 4(OH) +4H O= (OH) +4H, lgk 7.19 + 4+ + 4 1 44 calculated by the equation: + (OH) : (7) =1+4K [(OH) ] [H ] + 4 + -4 44 (1) The equilibrium concentration of from MB conditions: =[(OH) +4[ (OH) ]=[(OH) ](1+4K + (OH) ion is determined for respective values of ph and [(OH) [H ] =[(OH) ] + 4+ + + + -4 + 4 1 44 Within this method, when ΔG r < the solid phase is thermodynamically unstable towards dissolution according the schemes (1) and (8) and, vice-versa, for the values ΔG r > the formation 6 of solid phase takes place. Results of calculation of the ΔG r dependence on ph for 1 and 1-4 mol L -1 for both the hydroxides are presented graphically in Figs. 1 and. From these graphs it is observed that in acidic solutions (III) and (IV) hydroxides are thermodynamically unstable in regard to dissolution. From the G (ph) r, diagrams the ph of beginning of precipitation (ph ) corresponds to the condition ΔG r =. In the case of ruthenium(iii) hydroxide, (OH) 3 H O (s), one obtains for = 1-4 mol L -1, ph.4 and for = 1-6 mol L -1, ph 4.4 (Table ). Therefore, by increasing in mixtures, the ph value shifts to region of acidic solutions. For ruthenium(iv) hydroxide, O H O (s), from the ΔG r (ph) diagram one can see that ph is 3.93 for = 1-4 mol L -1, ph is 3.93 for = 1-6 mol L -1 (see also Table ). 16

I. Povar et al. J. Electrochem. Sci. Eng. 6(1) (16) 13-133 Table. Areas of thermodynamic stability of solid phases, ΔG r > of the (III) and (IV) hydroxides in the system n+ -H O The precipitate composition Area of thermodynamic stability of solid phase 4 1 mol L -1-6 =1 mol L-1 (OH) 3 H O (s).4 < ph < 14. 4.4 < ph < 14. O H O (s) 3.93 < ph < 14. 4.43 < ph < 14. Figure 1. The dependence of the Gibbs energy change on solution ph for the precipitationdissolution process of (III) hydroxide. : 1 1-4 mol L -1 ; - 1-6 mol L -1 Figure. The curves ΔG r(s) (ph) of the dissolution-precipitation process of (IV) hydroxide, : 1 1-4 mol L -1 ; - 1-6 mol L -1 doi:1.5599/jese.6 17

J. Electrochem. Sci. Eng. 6(1) (16) 13-133 RUTHENIUM REDOX EQUILIBRIA: 1. THERMODYNAMI STABILITY Repartition of (III) and (IV) soluble and insoluble chemical species towards the solution ph and initial concentrations of ruthenium in heterogeneous mixture solid phase saturated solution In formulating MB conditions for the precipitate components in heterogeneous mixture we have taken into consideration the quantity of each component in the solid and liquid phases r (residual quantity). Knowing the residual concentration of i-th ion ( i ) in solution, its quantity in precipitate in a unit volume is easily calculated as the difference between the analytical concentration in the mixture ( i ) and that in solution. Therefore, in terms of molar concentrations, r i i i where Δ i denotes the quantity of i ion in precipitate (moles) in 1 L of solution. If this quantity is recalculated related to the mixture volume (V am ), then r m m m i i i r where mi, mi and mi denote the quantity of ion (in moles) in precipitate, in mixture and in volume of liquid phase, respectively. For several systems it was established [17], that this approximation can be applied for solutions up to.5 mol L -1. Initially, a set of possible reactions [18] in the system (IV) H O is taken into account: O H O (s) +H =(OH) +H O, K + + =[(OH) ][H ] + + - S 4(OH) +4H O= (OH) +4H, + 4+ + 4 1 K [ (OH) ][H ] /[(OH) ] 4+ + 4 + 4 4,4 4 1 (11) (1) The MB equation for (IV) is written as: +[(OH) ]+4[ (OH) ] r + 4+ 4 1 (13) r Taking into consideration equation (1), the expression for has the form: r + 4+ 4 + -4 + =[(OH) ]+4 K4,4[ 4(OH) 1 ] [H ] =[(OH) ] Here α i is the coefficient of hydrolysis reactions for ruthenium: + 4 + =1+4 K [(OH) ] [H ] 4,4 From equation (11) it follows + + [(OH) ] [H ] K S Substituting this expression in (13), one gets: K [H ] 4 K K [H ] (14) + 4 + 4 S 4,4 S Results and discussion From obtained relations, Δ for the set of values (, [H + ] = 1 -ph ), can be easily determined. Further, the concentrations of the chemical species in solution are calculated. Then the molar fractions of chemical species in solution are computed. Finally, the molar fractions of chemical species in heterogeneous mixture, in function of ph for constant values of are determined, using the equations: / ; [(OH) ]/ ; 4[ (OH) ]/ ; (15) + 4+ s 1 44 4 1 sum 1 44 18

I. Povar et al. J. Electrochem. Sci. Eng. 6(1) (16) 13-133 The subscript index (sum) symbolizes the sum of the all soluble species fractions containing (IV). It is easily to observe that sum S 1. The molar fraction of the metal ion from precipitate is defined also as the degree of precipitation [1,13]. For heterogeneous equilibria, the molar fractions of chemical species depend on the mixture initial composition, in this case of, even in the absence of polynuclear complexes, thus f (,ph). onsequently, the diagrams of repartition in heterogeneous i systems (DRHS) can be plotted in coordinates ( i,ph) =co nst or (, ) i ph=const. It should be mentioned that the relationships derived above is valid only within the thermodynamic stability area of the precipitate ( G r < ) [9]. Analogically, DRHS are calculated for the system (III) H O, where the following equilibria are possible [11]: (OH) H O (s) +3H +4H O, lgk 1.64 (16) + 3+ 3 S +H O=(OH) +H, lgk.4 (17) 3+ + + 1 +H O=(OH) +H, lgk 3.5 (18) 3+ + + 4 +4H O= (OH) +4H, lgk 1.8 (19) 3+ 8+ + 4 4 44 Here, the particular equilibrium constants represent: K =[ ][H ] () 3+ + -3 S K (1) + + 3+ 1 =[(OH) ][H ]/[ ] K =[(OH) ][H ] /[ ] () + + 3+ K =[ (OH) [H ] /[ ] (3) 8+ + 4 3+ 4 44 4 4 The MB equations for this system are following: r =[ ]+[(OH) ]+[(OH) ]+4[ (OH) ] r 3+ + + 8+ 4 4 [ ](1+ K [H ] + K [H ] +4 K [ ] [H ] 3+ + -1 + - 3+ 3 + -4 1 44 (4) (5) The equilibrium concentration of 3+ ion is calculated using the relation: [ ] K [H ] 3+ + 3 S From equations (4) and (5) one obtains the expression for calculating Δ, then the equilibrium concentrations of the free (III) ion and its hydroxocomplexes are determined. Finally, on the diagram of repartition the γ ij (ph) functions are plotted for fixed values: / ; [ ]/ ; =[(OH) ]/ 3+ + S 1 =[(OH) ]/ ; =4[ (OH) ] / + 8+ 44 4 4 Sum 1 44 Therefore, the procedure of DRHS construction includes several stages: (6) doi:1.5599/jese.6 19

J. Electrochem. Sci. Eng. 6(1) (16) 13-133 RUTHENIUM REDOX EQUILIBRIA: 1. THERMODYNAMI STABILITY 1. The determination of the thermodynamic stability of solid phases (Δ > ) in function of solution ph or.. alculation of the molar fractions of all species γ i in the solid phase and solution within the ph (or ) range, established at the first stage. 3. For the image integrity, outside this range, in the case of homogeneous solution, the molar fractions of chemical species are calculated by typical equations for plotting the diagrams of distribution in solutions. Usually, in the γ i (ph) diagrams the ph values vary between and 14. By the developed diagrams, the precipitate quantity (in moles or grams), in 1 L of solution for certain ph and values, is easily determined. For example, from Fig. 3(b) it results that for ph 3.95 and =1-4 mol L -1 the degree of precipitation S =.5, whence it follows that Δ = S =5 1-5 mol L -1 or quantity of precipitate P (in g L -1 ) P M(O H O)=5 1-5 mol L - 1 169 g mol -1 = =8.45 1-3 g L -1. Thus, under these conditions in one liter of solution 8.45 mg of ruthenium(iv) hydroxide is deposited. a b Figure 3. Repartition for the system (OH) 3(S) H O saturated aqueous solution, : a) 1-4 ; b) 1-6 mol L -1 13

I. Povar et al. J. Electrochem. Sci. Eng. 6(1) (16) 13-133 In Fig. 3 (a,b) and 4 (a,b) there are shown DRHS for both systems for two values of : 1-4 and 1-6 mol L -1. From these diagrams, the ph regions of predominance of different (III) and (IV) species are depicted in Table 3. a b Figure 4. Repartition for the system O H O (S) H O ; : a) 1-4, b) 1-6 mol L -1 doi:1.5599/jese.6 131

J. Electrochem. Sci. Eng. 6(1) (16) 13-133 RUTHENIUM REDOX EQUILIBRIA: 1. THERMODYNAMI STABILITY onclusions Table 3. ph regions of predominance of chemical species in A - (OH) 3(S) H O H O and B - O H O (S) H O system System hemical species ph regions of predominance A B = 1-4 mol L -1 = 1-6 mol L -1 3+. < ph < 1.76. < ph < 1.76 + (OH) 1.76 < ph <.4 1.76 < ph < 4.4 (OH) 3 H O (s).4< ph < 14. 4.4 < ph < 14. + (OH). < ph < 1.5. < ph <.55 4+ 4(OH) 1.5 < ph < 3.93.55 < ph < 4.43 1 O H O (s) 3.93 < ph < 14. 4.43 < ph < 14. From the obtained results the following conclusions can be drawn: 1. By means of the diagrams ΔG ph, the areas of thermodynamic stability of (III) and (IV) hydroxides have been established for a number of analytical concentrations in heterogeneous mixtures. The diagrams of heterogeneous and homogeneous chemical equilibria have been used for graphical representation of complex equilibria in aqueous solutions containing (III) and (IV). 8+. The ruthenium (III) polynuclear hydroxocomplex 4(OH) 4 (aq)for the considered values is not formed. 3. At increasing from 1-6 to 1-4 mol L -1, the region of predominance of the ruthenium(iv) 4+ polynuclear complex 4(OH) 1 shifts to the acidic solutions and is increased by one ph unit. + 4. The ruthenium(iii) monohydroxide (OH) is formed in insignificant amounts under analyzed conditions. 5. The thermodynamic stability area of solid phases increases with growing the initial concentration of ruthenium in mixture. References [1] N. Radhey, A. Srivastava and S. Prasad, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 69 (8) 193-197. [] B. Rezaei, M. Najmeh, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 66 (7) 869-873. [3] M. Balcerzak, ritical Reviews in Analytical hemistry 3 () 181-6. [4] A. Amin, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 58 () 1831-1837. [5] E. Zambrzycka et al., Spectrochimica Acta Part B: Atomic Spectroscopy 6 (11) 58-516. [6] S. Aiki et al., Journal of organometallic chemistry 696 (11) 131-134. [7]. Locatelli, Electroanalysis 3 (11) 139-1336. [8] E. Seddon, R. Kenneth, The chemistry of ruthenium, Elsevier, Amsterdam, Netherlands, 13. [9] I. Povar, O. Spinu, entral European Journal of hemistry 1 (14) 877-885. [1] I. Povar, V. su, anadian Journal of hemistry 9 (1) 36-33. [11] I. Povar, anadian Journal of hemistry 79 (11) 1166-117. [1] I. Povar, Journal of Analytical hemistry 53 (1998) 1113-1119. [English translation] 13

I. Povar et al. J. Electrochem. Sci. Eng. 6(1) (16) 13-133 [13] I. Povar, ssian Journal of Inorganic hemistry 4 (1997) 67-61. [English translation] [14] I. Povar et al., hemistry Journal of Moldova 6 (11) 57-61. [15] I. Povar, O. Spinu, Solvent Extraction and Ion Exchange 33 (15) 196-9. [16] J. Rard, hemical Reviews 85 (1985) 1-39. [17] E. Beresnev, The method of residual concentrations, Nauka, Moscow, ssia, 199. [In ssian] [18] I. Povar, O. Spinu, Fifth Regional Symposium on Electrochemistry South East Europe (RSE- SEE), Book of Abstracts, Pravets, Bulgaria, 15, p. 4. 16 by the authors; licensee IAP, Zagreb, roatia. This article is an open-access article distributed under the terms and conditions of the reative ommons Attribution license (http://creativecommons.org/licenses/by/4./) doi:1.5599/jese.6 133