Line ratios and wavelengths of helium-like argon n = 2 satellite transitions and resonance lines

Similar documents
Extreme ultraviolet spectroscopy of highly charged argon ions at the Berlin EBIT

EUV spectra from the NIST EBIT

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract

X-ray observations of medium Z H- and He-like ions with satellites from C-Mod tokamak plasmas

X-ray Observations of Helium-like Scandium from the Alcator C-Mod Tokamak

NIST Research on Spectroscopy and Collisional-Radiative Modeling of Highly-Charged Ions of Tungsten

Spectral analysis of K-shell X-ray emission of magnesium plasma produced by ultrashort high-intensity laser pulse irradiation

Physics of heavy multiply-charged ions: Studies on the borderile of atomic and nuclear physics

Joint ICTP-IAEA Workshop on Fusion Plasma Modelling using Atomic and Molecular Data January 2012

Time-dependent kinetics model for a helium discharge plasma

X-ray Spectroscopy on Fusion Plasmas

Atomic data from the IRON project ABSTRACT

Survey of EUV Impurity Line Spectra and EUV Bremsstrahlung Continuum in LHD )

Photoionized Gas Ionization Equilibrium

Auger & X-ray Fluorescence

Production of HCI with an electron beam ion trap

Plasma Radiation. Ø Free electrons Blackbody emission Bremsstrahlung

Impurity Transport Studies of Intrinsic MO and Injected Ge in High Temperature ECRH Heated FTU Tokamak Plasmas

AND EXCITED STATES IN A TOKAMAK PLASMA. October, Plasma Fusion Center Massachusetts Institute of Technology Cambridge, MA 02139

GCR calculations for Magnesium, Argon, Iron and other elements A different ADAS approach

First Experiments with the Greifswald EBIT

High-resolution x-ray crystal spectrometerõpolarimeter at torus experiment for technology oriented research-94

GA A25842 STUDY OF NON-LTE SPECTRA DEPENDENCE ON TARGET MASS IN SHORT PULSE LASER EXPERIMENTS

The Extreme Ultraviolet Emissions of W 23+ (4f 5 )

EMISSION LINE SPECTRA FROM LOW-DENSITY LABORATORY PLASMAS

Identification and Plasma Diagnostics Study of Extreme Ultraviolet Transitions in Highly Charged Yttrium

Extreme-ultraviolet emissivity from Xe 8+ to Xe 12+ by using a detailed line-by-line method

Observation of Tungsten Line Emissions in Wavelength Range of Å in Large Helical Device )

Effect of iron ionization balance on X-ray spectral analysis

Spectral signatures of the impulsive energy release in SMM BCS spectra

Laser heating of noble gas droplet sprays: EUV source efficiency considerations

Estimating the plasma flow in a recombining plasma from

PFC/JA MEASUREMENT OF THE D-D FUSION NEUTRON ENERGY SPECTRUM AND VARIATION OF THE PEAK WIDTH WITH PLASMA ION TEMPERATURE

Introduction to the Diagnosis of Magnetically Confined Thermonuclear Plasma

LECTURE NOTES. Ay/Ge 132 ATOMIC AND MOLECULAR PROCESSES IN ASTRONOMY AND PLANETARY SCIENCE. Geoffrey A. Blake. Fall term 2016 Caltech

The World s Smallest Extreme Laboratories:

Observations of Counter-Current Toroidal Rotation in Alcator C-Mod LHCD Plasmas

Impurity accumulation in the main plasma and radiation processes in the divetor plasma of JT-60U

Investigations on warm dense plasma with PHELIX facility

Plasma-Related Atomic Physics with an Electron Beam Ion Trap

Investigation of M1 transitions of the ground-state configuration of In-like Tungsten

Thermal Equilibrium in Nebulae 1. For an ionized nebula under steady conditions, heating and cooling processes that in

Lecture 2 Interstellar Absorption Lines: Line Radiative Transfer

Experimental X-Ray Spectroscopy: Part 2

Plasma Spectroscopy Inferences from Line Emission

Aspects and prospects of

Laser Dissociation of Protonated PAHs

Resonant Polarization Spectroscopy for Hot X-ray Plasmas

Atomic structure and dynamics

AGN Physics of the Ionized Gas Physical conditions in the NLR Physical conditions in the BLR LINERs Emission-Line Diagnostics High-Energy Effects

Highly Charged Ion Astrophysics in the Laboratory: A New User Facility at Clemson University. Chad E. Sosolik Dept. of Physics and Astronomy

The Instrumental Function of the X-ray Imaging Crystal Spectrometer on Alcator C-Mod

Extension of Wavelength Range in Absolute Intensity Calibration of Space-Resolved EUV Spectrometer for LHD Diagnostics )

Plasma EUV source has been studied to achieve 180W of power at λ=13.5nm, which is required for the next generation microlithography

188 L. Jakubowski and M.J. Sadowski temperature. Some examples of the registered X-ray images are shown in Fig.1. Figure 1. X-ray pinhole images from

A. 0.7 ev B. 1.1 ev C. 1.4 ev D. 1.8 ev E. 2.1 ev F. 3.2 ev G. Something else

ICF Capsule Implosions with Mid-Z Dopants

X-Ray Photoelectron Spectroscopy (XPS)

Noninductive Formation of Spherical Tokamak at 7 Times the Plasma Cutoff Density by Electron Bernstein Wave Heating and Current Drive on LATE

Line analysis of EUV Spectra from Molybdenum and Tungsten Injected with Impurity Pellets in LHD

Impurity Transport in Alcator C-Mod Plasmas

Interaction Effects from Kr, Mo, Nb and Zr in Near Neonlike. Charge States from Tokamak Plasmas. Abstract

Collisional-Radiative Models and the Emission of Light

Parametric Instabilities in Laser/Matter Interaction: From Noise Levels to Relativistic Regimes

Cesium Dynamics and H - Density in the Extended Boundary Layer of Negative Hydrogen Ion Sources for Fusion

X-ray production from resonant coherent excitation of relativistic HCIs in crystals as a model for polarization XFEL studies in the kev range

Measurements of rotational transform due to noninductive toroidal current using motional Stark effect spectroscopy in the Large Helical Device

Application of atomic data to quantitative analysis of tungsten spectra on EAST tokamak

Saturation Absorption Spectroscopy of Rubidium Atom

An import year!

Within the vast field of atomic physics, collisions of heavy ions with atoms define

W 25+ More Complex, W 25+, which is In-like. There are now 41 fine structure levels belonging to the ground state,

Photoelectron Spectroscopy using High Order Harmonic Generation

X-ray Radiation, Absorption, and Scattering

Lecture 2 Line Radiative Transfer for the ISM

Development of a High Intensity EBIT for Basic and Applied Science

Integrated Modeling of Fast Ignition Experiments

I R A M P. Laser-Aided Diagnostics of Oscillatory Electric Fields in Plasmas Based on the Concept of Quasienergy States REVIEW ARTICLE

Chapter IX: Nuclear fusion

Effects of thermal expansion of crystal-lattice on x-ray imaging crystal spectrometers

LECTURE 23 SPECTROSCOPY AND ATOMIC MODELS. Instructor: Kazumi Tolich

Lecture 5. X-ray Photoemission Spectroscopy (XPS)

Oak Ridge National Laboratory Oak Ridge, Tennessee 37830, U.S.A.

Measurement and Modeling of Density-Sensitive Lines of Fe XIII in the Extreme Ultraviolet

Photoemission Spectroscopy

Lower Hybrid Current Drive Experiments on Alcator C-Mod: Comparison with Theory and Simulation

Quantification of the contribution of processes in the ADAS beam model

Relativistic Electron Beams, Forward Thomson Scattering, and Raman Scattering. A. Simon. Laboratory for Laser Energetics, U.

Introduction to Sources: Radiative Processes and Population Inversion in Atoms, Molecules, and Semiconductors Atoms and Molecules

Radiation Detection for the Beta- Delayed Alpha and Gamma Decay of 20 Na. Ellen Simmons

Atomic Spectra in Astrophysics

Characterizations and Diagnostics of Compton Light Source

Chapter 6. Atomic Physics and Process in Partially Ionized Plasma

Plasma shielding during ITER disruptions

Power Balance and Scaling of the Radiated Power in the Divertor and Main Plasma of Alcator C-Mod

X-ray spectroscopy of low-mass X-ray binaries

3) In CE separation is based on what two properties of the solutes? (3 pts)

Spectroscopic studies of impurities in the LHD plasmas

PFC/JA Precision Measurements of the Wavelengths of Emission Lines of Mg-like and Na-like Kv in Alcator C Plasmas

PLASMA CONFINEMENT IN THE GAMMA 10 TANDEM MIRROR

Transcription:

1 Line ratios and wavelengths of helium-like argon n = 2 satellite transitions and resonance lines C. Biedermann a, R. Radtke a, and K. Fournier b a Max-Planck-Institut für Plasmaphysik, Bereich Plasmadiagnostik, D-10117 Berlin, Germany b Lawrence Livermore National Laboratory, Livermore, CA 94550, USA The characteristic x-ray emission from helium-like argon was investigated as a mean to diagnose hot plasmas. We have measured the radiation from n = 2 1 parent lines and from KLn dielectronic recombination satellites with high wavelength resolution as function of the excitation energy using the Berlin Electron Beam Ion Trap. Values of wavelength relative to the resonance and forbidden line are tabulated and compared with references. The line intensity observed over a wide range of excitation energies is weighted with a Maxwellian electron-energy distribution to analyze line ratios as function of plasma temperature. Line ratios (j+z)/w and k/w compare nicely with theoretical predictions and demonstrate their applicability as temperature diagnostic. The ratio z/(x + y) shows not to depend on the electron density. 1. Introduction The measurement of the radiation pattern from helium-like ions, dominated by the 4 parent lines, conventionally labelled w, x, y, and z, and the associated dielectronic recombination (DR) satellites provides a mean to diagnose hot laboratoryfusion plasmas or the plasma of astrophysical objects, which are not accessible for direct measurements [1,2]. The intensity of these resonant satellites is strongly affected by the local plasma properties through electron recombination. From the intensity ratio of certain line combinations information on electron temperature or density, transport or spatial distribution of impurities or possible deviations from the Maxwellian energy distribution by polarization spectroscopy can be derived. Even though the helium-like ion system is known to a fair degree and atomic recombination and ionization rates can be calculated for a wide range of plasma conditions this basic theoretical data needs to be checked with experimental observations of wavelength, excitation energy and line strength. accepted for publication in Nuclear Instruments & Method in Physical Research: Section B, conference proceedings to 11 th International Conference on the Physics of Highly Charged Ions (HCI-2002) Sep. 1-6, 2002, Caen, France Argon serves as a favorable diagnostic tool of various plasmas, owing to its properties of controllable injection into and efficient pumping out of fusion devices. He-like argon has a significant abundance in a plasma with electron temperatures in the range between T e = 0.5 to 3.5 kev. This T e range prevails in the outer region of large tokamak machines, where argon is employed as coolant or in the center of smaller devices, where it serves as a tracer of plasma conditions [3]. The dielectronic satellites j and k are especially useful for diagnostic purposes, since they cannot be populated directly from the ground state of the Li-like ion through the promotion of an inner-shell electron and since their resonance strengths are observed as large. Unfortunately, for the argon system investigated here, the line j and z blend with an unresolvable 0.2 må separation. This blend of lines is a typical situation in a plasma, where the excitation follows from a broad energy distribution (usually Maxwell- Boltzmann) and leads to simultaneous emission of directly excited lines as well as dielectronic satellites. EBIT, however, with it s mono-energetic electron beam, offers, in conjunction with highresolution spectroscopy, the opportunity to investigate collisionally excited emission spectra differentially as function of wavelength and electron-

2 excitation energy [4]. Thereby, level-specific information on wavelength, excitation energy and strength of individual transitions can be gained. 2. Experimental method The x radiation of helium-like argon was collected at the Berlin Electron Beam Ion Trap with a vacuum flat-crystal spectrometer. The dispersing quartz-crystal and the position-sensitive proportional detector reach a resolving power > 2000. Neutral argon is continuously fed into EBIT, which ionizes and confines the ions with its 70-µm-diameter electron beam. Operating at 5-keV-energy and 90-mA-electron current the charge-state distribution is dominated by Ar 16+ after 200 ms. This prepares the experiment sequence in which the nearly mono-energetic (50 ev spread) electron-beam energy is linearly ramped during a period of 20 ms from 1.9 to 3.9 kev probing He-like argon ions and simultaneously recording x rays emitted during recombination processes with the beam electrons. For every detected x-ray event the corresponding excitation energy of the electron beam is registered. The resulting information is presented as a scatter plot in Fig. 1. The rapid switching of the electron-beam energy and a re-ionization period following the sampling period ensures that the trapped ion abundance is not altered. After repetition of the sequence for 3 s the ion inventory is expelled and a fresh argon-ion ensemble is prepared preventing the accumulation of high-z background ions. To probe the smoothly varying radiation emitted after direct excitation over an extended energy range, the electron-beam energy was raised in 8 steps from 3.8 to 15.8 kev during a second experiment sequence. Quickly sweeping EBIT s electron-beam energy, we can measure the rate of a process by analyzing the recorded intensity normalized to the electron and ion density as function of excitation energy for a given ion population. To compare with a plasma the measured excitation function has to be folded with the wide energy distribution of the exciting electrons, which commonly follows a Maxwell-Boltzmann distribution. Wavelength [ Å ] 4.00 3.95 k r q s,t KLL DR KLM DR DE j 2.0 2.5 3.0 3.5 Electron beam energy [ kev ] Figure 1. Scatter plot of x rays from He- and Li-like argon showing wavelength- and excitationenergy-resolved individual satellites from KLn dielectronic recombination as distinct spots and direct excitation as horizontal lines. We note, however, that the spectral information obtained with EBIT can be weighted with any energy-distribution function and in this respect deviations from a Maxwellian can be studied. To the weight function we combine the variation of the electron density with beam energy, caused by the fact that, during the beam-energy ramp, we keep the electron-beam current constant. To circumvent the problems of absolute lineintensity measurements the rate coefficient exciting a dielectronic satellite is related to the rate coefficient of the w-resonance line, which is the brightest of the spectrum and proportional to the number of excited He-like argon ions from which the satellites originate. The measured line radiation has to be corrected for the experimental situation of anisotropic electric-dipole radiation due to directed electron-beam excitation expressed by the polarization and the detection properties of the crystal and the recording device, which can be summarized in an instrumental response function. z q y x w

3 Table 1 Experimental and theoretical wavelengths of n = 2 dielectronic satellite transitions lithium-like argon in [ Å ]. bl marks an unresolved blend of lines. label Transition BerlinEBIT Tarbutt [6] TFR [3] Chen [7] Bhalla [8] Vainstein [9] Phillips [2] q 1s2p( 3 P )2s 2 P 3/2 1s 2 2s 2 S 1/2 3.98155(15) 3.98134(10) 3.9813(1) 3.9827 3.9785 3.9806 3.9801 r 1s2p( 3 P )2s 2 P 1/2 1s 2 2s 2 S 1/2 3.98433(39) 3.98355(10) 3.9833(2) 3.9851 3.9807 3.9827 3.9823 j 1s2p 2 2 D 5/2 1s 2 2p 2 P 3/2 3.99417(28) 3.99392(11) 3.9943 3.9940 3.9899 3.9932 3.9906 k 1s2p 2 2 D 3/2 1s 2 2p 2 P 1/2 3.98986(25) 3.98999(12) 3.9900(2) 3.9900 3.9864 3.9892 3.9875 m 1s2p 2 2 S 1/2 1s 2 2p 2 P 3/2 3.96625(39) 3.96580(15) 3.9656 3.9647 3.9616 3.9651 3.9744 s 1s2p( 1 P )2s 2 P 3/2 1s 2 2s 2 S 1/2 3.96625(50) 3.96891(20) 3.9676 3.9680 3.9639 3.9669 3.9673 t 1s2p( 1 P )2s 2 P 1/2 1s 2 2s 2 S 1/2 bl bl 3.9688 3.9685 3.9650 3.9677 3.9683 u 1s2p( 3 P )2s 4 P 1/2 1s 2 2s 2 S 1/2 4.01084(40) 4.01012(20) - 4.0165 4.0123 4.0141 4.0095 v 1s2p( 3 P )2s 4 P 3/2 1s 2 2s 2 S 1/2 bl bl - 4.0176 4.0139 4.0152 4.0109 Table 2 Wavelengths of lithium-like argon n = 3 and n = 4 dielectronic satellites observed as strong. Wavelengths are given in [ Å ] and compared to theoretical predictions. Transition BerlinEBIT Safronova [10] Bhalla [8] TFR [3] Chen [7] 1s2p3d 2 F 7/2 1s 2 3d 2 D 5/2 3.95217(17) 3.9522 3.9491 3.9479 3.9526 1s2p3d 2 D 5/2 1s 2 3p 2 P 3/2 3.95591(18) 3.9564 3.9523 3.9529 3.9542 1s2p3s 2 P 3/2 1s 2 3s 2 S 1/2 3.96318(15) 3.9633 3.9628 3.9635 1s2p3p 2 D 5/2 1s 2 3p 2 P 3/2 3.96686(18) 3.9640 3.9643 3.9688 1s2p4p 2 D 5/2 1s 2 4p 2 P 3/2 3.95150(19) 3.9499 3.9487 3. Wavelengths For the observed dielectronic satellites shown in Fig. 1, wavelengths were determined by calibrating the spectrum to theoretical values for the w and the z line calculated by Drake [5]. The results are summarized in table 1 for the KLL DR and for the KLM and KLN DR in table 2. The uncertainty origins from non-linearities of the interpolation between w and z, the spectrometer response and statistics. The data is compared with recent measurements of Tarbutt et al. [6], values from the TFR tokamak and theoretical calculations using different methods [7 9,2,10]. 4. Line ratios 4.1. Density-sensitivity To extract information on the electron density from x-ray spectra of He-like ions it is common to relate the intensity of the forbidden line z to the intercombination lines x and y. This sensitivity is caused by the collisional transfer from the metastable 3 S 1 to the 3 P J level, which is observed as efficient for light elements. For He-like argon we compare our measurement of R = z/(x + y) in Fig. 2 with values from other EBIT facilities [11,12], the Alcator C tokamak [1], and theoretical predictions. The theoretical value using excitation rates by Pradhan [1] and the predictions by HULLAC collisional radiative rate coefficients with modifications including the two-photon decay of the 1s 2s 1 S 0 level (HULLAC w 2hν) or a variation of the collisional data (HULLAC col) demonstrate the insensitivity of the ratio R for argon. 4.2. Temperature-dependent ratios The relative ratio of dielectronic satellites to the resonance line is sensitive to the electron temperature of the plasma. The strong j satellite blended by the z line frame with the w line the He-like argon spectrum and can already be clearly distinct with modest detection effort. We have measured this ratio (j + z)/w and plotted it together with a data point from TFR tokamak [3] and a calculated value in Fig. 3 showing the weak temperature dependence of the ratio above

4 Line ratio R = z / (x+y) 3 2 1 Pradhan HULLAC basic HULLAC w 2hν HULLAC col NIST EBIT Oxford EBIT Alcator C Line ratio 1 0.1 j+z / w TFR Bombarda Theory Bely & Dubau 0 10 10 10 11 10 12 10 13 10 14 Electron density n e [ cm -3 ] k/w Alcator C Källne Theory Pradhan Theory Chen Theory HULLAC Figure 2. Line ratio R = z/(x + y) for He-like argon arranged according to the electron density. In the EBIT experiment the electron-beam energy is 7keV and the density is calculated from the electron current and the estimated beam radius. For the tokamak value and the theoretical predications the plasma temperature is about 2keV. T e = 1 kev. The experimental uncertainty adds statistics, variations in the polarization, crystal reflectivity and changes in the electron beam ion overlap. Further, we have extracted the line ratio of the k satellite, which is well resolved from other lines, and the parent w resonance. In Fig. 3 the k/w ratio is plotted as function of plasma temperature and compared to tokamak values from Alcator C and a calculated data point [1]. The functional trend is supported by theoretical calculations using the HULLAC-package and dielectronic recombination data by Chen [7]. Modifications to the HULLAC-predicted [4] collisional excitation rates or variations of the electron density show only a minor influence on the line ratio, indistinguishable within the experimental uncertainty. The steep temperature dependence of the k/w ratio allows a more accurate determination of T e from the measured line ratio, which is important for the application as plasma-temperature diagnos- 0.01 0 1 2 3 4 Plasma temperature kt e [ kev ] Figure 3. Line ratio of (j + z)/w and k/w for He-like argon as function of the electron temperature. Experimental values from the are compared with measurements at TFR and Alcator C tokamak and theoretical predictions. tic. Acknowledgment The work of one us (K.F.) was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405- Eng-48. REFERENCES 1. E. Källne, J. Källne and A.K. Pradhan, Phys. Rev. A 28, 467 (1983). 2. K.J. Phillips, F.P. Keenan, L.K. Harra, S.M. McCann, E. Rachlew-Källne, J.E. Rice and M. Wilson, J. Phys. B 27, 1939 (1994). 3. TFR Group, F. Bombarda, F. Bely-Dubau, P. Faucher, M. Cornille, J. Dubau and M. Loulergue, Phys. Rev. A 32, 2374 (1985).

4. C. Biedermann, R. Radtke, K.B. Fournier, Phys. Rev. E (accepted, 2002). 5. G.W.F. Drake, Can. J. Phys. 66, 586 (1988). 6. M.R. Tarbutt, R. Barnsley, N.J. Peacock and J.D. Silver, J. Phys. B 34, 3979 (2001). 7. M.H. Chen, At. Data Nucl. Data Tables 34, 301 (1986). 8. C.P. Bhalla and T.W. Tunnel, J. Quant. Spectrosc. Radiat. Transfer 32, 141 (1984). 9. L.A. Vainstein and U.I. Safranova, Phys. Scr. 31, 519 (1985). 10. U.I. Safronova, M.S. Safronova and R. Bruch, J. Phys. B 28, 2803 (1995). 11. E. Silver, H. Schnopper, S. Bandler, N. Brickhouse, S. Murray, M. Barbera, E. Takacs, J. D. Gillaspy, J.V. Porto, I. Kink, N. Madden, D. Landis, J. Beeman and E.E. Haller, Astrophy. J. 541, 495 (2000). 12. N.J. Peacock, R. Barnsley, M.G. O Mullane, M.R. Tarbutt, D. Crosby, J.D. Silver and J.A. Rainnie, Rev. Sci. Instrum. 72, 1250 (2001). 5