Section 3.3 Graphs of Polynomial Functions

Similar documents
( ) 0. Section 3.3 Graphs of Polynomial Functions. Chapter 3

Graphs of Polynomial Functions

Chapter 3: Polynomial and Rational Functions

Section 3.1 Power Functions & Polynomial Functions

Polynomial and Rational Functions

Polynomial and Rational Functions

Graphs of Polynomials: Polynomial functions of degree 2 or higher are smooth and continuous. (No sharp corners or breaks).

Math 2412 Activity 2(Due by EOC Feb. 27) Find the quadratic function that satisfies the given conditions. Show your work!

Chapter 3: Polynomial and Rational Functions

CHAPTER 3 : QUADRARIC FUNCTIONS MODULE CONCEPT MAP Eercise 1 3. Recognizing the quadratic functions Graphs of quadratic functions 4 Eercis

9.1. Solving Quadratic Equations. Investigation: Rocket Science CONDENSED LESSON

Section 7.1 Objective 1: Solve Quadratic Equations Using the Square Root Property Video Length 12:12

3.1 Power Functions & Polynomial Functions

Module 2, Section 2 Solving Equations

Daily Lessons and Assessments for AP* Calculus AB, A Complete Course Page 119 Mark Sparks 2012

Unit 4: Polynomial and Rational Functions

Review: Properties of Exponents (Allow students to come up with these on their own.) m n m n. a a a. n n n m. a a a. a b a

Syllabus Objective: 2.9 The student will sketch the graph of a polynomial, radical, or rational function.

5. Determine the discriminant for each and describe the nature of the roots.

Additional Factoring Examples:

Polynomials, Linear Factors, and Zeros. Factor theorem, multiple zero, multiplicity, relative maximum, relative minimum

Learning Targets: Standard Form: Quadratic Function. Parabola. Vertex Max/Min. x-coordinate of vertex Axis of symmetry. y-intercept.

3.1 Graphs of Polynomials

Algebra Final Exam Review Packet

QUADRATIC FUNCTIONS. ( x 7)(5x 6) = 2. Exercises: 1 3x 5 Sum: 8. We ll expand it by using the distributive property; 9. Let s use the FOIL method;

Mathematics 10 Page 1 of 7 The Quadratic Function (Vertex Form): Translations. and axis of symmetry is at x a.

Section 2.7 Notes Name: Date: Polynomial and Rational Inequalities

Ch. 9.3 Vertex to General Form. of a Parabola

Graph is a parabola that opens up if a 7 0 and opens down if a 6 0. a - 2a, fa - b. 2a bb

Math Analysis/Honors Math Analysis Summer Assignment

Chapter 6 Overview: Applications of Derivatives

LESSON #24 - POWER FUNCTIONS COMMON CORE ALGEBRA II

Example 1: What do you know about the graph of the function

Polynomials and Polynomial Functions

The region enclosed by the curve of f and the x-axis is rotated 360 about the x-axis. Find the volume of the solid formed.

Math Analysis Chapter 2 Notes: Polynomial and Rational Functions

Name Date. Analyzing Graphs of Polynomial Functions For use with Exploration 2.7

Polynomial Functions of Higher Degree

Basic ALGEBRA 2 SUMMER PACKET

Algebraic Functions, Equations and Inequalities

and Rational Functions

CALCULUS BASIC SUMMER REVIEW

1.2 Functions and Their Properties PreCalculus

Section 5.0A Factoring Part 1

Section 3.3 Limits Involving Infinity - Asymptotes

x 20 f ( x ) = x Determine the implied domain of the given function. Express your answer in interval notation.

5.1 Polynomial Functions

Section 4.5 Graphs of Logarithmic Functions

Section 2.3 Quadratic Functions and Models

November 13, 2018 MAT186 Week 8 Justin Ko

Section 6: Polynomials and Rational Functions

f ( x ) = x Determine the implied domain of the given function. Express your answer in interval notation.

Finding Slope. Find the slopes of the lines passing through the following points. rise run

Common Core State Standards for Activity 14. Lesson Postal Service Lesson 14-1 Polynomials PLAN TEACH

ACCUPLACER MATH 0310

Ready To Go On? Skills Intervention 6-1 Polynomials

LESSON #42 - INVERSES OF FUNCTIONS AND FUNCTION NOTATION PART 2 COMMON CORE ALGEBRA II

Exam 2 Review F15 O Brien. Exam 2 Review:

The degree of the polynomial function is n. We call the term the leading term, and is called the leading coefficient. 0 =

One of the most common applications of Calculus involves determining maximum or minimum values.

4-1 Graphing Quadratic Functions

Lesson #33 Solving Incomplete Quadratics

Constant no variables, just a number. Linear Note: Same form as f () x mx b. Quadratic Note: Same form as. Cubic x to the third power

Lesson 10.1 Solving Quadratic Equations

Math 120. x x 4 x. . In this problem, we are combining fractions. To do this, we must have

Math 3201 UNIT 5: Polynomial Functions NOTES. Characteristics of Graphs and Equations of Polynomials Functions

Introduction to Rational Functions

Name: Period: SM Starter on Reading Quadratic Graph. This graph and equation represent the path of an object being thrown.

1.2 Functions and Their Properties PreCalculus

Solving and Graphing Polynomials

Chapter 2 Analysis of Graphs of Functions

MATH 111 Departmental Midterm Exam Review Exam date: Tuesday, March 1 st. Exam will cover sections and will be NON-CALCULATOR EXAM.

4.3 How derivatives affect the shape of a graph. The first derivative test and the second derivative test.

ACCUPLACER MATH 0311 OR MATH 0120

Math 75B Practice Problems for Midterm II Solutions Ch. 16, 17, 12 (E), , 2.8 (S)

Precalculus Notes: Functions. Skill: Solve problems using the algebra of functions.

Welcome to Advanced Placement Calculus!! Summer Math

Unit 1 Vocabulary. A function that contains 1 or more or terms. The variables may be to any non-negative power.

Daily Lessons and Assessments for AP* Calculus AB, A Complete Course Page 584 Mark Sparks 2012

A function from a set D to a set R is a rule that assigns a unique element in R to each element in D.

MHF4U. Advanced Functions Grade 12 University Mitchell District High School. Unit 2 Polynomial Functions 9 Video Lessons

d. 2x 3 7x 2 5x 2 2x 2 3x 1 x 2x 3 3x 2 1x 2 4x 2 6x 2 3. a. x 5 x x 2 5x 5 5x 25 b. x 4 2x 2x 2 8x 3 3x 12 c. x 6 x x 2 6x 6 6x 36

Power and Polynomial Functions. College Algebra

Lesson Goals. Unit 4 Polynomial/Rational Functions Quadratic Functions (Chap 0.3) Family of Quadratic Functions. Parabolas

2.6 Solving Inequalities Algebraically and Graphically

Summer AP Assignment Coversheet Falls Church High School

Math 1310 Section 4.1: Polynomial Functions and Their Graphs. A polynomial function is a function of the form ...

ACTIVITY 14 Continued

Test #1 Polynomial Functions Mr. Oldridge MHF4U [Created Summer 2011]

16x y 8x. 16x 81. U n i t 3 P t 1 H o n o r s P a g e 1. Math 3 Unit 3 Day 1 - Factoring Review. I. Greatest Common Factor GCF.

Section 3.4 Rational Functions

3.5 Graphs of Polynomial Functions

Math 1051, Robertson, Exam 3 on Chapters 3 & 4 on Friday 12 November 2010 KEY page 1

ALGEBRA II SEMESTER EXAMS PRACTICE MATERIALS SEMESTER (1.2-1) What is the inverse of f ( x) 2x 9? (A) (B) x x (C) (D) 2. (1.

3.2 Logarithmic Functions and Their Graphs

Polynomial Degree and Finite Differences

Unit 3. Expressions and Equations. 118 Jordan School District

LESSON #28 - POWER FUNCTIONS COMMON CORE ALGEBRA II

Let's look at some higher order equations (cubic and quartic) that can also be solved by factoring.

Transcription:

3.3 Graphs of Polynomial Functions 179 Section 3.3 Graphs of Polynomial Functions In the previous section we eplored the short run behavior of quadratics, a special case of polynomials. In this section we will eplore the short run behavior of polynomials in general. Short run Behavior: Intercepts As with any function, the vertical intercept can be found by evaluating the function at an input of zero. Since this is evaluation, it is relatively easy to do it for a polynomial of any degree. To find horizontal intercepts, we need to solve for when the output will be zero. For general polynomials, this can be a challenging prospect. While quadratics can be solved using the relatively simple quadratic formula, the corresponding formulas for cubic and 4 th degree polynomials are not simple enough to remember, and formulas do not eist for general higher-degree polynomials. Consequently, we will limit ourselves to three cases: 1) The polynomial can be factored using known methods: greatest common factor and trinomial factoring. ) The polynomial is given in factored form. 3) Technology is used to determine the intercepts. Eample 1 Find the horizontal intercepts of f ( ) 6 4 3. We can attempt to factor this polynomial to find solutions for f() = 0. 6 4 3 0 Factoring out the greatest common factor 4 3 Factoring the inside as a quadratic in 0 1 0 0 0 or Then break apart to find solutions 1 0 1 or 1 This gives us 5 horizontal intercepts. 0

180 Chapter 3 Eample (video eample here) Find the vertical and horizontal intercepts of g ( t) ( t ) (t 3) The vertical intercept can be found by evaluating g(0). g (0) (0 ) ((0) 3) 1 The horizontal intercepts can be found by solving g(t) = 0 ( t ) (t 3) 0 Since this is already factored, we can break it apart: ( t ) 0 (t 3) 0 t 0 or 3 t t We can always check our answers are reasonable by graphing the polynomial. Eample 3 (video eample here) Find the horizontal intercepts of 3 h ( t) t 4t t 6 Since this polynomial is not in factored form, has no common factors, and does not appear to be factorable using techniques we know, we can turn to technology to find the intercepts. Graphing this function, it appears there are horizontal intercepts at t = -3, -, and 1. We could check these are correct by plugging in these values for t and verifying that h( 3) h( ) h(1) 0. Try it Now 1. Find the vertical and horizontal intercepts of the function f ( t) t 4 t 4.

3.3 Graphs of Polynomial Functions 181 Graphical Behavior at Intercepts If we graph the function 3 f ( ) ( 3)( ) ( 1), notice that the behavior at each of the horizontal intercepts is different. At the horizontal intercept = -3, coming from the ( 3) factor of the polynomial, the graph passes directly through the horizontal intercept. The factor is linear (has a power of 1), so the behavior near the intercept is like that of a line - it passes directly through the intercept. We call this a single zero, since the zero corresponds to a single factor of the function. At the horizontal intercept =, coming from the ( ) factor of the polynomial, the graph touches the ais at the intercept and changes direction. The factor is quadratic (degree ), so the behavior near the intercept is like that of a quadratic it bounces off of the horizontal ais at the intercept. Since ( ) ( )( ), the factor is repeated twice, so we call this a double zero. We could also say the zero has multiplicity. 3 At the horizontal intercept = -1, coming from the ( 1) factor of the polynomial, the graph passes through the ais at the intercept, but flattens out a bit first. This factor is cubic (degree 3), so the behavior near the intercept is like that of a cubic, with the same 3 S type shape near the intercept that the toolkit has. We call this a triple zero. We could also say the zero has multiplicity 3. By utilizing these behaviors, we can sketch a reasonable graph of a factored polynomial function without needing technology. Graphical Behavior of Polynomials at Horizontal Intercepts p If a polynomial contains a factor of the form ( h), the behavior near the horizontal intercept h is determined by the power on the factor. p = 1 p = p = 3 Single zero Double zero Triple zero Multiplicity 1 Multiplicity Multiplicity 3

18 Chapter 3 For higher even powers 4,6,8 etc. the graph will still bounce off of the horizontal ais but the graph will appear flatter with each increasing even power as it approaches and leaves the ais. For higher odd powers, 5,7,9 etc the graph will still pass through the horizontal ais but the graph will appear flatter with each increasing odd power as it approaches and leaves the ais. Eample 4 Sketch a graph of f ( ) ( 3) ( 5). This graph has two horizontal intercepts. At = -3, the factor is squared, indicating the graph will bounce at this horizontal intercept. At = 5, the factor is not squared, indicating the graph will pass through the ais at this intercept. Additionally, we can see the leading term, if this polynomial were multiplied out, would 3 be, so the long-run behavior is that of a vertically reflected cubic, with the outputs decreasing as the inputs get large positive, and the inputs increasing as the inputs get large negative. To sketch this we consider the following: As the function f () so we know the graph starts in the nd quadrant and is decreasing toward the horizontal ais. At (-3, 0) the graph bounces off of the horizontal ais and so the function must start increasing. At (0, 90) the graph crosses the vertical ais at the vertical intercept. Somewhere after this point, the graph must turn back down or start decreasing toward the horizontal ais since the graph passes through the net intercept at (5,0). As the function f () so we know the graph continues to decrease and we can stop drawing the graph in the 4 th quadrant. Using technology we can verify that the resulting graph will look like:

3.3 Graphs of Polynomial Functions 183 Solving Polynomial Inequalities One application of our ability to find intercepts and sketch a graph of polynomials is the ability to solve polynomial inequalities. It is a very common question to ask when a function will be positive and negative. We can solve polynomial inequalities by either utilizing the graph, or by using test values. Eample 5 (video eample here) Solve ( 3)( 1) ( 4) 0 As with all inequalities, we start by solving the equality ( 3)( 1) ( 4) 0, which has solutions at = -3, -1, and 4. We know the function can only change from positive to negative at these values, so these divide the inputs into 4 intervals. We could choose a test value in each interval and evaluate the function f ( ) ( 3)( 1) ( 4) at each test value to determine if the function is positive or negative in that interval Interval Test in interval f( test value) >0 or <0? < -3-4 7 > 0-3 < < -1 - -6 < 0-1 < < 4 0-1 < 0 > 4 5 88 > 0 On a number line this would look like: positive 0 negative 0 negative 0 positive From our test values, we can determine this function is positive when < -3 or > 4, or in interval notation, (, 3) (4, ) We could have also determined on which intervals the function was positive by sketching a graph of the function. We illustrate that technique in the net eample

184 Chapter 3 Eample 6 Find the domain of the function v( t) t 6 5t. A square root is only defined when the quantity we are taking the square root of, the quantity inside the square root, is zero or greater. Thus, the domain of this function will be when 6 5t t 0. Again we start by solving the equality 6 5t t 0. While we could use the quadratic formula, this equation factors nicely to ( 6 t )(1 t) 0, giving horizontal intercepts t = 1 and t = -6. Sketching a graph of this quadratic will allow us to determine when it is positive. From the graph we can see this function is positive for inputs between the intercepts. So 6 5t t 0 for 6 t 1, and this will be the domain of the v(t) function. Try it Now 3. Given the function g( ) 6 use the methods that we have learned so far to find the vertical & horizontal intercepts, determine where the function is negative and positive, describe the long run behavior and sketch the graph without technology. Writing Equations using Intercepts Since a polynomial function written in factored form will have a horizontal intercept where each factor is equal to zero, we can form a function that will pass through a set of horizontal intercepts by introducing a corresponding set of factors. Factored Form of Polynomials If a polynomial has horizontal intercepts at 1,,, n, then the polynomial can be written in the factored form p1 p p f ( ) a( ) ( ) ( n 1 n ) where the powers pi on each factor can be determined by the behavior of the graph at the corresponding intercept, and the stretch factor a can be determined given a value of the function other than the horizontal intercept.

3.3 Graphs of Polynomial Functions 185 Eample 7 (video eample here) Write a formula for the polynomial function graphed here. This graph has three horizontal intercepts: = -3,, and 5. At = -3 and 5 the graph passes through the ais, suggesting the corresponding factors of the polynomial will be linear. At = the graph bounces at the intercept, suggesting the corresponding factor of the polynomial will be nd degree (quadratic). Together, this gives us: f ( ) a( 3)( ) ( 5) To determine the stretch factor, we can utilize another point on the graph. Here, the vertical intercept appears to be (0,-), so we can plug in those values to solve for a: a(0 3)(0 ) (0 5) 60a a 1 30 The graphed polynomial appears to represent the function 1 f ( ) ( 3)( ) ( 5). 30 Here is a video eample of finding the equation for a polynomial function from a graph where the powers pi on the factors are bigger than one. Video Eample 1: Finding an Equation of Polynomial Function from the Graph.

186 Chapter 3 Try it Now 3. Given the graph, write a formula for the function shown. Estimating Etrema With quadratics, we were able to algebraically find the maimum or minimum value of the function by finding the verte. For general polynomials, finding these turning points is not possible without more advanced techniques from calculus. Even then, finding where etrema occur can still be algebraically challenging. For now, we will estimate the locations of turning points using technology to generate a graph. Eample 8 (video eample here) An open-top bo is to be constructed by cutting out squares from each corner of a 14cm by 0cm sheet of plastic then folding up the sides. Find the size of squares that should be cut out to maimize the volume enclosed by the bo. w We will start this problem by drawing a picture, labeling the w width of the cut-out squares with a variable, w. Notice that after a square is cut out from each end, it leaves a (14-w) cm by (0-w) cm rectangle for the base of the bo, and the bo will be w cm tall. This gives the volume: 3 V( w) (14 w)(0 w) w 80w 68w 4w Using technology to sketch a graph allows us to estimate the maimum value for the volume, restricted to reasonable values for w: values from 0 to 7.

3.3 Graphs of Polynomial Functions 187 From this graph, we can estimate the maimum value is around 340, and occurs when the squares are about.75cm square. To improve this estimate, we could use advanced features of our technology, if available, or simply change our window to zoom in on our graph. From this zoomed-in view, we can refine our estimate for the ma volume to about 339, when the squares are.7cm square. Try it Now 4. Use technology to find the maimum and minimum values on the interval [-1, 4] of 3 the function f ( ) 0.( ) ( 1) ( 4). Additional Topic: The Difference Quotient. Video Eample : Evaluating Function Notation involving an Algebraic Epression. Video Eample 3: Evaluating the Difference Quotient with a Linear Equation. Video Eample 4: Evaluating the Difference Quotient with a Quadratic Equation.

188 Chapter 3 Important Topics of this Section Short Run Behavior Intercepts (Horizontal & Vertical) Methods to find Horizontal intercepts Factoring Methods Factored Forms Technology Graphical Behavior at intercepts Single, Double and Triple zeros (or multiplicity 1,, and 3 behaviors) Solving polynomial inequalities using test values & graphing techniques Writing equations using intercepts Estimating etrema Difference Quotient Try it Now Answers 1. Vertical intercept (0, 0), Horizontal intercepts (0, 0), (-, 0), (, 0). Vertical intercept (0, 0), Horizontal intercepts (-, 0), (0, 0), (3, 0) The function is negative on (, -) and (0, 3) The function is positive on (-, 0) and (3, ) 3 The leading term is so as, g() and as, g () 1 3 3. f ( ) ( ) ( 1) ( 4) 8 4. The minimum occurs at approimately the point (0, -6.5), and the maimum occurs at approimately the point (3.5, 7).

3.3 Graphs of Polynomial Functions 189 Section 3.3 Eercises Find the C and t intercepts of each function. C t t 4 t 1 ( t 6) 1.. C t 3 t t 3 ( t 5) 3. C t 4t t ( t 1) 4. C t t t 3t 1 4 3 4 3 5. C t t 8t 6t 6. C t 4t 1t 40t Use your calculator or other graphing technology to solve graphically for the zeros of the function. 3 f 7 4 30 8. g 6 8 7. 3 Find the long run behavior of each function as t and t 3 3 9. ht 3t 5 t 3 ( t ) 10. 3 k t t 3 t 1 ( t ) 11. pt t t 13 t 1. qt 4t tt 1 3 Sketch a graph of each equation. 13. f 3 ( ) 14. g 4 1 15. h 1 3 3 16. k 3 3 17. m 1 ( 3) 18. n 3 ( 4) Solve each inequality. 19. 3 0 0. 5 1 0 1. 1 3 0. 4 3 6 0 Find the domain of each function. 3. f 4 19 4. g 8 17 3 5. h 45 6. k 7 3 7. n 3 8. m 1 ( 3) pt t 9. 1 t8 qt 30. 4 45

190 Chapter 3 Write an equation for a polynomial the given features. 31. Degree 3. Zeros at = -, = 1, and = 3. Vertical intercept at (0, -4) 3. Degree 3. Zeros at = -5, = -, and = 1. Vertical intercept at (0, 6) 33. Degree 5. Roots of multiplicity at = 3 and = 1, and a root of multiplicity 1 at = -3. Vertical intercept at (0, 9) 34. Degree 4. Root of multiplicity at = 4, and a roots of multiplicity 1 at = 1 and = -. Vertical intercept at (0, -3) 35. Degree 5. Double zero at = 1, and triple zero at = 3. Passes through the point (, 15) 36. Degree 5. Single zero at = - and = 3, and triple zero at = 1. Passes through the point (, 4) Write a formula for each polynomial function graphed. 37. 38. 39. 40. 41. 4. 43. 44.

3.3 Graphs of Polynomial Functions 191 Write a formula for each polynomial function graphed. 45. 46. 47. 48. 49. 50. 51. A rectangle is inscribed with its base on the ais and its upper corners on the parabola y5. What are the dimensions of such a rectangle that has the greatest possible area? 5. A rectangle is inscribed with its base on the ais and its upper corners on the curve y 4 16. What are the dimensions of such a rectangle that has the greatest possible area?

19 Chapter 3 For each function given below, evaluate and simplify the difference quotient, f ( h) f ( ). h 53. f ( ) 3 8 54. f ( ) 5 7 55. f ( ) 5 56. f ( ) 7 57. f ( ) 6 3 1 58. f ( ) 4 5 59. f ( ) 8 60. f ( ) 4 61. f ( ) 5 7 11 6. f ( ) 3 5 17