Physics Midterm Review Sheet

Similar documents
Practice Honors Physics Test: Newtons Laws

Page 1. Name: Section This assignment is due at the first class in 2019 Part I Show all work!

Regents Physics. Physics Midterm Review - Multiple Choice Problems

BEFORE YOU READ. Forces and Motion Gravity and Motion STUDY TIP. After you read this section, you should be able to answer these questions:

1. A baseball player throws a ball horizontally. Which statement best describes the ball's motion after it is thrown? [Neglect the effect of

7. Two forces are applied to a 2.0-kilogram block on a frictionless horizontal surface, as shown in the diagram below.

The diagram below shows a block on a horizontal frictionless surface. A 100.-newton force acts on the block at an angle of 30. above the horizontal.

Page 1. Name:

PHYSICS MIDTERM REVIEW PACKET

Introductory Physics, High School Learning Standards for a Full First-Year Course

(f ) From the graph, obtain the height of the tube given the mass of the dart is 20 grams and the constant force applied in the tube is 2 newtons.

Chapter 4 Newton s Laws

Projectile and Circular Motion Review Packet

AP Physics I Summer Work

KEY NNHS Introductory Physics: MCAS Review Packet #1 Introductory Physics, High School Learning Standards for a Full First-Year Course

Physics Test Review: Mechanics Session: Name:

AP Physics First Nine Weeks Review

Centripetal Force Review. 1. The graph given shows the weight of three objects on planet X as a function of their mass.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Diagram 1 A) B - A. B) A - B. C) A + B. D) A B.

1. Which one of the following situations is an example of an object with a non-zero kinetic energy?

Conceptual Integrated Science, 2e (Hewitt et al.) Chapter 2 Describing Motion. Multiple-Choice Questions

An object moves back and forth, as shown in the position-time graph. At which points is the velocity positive?

5. Use the graph below to determine the displacement of the object at the end of the first seven seconds.

PRACTICE TEST for Midterm Exam

C) D) 2. The diagram below shows a worker using a rope to pull a cart.

Base your answers to questions 5 and 6 on the information below.

Centripetal force keeps an Rotation and Revolution

Physics Semester 1 Review

Introductory Physics, High School Learning Standards for a Full First-Year Course

Chapter 3 Laws of Motion

9/20/11. Physics 101 Tuesday 9/20/11 Class 8" Chapter " Weight and Normal forces" Frictional Forces"

3/10/2019. What Is a Force? What Is a Force? Tactics: Drawing Force Vectors

Circular Motion Tangential Speed. Conceptual Physics 11 th Edition. Circular Motion Rotational Speed. Circular Motion

ConcepTest PowerPoints

Chapter 2 Motion Speed Speed. Definitions: Speed The rate at which something moves a given distance. Faster speeds = greater distances

Galileo & Friction 2000 yrs prior to inertia idea, the popular belief was that all objects want to come to a rest. BUT 1600's: Galileo reasoned that

What Is a Force? Slide Pearson Education, Inc.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Period: Date: Review - UCM & Energy. Page 1. Base your answers to questions 1 and 2 on the information and diagram below.

Newton's Third Law. Examples of Interaction Force Pairs

Exam 2--PHYS 101--F17

Choose the best answer to each question and write the appropriate letter in the space provided.

6. Find the centripetal acceleration of the car in m/s 2 a b c d e. 32.0

Chapter 1 about science 1. Differentiate between hypothesis and theory.

UIC Physics 105. Midterm 1 Practice Exam. Summer 2013 Best if used by July 2 PROBLEM POINTS SCORE

Chapter 6: Systems in Motion

A) more mass and more inertia C) the same as the magnitude of the rock's weight C) a man standing still on a bathroom scale

Force Test Review. 1. Give two ways to increase acceleration. You can increase acceleration by decreasing mass or increasing force.

Chapter 8: Rotational Motion

Physics Fall Semester Set 2: Chapters 5-9

LAHS Physics Semester 1 Final Practice Multiple Choice

The Laws of Motion. Newton s Second Law

Yanbu University College. General Studies Department. Phsc001 Course (111) Chapter2 (forces) Worksheet Solutions

Physics Midterm Review KEY

AP Physics 1 Work Energy and Power Practice Test Name

NEWTON S LAWS OF. Forces 1 st Law of Motion 2 nd Law of Motion 3 rd Law of Motion MOTION

Unit 5 Circular Motion and Gravitation

1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3

Proficient. a. The gravitational field caused by a. The student is able to approximate a numerical value of the

Practice Test for Midterm Exam

1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds?

Physics Semester 2 Final Exam Review Answers

Isaac Newton. What is the acceleration of the car? "If I have seen further it is by standing on the shoulders of giants" Isaac Newton to Robert Hooke

Exam #2, Chapters 5-7 PHYS 101-4M MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

8. The graph below shows a beetle s movement along a plant stem.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

AP Physics 1 Lesson 9 Homework Outcomes. Name

1d forces and motion

4. As you increase your push, will friction on the crate increase also? Ans. Yes it will.

Chapter 6 Study Questions Name: Class:

Chapter 2. Forces & Newton s Laws

Phys 111 Exam 1 September 22, 2015

Lecture 5. (sections )

Provide the units for each of the following quantities shown in the table. Circle all the quantities that are vectors.

The net force on a moving object is suddenly reduced to zero. As a consequence, the object

Semester one Physics

Practice Test Chapter 2 Forces and Motion

y(t) = y 0 t! 1 2 gt 2. With y(t final ) = 0, we can solve this for v 0 : v 0 A ĵ. With A! ĵ =!2 and A! = (2) 2 + (!

5. A car moves with a constant speed in a clockwise direction around a circular path of radius r, as represented in the diagram above.

Final Exam Review Answers

Momentum, Impulse, Work, Energy, Power, and Conservation Laws

Chapter: The Laws of Motion

Dynamics-Newton's 2nd Law

that when friction is present, a is needed to keep an object moving. 21. State Newton s first law of motion.

SECOND MIDTERM -- REVIEW PROBLEMS

Physics Final Practice Exam Part 1

Preparing for Six Flags Physics Concepts

Basic Physics 29:008 Spring 2005 Exam I

Physics Mid-Term Practice Exam

Conceptual Physics Fundamentals. Chapter 4: NEWTON S LAWS OF MOTION

FORCE AND MOTION. Conceptual Questions F G as seen in the figure. n, and a kinetic frictional force due to the rough table surface f k

CP Physics Practice 18 Week Test

Conceptual Physics Fundamentals

F 2 = 26 N.What third force will cause the object to be in equilibrium (acceleration equals zero)?

Unit 6: Forces II PRACTICE PROBLEMS

Chapter 6 Motion in Two Dimensions

Go on to the next page.

A scalar quantity has just magnitude A vector quantity has both magnitude and direction

Exam 2--PHYS 101--Fall 2014

Forces. Dynamics FORCEMAN

Transcription:

Practice Problems Physics Midterm Review Sheet 2012 2013 Aswers 1 Speed is: a a measure of how fast something is moving b the distance covered per unit time c always measured in units of distance divided by time d a rate e all of these 2 When you look at the speedometer in a moving car, you can see the car s: a instantaneous acceleration b average speed c average acceleration d instantaneous speed 3 Suppose you travel 20 meters in 4 seconds. Your average speed is: a 8000 m/s b 5 m/s c 2 m/s d 50 m/s e 0.2 m/s 4 If the force acting on an object doubles, what happens to the object s acceleration? a It quadruples b It doubles c It halves d It stays the same 5 Suppose you are in car going around a curve. The speedometer reads a constant 30 miles per hour. Which of the following is not true? a You and the car are accelerating. b Your speed is constant. c Your distance per unit time is constant. d Your velocity is constant. e There is a centripetal force acting on the car caused by the road. 6 A vector quantity is a quantity that has: a magnitude and time b magnitude and direction c time and direction d speed and velocity e speed and time 1

7 When velocity is represented by a vector: a the length of the arrow represents the speed b the length of the arrow is drawn to a suitable scale c the direction of the arrow shows the direction of the motion d the vector can be added to another vector to find the resultant e all of these 8 The vertical velocity of a projectile on Earth: a remains constant b changes at a rate of 10 m/s 2 c changes at a rate of 5 m/s 2 d changes, but not at a constant rate e never changes 9 The vector component that remains constant during a projectile is: a the vertical velocity b the time in the air c the speed d the horizontal velocity e the height 10 Acceleration is defined as: a the measure of how fast something is moving b the distance covered per unit time c the rate at which velocity is changing with respect to time d the time it takes to move from one speed to another e the time it takes to move from one place to another 11 When a person weighing 250-N sits on the floor, the floor exerts an upward force on the person of: a 5000 N b 1000 N c 500 N d 250 N e 50 N 12 A 10-N force and a 30-N force act in opposite directions. What is the net force on the object? a 50 N b 40 N c 30 N d 20 N e 10 N 13 A 10-N force and a 30-N force act in the same direction. What is the net force on the object? 2

f g h i j 50 N 40 N 30 N 20 N 10 N 14 The Law of Inertia applies to: k moving objects l objects at rest m both moving and nonmoving objects n none of these 15 As it falls from the top of a cliff in a vacuum, a rock s velocity and its acceleration due to gravity. o increases, increases p decreases, decreases q stays the same, increases r increases, stays the same s increases, decreases 16 Forces always occur: a. when velocities are constant b alone c in pairs d in triplets e. in the same direction 17 Which has more mass, a kilogram of feathers, a kilogram of iron, or a kilogram of apples? a the feathers b the iron c the apples d none, they are equal 18 The acceleration produced by a net force on an object is: a directly proportional to the size of the net force b in the same direction as the net force c inversely proportional to the mass of the object d all of the above 19 An unfortunate bug splatters against the windshield of a moving car. Compared to the acceleration of the car by the bug, the acceleration of the bug by the car is: a larger b smaller c the same 3

20 In order for an object to have kinetic energy, it must be: a moving b at rest c above the ground 21 In order for an object to have potential energy, it must be: a moving b at rest c above the ground 22 A rock is lifted to a certain height giving it 100-J of potential energy. It falls until it reaches a point just above the ground. At this point, how much kinetic energy does it have? a 400 J b 300 J c 200 J d 100 J e 50 J 23 If you whirl a rock on the end of a string and the string suddenly breaks, the rock will: a fly directly away from you. b fly directly toward you c fly off, tangent to its circular path d spiral away from your hand 24. A leaf falls from a tree and lands on a bench. Identify the force which is in reaction (reaction force) to the weight of the leaf. a. the force of the bench on the leaf b. the force of the leaf on the bench c. the force of the Earth on the leaf d. the force of the leaf on the Earth 4

24 Which of the following is a vector quantity? a mass b acceleration c temperature d energy 25 Which is the resultant vector for the following components? 26 A dolphin can swim 1.85 km/hr. How far does the dolphin travel after 0.60 hours? a 1.1 km b 2.5 km c 0.63 km d 3.7 km 27 A construction worker pushes a wheelbarrow 5.0 m with a horizontal force of 50.0 N. How much work is done by the worker on the wheelbarrow? a 10 J b 1250 J c 250 J d 55 J 28 Objects that are falling toward the Earth move (neglect air resistance): a faster and faster b slower and slower c at a constant velocity d slower then faster 29 Which of the following does NOT exhibit parabolic motion? a a frog jumping from land into water b a basketball thrown to a hoop c a flat piece of paper released from a window d a baseball thrown to home plate 30 If it is known that a net force acts on an object, then the object is most likely: 5

a b c d at rest moving with a constant velocity being accelerated losing mass 31 Which has greater tangential speed, the outer rim of a vinyl record or the inner rim? a the outer rim b the inner rim c neither, they both go at the same speed 32 Which of the following is the rate at which energy is transferred? a potential energy b kinetic energy c mechanical energy d power 33 A change in the force of gravity acting on an object will affect its: a mass b friction force c weight d field force 34 How much power is expended if a 500-N person is lifted 1.0 m in 2.0 seconds? a 50 W b 250 W c 500 W d 2500 W e 5000 W 35 If you lifted an object to four times the height you lifted another object of the same mass, you have done: a the same work b twice the work c half the work d four times the work 36 In order for an object to have kinetic energy, it must be: a moving b at rest c above the ground 37 In order for an object to have potential energy, it must be: a moving b at rest c above the ground 6

38 What is the direction of the force that acts on a spinning top? a outward b inward c up d down 39 A car that travels twice as fast as another identical car when braking to a stop will skid: a the same distance b twice as far c half as far d four times as far 40 The initial horizontal velocity of a projectile is its final horizontal velocity. a greater than b less than c equal to d inversely related to 41 A boulder falls from rest at the top of a cliff. What is the boulder s velocity after 3 seconds, assuming g = 10 m/s 2? a 10 m/s b 20 m/s c 30 m/s d 40 m/s e 90 m/s 42 How far will the same boulder fall after 5 seconds? a 5 m b 20 m c 50 m d 125 m e 250 m 7

43 How much does a 1-kg bag of nails weigh? a 20 N b 10 N c 7 N d 5 N 44 At what part of a path does a projectile have minimum speed? a when it is thrown up b half-way to the top c at the top of its path d when it returns to the ground 45 If a horse pulls on a wagon, the wagon will pull back with an equal force, according to Newton s 3rd law. Will the wagon be set into motion? a No, because the forces cancel each other. b No, because the combined weight is greater than gravity. c Yes, because there is a net force acting on the wagon. d Yes, because there is a time delay between action and reaction. e It cannot be determined. 46 Suppose you are in car going around a curve. The speedometer reads a constant 30 miles per hour. Which of the following is not true? a You and the car are accelerating. b Your speed is constant. c Your distance per unit time is constant. d Your velocity is constant. e There is a centripetal force acting on the car caused by the road. 47 A vector quantity is a quantity that has: a magnitude and time b magnitude and direction c time and direction d speed and velocity e speed and time 8

48 When velocity is represented by a vector: a the length of the arrow represents the speed b the length of the arrow is drawn to a suitable scale c the direction of the arrow shows the direction of the motion d the vector can be added to another vector to find the resultant e all of these 49 Acceleration is defined as: a the measure of how fast something is moving b the distance covered per unit time c the rate at which velocity is changing with respect to time d the time it takes to move from one speed to another e the time it takes to move from one place to another 9

Open ended Problems 1 What is the resultant force of a 4-N force acting vertically and a 5-N force acting horizontally? (You may draw this to scale) a 2 + b 2 = c 2 25+16=41=c 2 c = 41=6.4N angle = tan -1 (4/5) = 38.7 o 2 Apply Newton s Third Law to a person dropping a ball, identifying action and reaction forces. If the ball exerts a force on the Earth, why doesn t the Earth move? Explain. Action: earth pulls on the ball Reaction: ball pulls on the earth The earth doesn t move because its mass is so much bigger than the ball. 3 A car accelerates from rest to 45 m/s in 15 seconds. What is the car s acceleration? Assuming that the car weighs 7500-N, calculate the approximate force acting on the car. a = v/t a= 45/15 = 3m/s 2 w=7500n = mg 7500 = m*10 m=750kg F=ma F = 750*3 = 2250N 10

4 Draw a free-body diagram for a sled being pulled along the ground at a constant speed. Include the friction between the sled and the ground. 5 A child weighs 530-N on Earth. What is her mass? How much would she weigh on the moon, where g = 1.67 m/s 2? w=mg 530 = 10m m = 53kg w=mg w=53*1.67 w = 88.5N 11

6 Complete the chart below for a projectile that is fired off a cliff on the Earth with a horizontal velocity of 20 m/s. TIME (sec) Horizontal Velocity (m/s) Vertical Velocity (m/s) Vertical Distance (m) Horizontal Distance (m) 0 20 0 0 0 1 20 10 5 20 2 20 20 20 40 3 20 30 45 60 4 20 40 80 80 5 20 50 125 100 6 20 60 180 120 7 A projectile is launched horizontally off a cliff with a velocity of 25 m/s. The cliff is 125 m high. a How long will it take the projectile to hit the ground? b Where will the projectile land with respect to the base of the cliff? 8 A 200 kg mass falls 4.00 m. 12

a How much potential energy does it have before it falls? b How much potential energy does it have at the bottom, just before it hits the ground? c How much kinetic energy does it have at the bottom, just before it hits the ground? d How much kinetic and potential energy does the object have when it is at 2.00 m? 9 Angie s car coasts to a stop when she takes her foot off the gas. Draw a force diagram 10 Sharon exerts a force of 50 N to move a large telescope closer to the window. The mass of the telescope is 20 kg. a If the telescope is being moved at a constant velocity across the floor, what is the coefficient of kinetic friction (µ k ) between the telescope and the floor? b How would this compare to the coefficient of static friction (greater than, equal to, or less than)? Explain your answer. 13