int cl int cl A = int cl A.

Similar documents
A Crash Course in Topological Groups

Measure and Category. Marianna Csörnyei. ucahmcs

Spaces of continuous functions

Maths 212: Homework Solutions

1 Topology Definition of a topology Basis (Base) of a topology The subspace topology & the product topology on X Y 3

Measures and Measure Spaces

Filters in Analysis and Topology

NAME: Mathematics 205A, Fall 2008, Final Examination. Answer Key

Introduction to Dynamical Systems

Real Analysis Notes. Thomas Goller

arxiv: v1 [math.gn] 27 Oct 2018

4 Countability axioms

MH 7500 THEOREMS. (iii) A = A; (iv) A B = A B. Theorem 5. If {A α : α Λ} is any collection of subsets of a space X, then

3 COUNTABILITY AND CONNECTEDNESS AXIOMS

B. Appendix B. Topological vector spaces

Chapter 3: Baire category and open mapping theorems

CHAPTER I THE RIESZ REPRESENTATION THEOREM

Chapter 2 Metric Spaces

7 Complete metric spaces and function spaces

SELF-DUAL UNIFORM MATROIDS ON INFINITE SETS

P-adic Functions - Part 1

Topology. Xiaolong Han. Department of Mathematics, California State University, Northridge, CA 91330, USA address:

Topological properties

G δ ideals of compact sets

Section 2: Classes of Sets

CHAPTER 4. βs as a semigroup

B 1 = {B(x, r) x = (x 1, x 2 ) H, 0 < r < x 2 }. (a) Show that B = B 1 B 2 is a basis for a topology on X.

Lecture Notes in Advanced Calculus 1 (80315) Raz Kupferman Institute of Mathematics The Hebrew University

SMALL SUBSETS OF THE REALS AND TREE FORCING NOTIONS

Problem Set 2: Solutions Math 201A: Fall 2016

Uncountable γ-sets under axiom CPA game

Uniquely Universal Sets

MATS113 ADVANCED MEASURE THEORY SPRING 2016

van Rooij, Schikhof: A Second Course on Real Functions

Course 212: Academic Year Section 1: Metric Spaces

COUNTABLY S-CLOSED SPACES

CHAPTER 9. Embedding theorems

Homogeneous spaces and Wadge theory

4 Choice axioms and Baire category theorem

The ideal of Sierpiński-Zygmund sets on the plane

Homework 5. Solutions

Abstract Measure Theory

ANALYSIS WORKSHEET II: METRIC SPACES

Stat 451: Solutions to Assignment #1

MAT 570 REAL ANALYSIS LECTURE NOTES. Contents. 1. Sets Functions Countability Axiom of choice Equivalence relations 9

5 Set Operations, Functions, and Counting

FUNCTIONAL ANALYSIS LECTURE NOTES: COMPACT SETS AND FINITE-DIMENSIONAL SPACES. 1. Compact Sets

Introduction to Topology

Part III. 10 Topological Space Basics. Topological Spaces

Spring -07 TOPOLOGY III. Conventions

Real Analysis Math 131AH Rudin, Chapter #1. Dominique Abdi

Chapter 1. Measure Spaces. 1.1 Algebras and σ algebras of sets Notation and preliminaries

Topological vectorspaces

VARIETIES OF ABELIAN TOPOLOGICAL GROUPS AND SCATTERED SPACES

Math 117: Topology of the Real Numbers

Measures. Chapter Some prerequisites. 1.2 Introduction

ON THE UNIQUENESS OF POLISH GROUP TOPOLOGIES. by Bojana Pejić MA, University of Pittsburgh, 2006 MMath, University of Oxford, 2002

Math 201 Topology I. Lecture notes of Prof. Hicham Gebran

II - REAL ANALYSIS. This property gives us a way to extend the notion of content to finite unions of rectangles: we define

7 About Egorov s and Lusin s theorems

CHODOUNSKY, DAVID, M.A. Relative Topological Properties. (2006) Directed by Dr. Jerry Vaughan. 48pp.

THEOREMS, ETC., FOR MATH 515

FUNCTIONAL ANALYSIS CHRISTIAN REMLING

Measure and Integration: Concepts, Examples and Exercises. INDER K. RANA Indian Institute of Technology Bombay India

Chapter 1: Banach Spaces

HILBERT SPACES AND THE RADON-NIKODYM THEOREM. where the bar in the first equation denotes complex conjugation. In either case, for any x V define

The Measure Problem. Louis de Branges Department of Mathematics Purdue University West Lafayette, IN , USA

Topology, Math 581, Fall 2017 last updated: November 24, Topology 1, Math 581, Fall 2017: Notes and homework Krzysztof Chris Ciesielski

Math General Topology Fall 2012 Homework 11 Solutions

Indeed, if we want m to be compatible with taking limits, it should be countably additive, meaning that ( )

Exercises for Unit VI (Infinite constructions in set theory)

van Rooij, Schikhof: A Second Course on Real Functions

Boolean Algebras, Boolean Rings and Stone s Representation Theorem

Analysis Comprehensive Exam Questions Fall F(x) = 1 x. f(t)dt. t 1 2. tf 2 (t)dt. and g(t, x) = 2 t. 2 t

Axioms of separation

Chapter 1 : The language of mathematics.

Notas de Aula Grupos Profinitos. Martino Garonzi. Universidade de Brasília. Primeiro semestre 2018

Dynamical Systems 2, MA 761

are Banach algebras. f(x)g(x) max Example 7.4. Similarly, A = L and A = l with the pointwise multiplication

Contents Ordered Fields... 2 Ordered sets and fields... 2 Construction of the Reals 1: Dedekind Cuts... 2 Metric Spaces... 3

Lebesgue Measure on R n

Thus, X is connected by Problem 4. Case 3: X = (a, b]. This case is analogous to Case 2. Case 4: X = (a, b). Choose ε < b a

Lebesgue Measure on R n

The Baire Category Theorem and choice

7 Lecture 7: Rational domains, Tate rings and analytic points

CLASS NOTES FOR APRIL 14, 2000

Contents. Index... 15

CHAPTER 5. The Topology of R. 1. Open and Closed Sets

Solutions to Tutorial 8 (Week 9)

1 Measure and Category on the Line

CHAPTER 7. Connectedness

01. Review of metric spaces and point-set topology. 1. Euclidean spaces

Geometry 2: Manifolds and sheaves

Real Analysis Chapter 4 Solutions Jonathan Conder

Ordering functions. Raphaël Carroy. Hejnice, Czech Republic January 27th, Universität Münster 1/21

Weak Topologies, Reflexivity, Adjoint operators

1.A Topological spaces The initial topology is called topology generated by (f i ) i I.

Large subsets of semigroups

Commutative Banach algebras 79

Part V. 17 Introduction: What are measures and why measurable sets. Lebesgue Integration Theory

Transcription:

BAIRE CATEGORY CHRISTIAN ROSENDAL 1. THE BAIRE CATEGORY THEOREM Theorem 1 (The Baire category theorem. Let (D n n N be a countable family of dense open subsets of a Polish space X. Then n N D n is dense in X. Proof. Fix a compatible complete metric d on X and let V X be an arbitrary nonempty open subset. We need to show that V n N D n. So choose inductively open sets U n D n with diam(u n < 1 n such that V U 0 U 1 U 1 U 2... Picking x n U n for all n, we see that (x n is a Cauchy sequence and thus converges to some x n N W n = n N W n V n N D n. So V n N D n. Exercise 2. Show that the Baire category theorem remains valid in locally compact Hausdorff spaces. Exercise 3. Show that for any subset A of a topological space X once has int cl int cl A = int cl A. Sets of the form int cl A are called the regular open subsets of X. A subset A of a topological space X is said to be somewhere dense if there is a non-empty open set U X such that A is dense in U and nowhere dense otherwise, that is, if int cl A =. Note that since int cl A = int cl cl A, one sees that A is nowhere dense if and only if cl A is nowhere dense. For example, the boundary U of any open set U is nowhere dense. A X is said to be meagre if it is the union of countably many nowhere dense subsets of X and comeagre if X \ A is meagre. So A is meagre if and only if it can be covered by countably many closed nowhere dense sets and comeagre if and only if it contains the intersection of countably many dense open subsets of X. Note now that the following are equivalent for a topological space X. Every comeagre set is dense, meagre sets have empty interior. A space satisfying these properties is said to be a Baire space. E.g., Polish and locally compact Hausdorff spaces are Baire. On the other hand, Q with the topology induced from R is not a Baire space, since the whole space is meagre. Thus, a subset of a Baire space is comeagre if and only of it contains a dense G δ subset. Exercise 4. Suppose X is a topological space and Y X a subspace. (i Show that if Y is a non-meagre subset of X, then Y is non-meagre in its relative topology. (ii Give an example to show that the converse implication fails. 1

2 CHRISTIAN ROSENDAL The meagre subsets of a topological space X form a σ-ideal M, that is, if N M M, then also N M, if N n M for all n N, then also n N N n M. So, analogously to the null sets of a σ-additive measure, meagreness is a notion of smallness of a topological space, while comeagreness is a notion of largeness. Exercise 5. Fix a set X and let P (X denote the power set of X and A B = (A \ B (B \ A the symmetric difference of A,B X. Show that P (X forms an abelian group with the group operation and identify the group identity and the inverse of an element A. [Hint: Identify P (X with (Z 2 X.] A subset A of a topological space X has the Baire property if there is an open set U X such that M = A U is meagre or, equivalently, there are an open set U X and a meagre set M X such that A = U M. We also let BP(X denote the class of subsets of X having the Baire property. Lemma 6. If X is a topological space, BP(X is a σ-algebra of subsets of X. Proof. Suppose that A n X have the Baire property and U n X are open subsets such that A n U n are meagre. Then ( ( A n U n A n U n n is meagre too, showing that n A n has the Baire property. Moreover, n ( A 0 ( U 0 = A 0 U 0 (A 0 U 0 U 0 is meagre, whence also A 0 has the Baire property. So BP(X is closed under countable unions and complementation as required. Recall that if X is a topological space, the Borel algebra B(X is the σ-algebra generated by the open subsets of X. Thus, by the preceding lemma, B(X BP(X, meaning that any Borel set has the Baire property. Almost all the sets encountered in analysis will have the Baire property and, in fact, to produce sets without the Baire property, one needs the Axiom of Choice in the follwoing precise sense. Theorem 7. (S. Shelah R. M. Solovay Assuming the consistency of ZF, there is a model of ZF in which every set of reals A R has the Baire property. Suppose X is a topological space and A X is any subset. comeagre in an open set U if U \ A is meagre. Let also U(A = {U X open A is comeagre in U }. Theorem 8. U(A is the largest open set in which A is comeagre. n We say that A is Proof. Let (U i i I be a maximal family of pairwise disjoint open sets in which A is comeagre. Then, for each i I, there are dense open sets Dn i U i such that n N Dn i A, whereby, as D n i D m j = for i j, Dn i = Dn i A. n N i I i I n N Since each i I Dn i is dense in i I U i and i I U i is dense in U(A, it follows that each i I Dn i is dense in U(A, whereby A is comeagre in U(A. Corollary 9. A X has the Baire property if and only if A U(A is meagre.

BAIRE CATEGORY 3 Proof. If A has the Baire property, then there is an open set V X such that A V is meagre, whence A is comeagre in V, and thus V U(A. It follows that A \U(A A \ V is meagre too, whence A U(A is meagre. Exercise 10. In the following, we identify a subset A N with its characteristic function χ A 2 N. Show that if G 2 N is comeagre there is a partition (I n n N of N into disjoint finite intervals, I 0 < I 1 <... and subsets a n I n such that for all A N, ( n A I n = a n A G. Exercise 11 (Vertical and horizontal sections. Suppose X and Y are Hausdorff. If A X Y and x 0 X, y 0 Y, we define the vertical and horizontal sections at x 0 and y 0 respectively by (i Show that A x0 = {y Y (x0, y A}, A y 0 = {x X (x, y0 A}. ( A x0 = A x0 and that for any family (A i i I of subsets of X Y, ( A i x 0 = i I(A i x0 and i I ( i I A i x 0 = i I(A i x0. (ii Show also that if A is open or compact in X Y, then A x0 is open, respectively compact in Y. Conclude that the same holds with closed, G δ, F σ and K σ in place of open. Exercise 12 (Direct and inverse images. Let f : X Y be a function between two sets. (i Decide which of the set theoretical operations, and commute with taking direct images, i.e., A f (A. (ii Decide which of the set theoretical operations, and commute with taking inverse images, i.e., B f 1 (B. Exercise 13 (Coordinate projections. Let X and Y be topological spaces and define the first coordinate projection π X : X Y X by π X (x, y = x. (i Show that for any family (A i i I of subsets A i X Y, we have π X ( A i = π X (A i i I i I and find examples to show that π X does not preserve complement nor intersection under forward images. (ii Show that π X is continuous and open, i.e., for any open set U X Y, π X (U is open in X. (iii Show that if moreover Y is compact and F X Y is closed, then π X (F is closed. Conclude that if instead Y is K σ and F X Y is F σ, then also π X (F is F σ.

4 CHRISTIAN ROSENDAL Exercise 14 (D. Montgomery, P. S. Novikov. Let X and Y be Polish spaces and A X Y a Borel subset. Show that, for any open U Y, the set {x X Ax is comeagre in U} is Borel. [Hint: Show it first for basic open rectangles A = V W and then note that the class of A with the above property is closed under countable unions and complementation.] If X is a topological space and P is a property of points in X, we write x P(x to denote that the set {x X P(x} is comeagre in X and similarly x P(x to denote that the set {x X P(x} is non-meagre in X. Theorem 15 (K. Kuratowski S. Ulam. Let X and Y be second countable topological spaces and A X Y a set with the Baire property. Then the following are equivalent (1 A is comeagre in X Y, (2 x X A x is comeagre in Y. (3 y Y A y is comeagre in X. Proof. By symmetry, it suffices to show the equivalence of (1 and (2. To see the implication from (1 to (2, fix a basis {U n } n N for the topology on Y consisting of non-empty open sets and find dense open sets D n X Y such that n N D n A. Then, for any x X, x ( π X Dn (X U m n m y Y (x, y D n (X U m n,m N n m y Y y U m (D n x n (D n x is dense in Y ( D n x = n x is comeagre in Y. n N n N(D Now, since the projection π X maps a dense open subset of X U m to a dense open subset of X, the countable intersection ( π X Dn (X U m n,m N is comeagre in X, whence ( n N D n x, and a fortiori A x, is comeagre in Y for a comeagre set of x X, i.e., x X A x is comeagre in Y. To see that (2 implies (1, suppose that A X Y is not comeagre and find a nonempty basic open set U V X Y such that B = (U V \ A is comeagre in U V. Applying (1 (2 to the set B in the product space U V, we see that whence contradicting (2. Note that the statement x U B x = V \ A x is comeagre in V, x U A x is not comeagre in Y, is equivalent to x X A x is comeagre in Y x X y Y (x, y A.

BAIRE CATEGORY 5 So the Kuratowski Ulam Theorem can be reformulated as stating that for A X Y with the Baire property, (x, y (x, y A x y (x, y A y x (x, y A. This an analogy of the Fubini Theorem that states that a measurable subset of a product of two probability spaces has full measure if and only if almost all vertical sections have full measure. Note also that if A n X for every n N, then n x x A n x n x A n. This follows on the one hand from the Kuratowski Ulam Theorem or simply from the fact that a countable intersection of comeagre sets is comeagre. Exercise 16. Let X and Y be Polish spaces and A X Y a subset with the Baire property. (i Deduce from the Kuratowski Ulam Theorem that A is meagre x A x is meagre in Y y A y is meagre in X. (ii Show that A is non-meagre x A x is non-meagre in Y y A y is non-meagre in X. (ii Show that x A x has the Baire property. Proposition 17 (A zero-one law. Suppose (X n n N is a sequence of Polish spaces and A n N X n is a tail set with the Baire property, i.e., if (x n and (y n differ in only finitely many coordinates, then Then A is either meagre or comeagre. (x n A (y n A. Proof. Suppose that A is non-meagre and find a non-empty basic open set U 0... U n 1 X n X n+1... in which A is comeagre, i.e., (x, y ( U 0... U n 1 ( Xn X n+1... (x, y A, whence, by the Kuratowski Ulam Theorem, y ( X n X n+1... x ( U 0... U n 1 (x, y A. However, since A is a tail set, for any y X n X n+1... and x, x X 0... X n 1, we have (x, y A if and only if (x, y A, from which it follows that y ( X n X n+1... x ( X 0... X n 1 (x, y A. Using Kuratowski Ulam once more, we obtain and thus A is comeagre. (x, y ( X 0... X n 1 ( Xn X n+1... (x, y A,

6 CHRISTIAN ROSENDAL A function f : X Y between Polish spaces X and Y is said to be Baire measurable if f 1 (U has the Baire property for any open subset U Y. Note that, since Y is second countable, it is enough to consider preimages of basic open sets in Y. Exercise 18. Suppose f : X Y is a Baire measurable function between topological spaces X and Y, where Y is second countable. Show that there is a comeagre G δ -set A X such that f A is continuous. Exercise 19 (Non-smoothness of E 0. Let E 0 be the equivalence relation defined on 2 N by (x n E 0 (y n N n N x n = y n. Suppose that f : 2 N X is a Baire measurable function into a Polish space X satifying xe 0 y f (x = f (y. Show that there is a comeagre subset of 2 N on which f is constant. [Hint: Consider inverse images of basic open sets. Alternatively, show that f is constant on the comeagre set A 2 N given by Exercise 18.] Suppose G is a group of homeomorphisms of a topological space X. We say that G is topologically transitive if for any non-empty open subsets U,V X there is g G such that g U V. Proposition 20. The following are equivalent for a group G of homeomorphisms of a Polish space X. (i G is topologically transitive, (ii there is a dense orbit G x, (iii there is a comeagre set of points with dense orbits. Proof. That (iii (ii (i is trivial. Also, if {U n } n N is a basis for the topology on X consisting of non-empty open sets and G is topologically transitive, then G U n is dense for every n, whereby U n = n NG {x X G x Un } = {x X G x is dense } n N is comeagre, showing (i (iii. 2. MYCIELSKI S INDEPENDENCE THEOREM Theorem 21 (J. Mycielski. Let X be a non-empty perfect Polish space and R X X a comeagre set. Then there is a homeomorphic copy C X of Cantor space such that (x, y R for all x, y C, x y. Proof. Fix a compatible complete metric d on X. Note first that if V 0,V 1 X are nonempty open subsets and D X X is dense open, then there are disjoint, non-empty open subsets U 0 V 0, U 1 V 1 such that U 0 U 1 D. Moreover, by shrinking the U i further, one can ensure that the U i have arbitrarily small diameter. Now, suppose that R X X is comeagre and find a decreasing sequence (D n n N of dense open subsets of X X such that R n N D n. We then define a Cantor scheme (U s s 2 <N on X satisfying (1 each U s is a non-empty open set of diameter < 1 s +1, (2 U s0 U s1 = for all s 2 <N, (3 U s U t D n for all s, t 2 n, s t.

BAIRE CATEGORY 7 Letting f : 2 N X be defined by {f (x} = n N U x n, we see that f is continuous, injective and that (f (x, f (y n N D n R for all x y. Let now C = f [2 N ]. Exercise 22. Generalise Theorem 21 to the following statement: If X is a non-empty perfect Polish space and, for every n, R n X n is a comeagre subset, then there is a homeomorphic copy of Cantor space C X such that for every n and all x 1,..., x n C with x i x j, we have (x 1,..., x n R n. Exercise 23. Show that there is a homeomorphic copy C R of Cantor space that is linearly independent over Q. 3. POLISH GROUPS Lemma 24 (S. Banach and B. J. Pettis. Suppose G is a Polish group and A,B G are subsets. Then U(A U(B AB. Proof. We note that if x U(AU(B, then the open set V = xu(b 1 U(A = U(xB 1 U(A is non-empty and so xb 1 and A are comeagre in V. It follows that xb 1 A, whereby x AB. Theorem 25 (S. Banach B. J. Pettis. Any Baire measurable homomorphism π: G H between Polish groups is continuous. Proof. It is enough to prove that π is continuous at 1 G, i.e., that for any open V 1 H in H, π 1 (V is a neighbourhood of 1 G in G. So suppose 1 H V H is given and find an open set W 1 H such that WW 1 V. Then π 1 (W is non-meagre, as it covers G by countably many left translates, and also has the Baire property. Thus, U(π 1 (W is non-empty open, and hence by the Banach-Pettis Theorem whereby 1 G Int(π 1 (V. 1 G U(π 1 (WU(π 1 (W 1 π 1 (Wπ 1 (W 1 π 1 (V, 4. BAIRE CATEGORY AND THE ORBIT STRUCTURE OF POLISH GROUP ACTIONS Lemma 26. Suppose G is a Polish group acting continuously on a Polish space X and let x X. Then the following are equivalent: (1 For every neighbourhood of the identity V G, V x is comeagre in a neighbourhood of x. (2 For each neighbourhood of the identity V G, V x is somewhere dense. (3 The orbit G x is non-meagre. Proof. (1 (3 is trivial. Also, for (3 (2, suppose G x is non-meagre and V G is a neighbourhood of 1. Then we can find g n G such that G = n g n V, whence G x = n g n V x. So some g n V x, and therefore also V x, is non-meagre and hence somewhere dense. Finally, for (2 (1, suppose that V x is somewhere dense for every neighbourhood V G of 1. Suppose towards a contradiction that for some neighbourhood U G of 1, U x is meagre, whence there are closed nowhere dense sets F n X covering U x. But then the sets K n = {g G g x Fn } are closed and cover U and thus, by the Baire category theorem, some K n contains a non-empty open set gv, where V is a

8 CHRISTIAN ROSENDAL neighbourhood of 1 and g G. So gv x F n and V x must be nowhere dense, which is a contradiction. Now, if V G is any neighbourhood of 1, let U V be a smaller neighbourhood such that U 1 U V. Then U x is comeagre in some neighbourhood of a point g x, where g U, and thus g 1 U x V x is comeagre in a neighbourhood of x. Lemma 27. Suppose G is a Polish group acting continuously on a Polish space X and let x X have a non-meagre orbit G x. Then for any open subset V G, V x is relatively open in G x. Proof. Let g V be given and pick an open set W 1 such that W 1 W g V. By Lemma 26, z U(W z for any z G x. So, for any z U(W g x G x, z U(W z U(W g x, whence W z and W g x are both comeagre in a neighourhood of z and hence must intersect, i.e., z W 1 W g x V x. In other words, for any g V, gx U(W g x G x V x, showing that V x is a relative neighbourhood of gx in G x. Lemma 28. Suppose G is a Polish group acting continuously on a Polish space X. Then the following are equivalent: (1 There is a non-meagre orbit O X. (2 There is a non-empty open set O X with the following property: For all open V O and neighbourhood U G of 1, there is a smaller open W V such that the action of U on W is topologically transitive, i.e., for any nonempty open W 0,W 1 W there is g U such that gw 0 W 1. Moreover, if O is an orbit comeagre in an open set O X, then (2 holds for O. Proof. (1 (2: If O X is a non-meagre orbit, let O X be a non-empty open set in which O is comeagre. Now, if V O is non-empty open and U G is a neighbourhood of 1, pick x V O and choose an open neighbourhood U 0 U of 1 such that U 0 U0 1 U. Then, by the preceding lemma, U 0 x is dense in some open neighbourhood W V of x and it follows that the action of U on W is topologically transitive. (2 (1: Suppose O X is an open set satisfying the assumption in (2. Fix a neighbourhood basis {U n } n N at 1 G and a basis {V n } n N for the induced topology on O consisting of non-empty open sets. Now, for every n and m, let W n,m V n be a nonempty open subset such that the action of Um 1 on W n,m is topologically transitive. Then W m = n W n,m is open dense in O since it intersects every V n. Also, for any V k W n,m, W n,m ( Um 1 V k is open dense in Wn,m, and so D n,m = W n,m ( U 1 m V k V k W n,m is comeagre in W n,m. Note also that if x D n,m, then for any V k W n,m, U m x V k, showing that U m x is dense in W n,m. We notice that D m = n D n,m is comeagre in O and that for any x D m, U m x is somewhere dense. It follows that for any x belonging to the comeagre subset m D m O, and for any k, U k x is somewhere dense, which by the previous lemma implies that G x is non-meagre. Combining Lemmas 20 and 28, we have the following characterisation of the existence of comeagre orbits. Proposition 29. Suppose G is a Polish group acting continuously on a Polish space X. Then there is a comeagre orbit on X if and only if

BAIRE CATEGORY 9 (1 the action of G is topologically transitive, and (2 for any non-empty open V X and neighbourhood U 1, there is a smaller non-empty open set W V on which the action of U is topologically transitive.