..,..,.,

Similar documents
EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SECOND-ORDER ITERATIVE BOUNDARY-VALUE PROBLEM

Contraction Mapping Principle Approach to Differential Equations

Solutions for Nonlinear Partial Differential Equations By Tan-Cot Method

5.1-The Initial-Value Problems For Ordinary Differential Equations

An Integral Two Space-Variables Condition for Parabolic Equations

Convergence of Singular Integral Operators in Weighted Lebesgue Spaces

Application on Inner Product Space with. Fixed Point Theorem in Probabilistic

Procedia Computer Science

IX.2 THE FOURIER TRANSFORM

Solution of Integro-Differential Equations by Using ELzaki Transform

e t dt e t dt = lim e t dt T (1 e T ) = 1

Green s Functions and Comparison Theorems for Differential Equations on Measure Chains

LAPLACE TRANSFORM OVERCOMING PRINCIPLE DRAWBACKS IN APPLICATION OF THE VARIATIONAL ITERATION METHOD TO FRACTIONAL HEAT EQUATIONS

t + t sin t t cos t sin t. t cos t sin t dt t 2 = exp 2 log t log(t cos t sin t) = Multiplying by this factor and then integrating, we conclude that

Solutions of Sample Problems for Third In-Class Exam Math 246, Spring 2011, Professor David Levermore

Chapter Direct Method of Interpolation

Variational Iteration Method for Solving System of Fractional Order Ordinary Differential Equations

IX.1.1 The Laplace Transform Definition 700. IX.1.2 Properties 701. IX.1.3 Examples 702. IX.1.4 Solution of IVP for ODEs 704

Yan Sun * 1 Introduction

On the Pseudo-Spectral Method of Solving Linear Ordinary Differential Equations

0 for t < 0 1 for t > 0

Spectral Galerkin Method for Optimal Control Problems Governed by Integral and Integro- Differential Equations

Chapter 2. First Order Scalar Equations

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 9: The High Beta Tokamak

IMPROVED HYPERBOLIC FUNCTION METHOD AND EXACT SOLUTIONS FOR VARIABLE COEFFICIENT BENJAMIN-BONA-MAHONY-BURGERS EQUATION

Theory of! Partial Differential Equations!

On a Volterra equation of the second kind with incompressible kernel

IX.1.1 The Laplace Transform Definition 700. IX.1.2 Properties 701. IX.1.3 Examples 702. IX.1.4 Solution of IVP for ODEs 704

ENGR 1990 Engineering Mathematics The Integral of a Function as a Function

ENGI 9420 Engineering Analysis Assignment 2 Solutions

Laplace Transforms. Examples. Is this equation differential? y 2 2y + 1 = 0, y 2 2y + 1 = 0, (y ) 2 2y + 1 = cos x,

Theory of! Partial Differential Equations-I!

September 20 Homework Solutions

ME 391 Mechanical Engineering Analysis

Hamilton- J acobi Equation: Weak S olution We continue the study of the Hamilton-Jacobi equation:

Fractional operators with exponential kernels and a Lyapunov type inequality

6.003 Homework #8 Solutions

FM Applications of Integration 1.Centroid of Area

The Fundamental Theorem of Calculus Solutions

Y 0.4Y 0.45Y Y to a proper ARMA specification.

Question Details Int Vocab 1 [ ] Question Details Int Vocab 2 [ ]

Some Inequalities variations on a common theme Lecture I, UL 2007

ECE Microwave Engineering. Fall Prof. David R. Jackson Dept. of ECE. Notes 10. Waveguides Part 7: Transverse Equivalent Network (TEN)

GENERALIZATION OF SOME INEQUALITIES VIA RIEMANN-LIOUVILLE FRACTIONAL CALCULUS

Integral Transform. Definitions. Function Space. Linear Mapping. Integral Transform

A LIMIT-POINT CRITERION FOR A SECOND-ORDER LINEAR DIFFERENTIAL OPERATOR IAN KNOWLES

The Hamilton-Jacobi Treatment of Complex Fields as Constrained Systems. Tamer Eleyan

RESPONSE UNDER A GENERAL PERIODIC FORCE. When the external force F(t) is periodic with periodτ = 2π

1. Introduction. 1 b b

Journal of Quality Measurement and Analysis JQMA 7(1) 2011, Jurnal Pengukuran Kualiti dan Analisis

8. Basic RL and RC Circuits

ODEs II, Lecture 1: Homogeneous Linear Systems - I. Mike Raugh 1. March 8, 2004

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road QUESTION BANK (DESCRIPTIVE)

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3.

A New Perturbative Approach in Nonlinear Singularity Analysis

arxiv: v1 [math.na] 23 Feb 2016

A Simple Method to Solve Quartic Equations. Key words: Polynomials, Quartics, Equations of the Fourth Degree INTRODUCTION

New Inequalities in Fractional Integrals

ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX

f t f a f x dx By Lin McMullin f x dx= f b f a. 2

Mathematics 805 Final Examination Answers

arxiv: v1 [math.fa] 3 Jan 2019

Sections 2.2 & 2.3 Limit of a Function and Limit Laws

Systems Variables and Structural Controllability: An Inverted Pendulum Case

Asymptotic relationship between trajectories of nominal and uncertain nonlinear systems on time scales

ON THE OSTROWSKI-GRÜSS TYPE INEQUALITY FOR TWICE DIFFERENTIABLE FUNCTIONS

1.0 Electrical Systems

Motion. Part 2: Constant Acceleration. Acceleration. October Lab Physics. Ms. Levine 1. Acceleration. Acceleration. Units for Acceleration.

Analytic solution of linear fractional differential equation with Jumarie derivative in term of Mittag-Leffler function

MATH 31B: MIDTERM 2 REVIEW. x 2 e x2 2x dx = 1. ue u du 2. x 2 e x2 e x2] + C 2. dx = x ln(x) 2 2. ln x dx = x ln x x + C. 2, or dx = 2u du.

THE 2-BODY PROBLEM. FIGURE 1. A pair of ellipses sharing a common focus. (c,b) c+a ROBERT J. VANDERBEI

Program: RFEM 5, RSTAB 8, RF-DYNAM Pro, DYNAM Pro. Category: Isotropic Linear Elasticity, Dynamics, Member

Singular control of SPDEs and backward stochastic partial diffe. reflection

LAPLACE TRANSFORMS. 1. Basic transforms

CERTAIN CLASSES OF SOLUTIONS OF LAGERSTROM EQUATIONS

FRACTIONAL-order differential equations (FDEs) are

Hermite-Hadamard-Fejér type inequalities for convex functions via fractional integrals

The solution is often represented as a vector: 2xI + 4X2 + 2X3 + 4X4 + 2X5 = 4 2xI + 4X2 + 3X3 + 3X4 + 3X5 = 4. 3xI + 6X2 + 6X3 + 3X4 + 6X5 = 6.

Chapter 6. Systems of First Order Linear Differential Equations

Numerical Approximations to Fractional Problems of the Calculus of Variations and Optimal Control

CALDERON S REPRODUCING FORMULA FOR DUNKL CONVOLUTION

ECE 2100 Circuit Analysis

How to Prove the Riemann Hypothesis Author: Fayez Fok Al Adeh.

POSITIVE PERIODIC SOLUTIONS OF NONAUTONOMOUS FUNCTIONAL DIFFERENTIAL EQUATIONS DEPENDING ON A PARAMETER

Math 23 Spring Differential Equations. Final Exam Due Date: Tuesday, June 6, 5pm

Abstract. W.W. Memudu 1 and O.A. Taiwo, 2

On a Fractional Stochastic Landau-Ginzburg Equation

Physics 2A HW #3 Solutions

Time Domain Transfer Function of the Induction Motor

System of Linear Differential Equations

The Dynamics of Two Harvesting Species with variable Effort Rate with the Optimum Harvest Policy

CHAPTER 2: Mathematics for Microeconomics

SOLUTIONS TO ECE 3084

KEY. Math 334 Midterm III Winter 2008 section 002 Instructor: Scott Glasgow

Multiple Choice Solutions 1. E (2003 AB25) () xt t t t 2. A (2008 AB21/BC21) 3. B (2008 AB7) Using Fundamental Theorem of Calculus: 1

Application of He s Variational Iteration Method for Solving Seventh Order Sawada-Kotera Equations

Ann. Funct. Anal. 2 (2011), no. 2, A nnals of F unctional A nalysis ISSN: (electronic) URL:

Linear Response Theory: The connection between QFT and experiments

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x

Existence of positive solution for a third-order three-point BVP with sign-changing Green s function

Transcription:

57.95. «..» 7, 9,,. 3 DOI:.459/mmph7..,..,., E-mil: yshr_ze@mil.ru -,,. -, -.. -. - - ( ). -., -. ( - ). - - -., - -., - -, -., -. -., - - -, -., -. : ; ; - ;., -,., - -, []., -, [].,, - [3, 4]. -. 3

( ) u (, ) + ( ) u(, ) = u (, ) + f (, ), D = {(, ) :, }, () : u(,) + δu(, ) = ϕ( ) ( ), () 4 u (, ) = ( ), (3) du(, ) + u(, ) d = ( ), (4) u(, ) = h( ) ( ), (5) d >, δ, ( ) >, f (, ), ϕ ( ), h ( ), u (, ) ( ).. { u(, ), ( )} u(, ) ( ) () (5), : ) u(, ) u (, ), u (, ), u (, ) D ; ) ( ) [, ] ; 3) () () (5)..., δ, ( ) [, ], ϕ( ) [,], f (, ) D, h( ) C [, ], h( ) ( )., ( ) ϕ() = h() + δ h. (6) () (5) u(, ) C, D ( ) C [, ], () (4) ( ) h ( ) + ( ) h( ) = u (, ) + f (, ) ( ). (7) ( ). { (, ), ( )} u () (5)., h( ), (5) : u (, ) = h ( ) ( ). (8) = (), : ( ) u (, ) + ( ) u(, ) = u (, ) + f (, ) ( ). (9), (5) (8),, (7). u(, ), ( ) () (3), (7), - { } (6). (7) (9) : d ( ) ( u(, ) h( )) + ( )( u(, ) h( )) = ( ). d y( ) u(, ) h( ) ( ) () : ( ) y ( ) + ( ) y( ) = ( ). () (), () (6),, y() + δ y( ) = ϕ() h() + δ h( ) =. () ( ), () : ( ) y( ) = cep d,( ) ( ). (3), (), : ( ) c+ p d = ( ). (4) Bullein of he Souh Url Se Universiy Ser. Mhemics. Mechnics. Physics, 7, vol. 9, no., pp. 3

..,.. δ (4) c =, (3),, y( ) = ( )., (), (5).. [6]: y ( ) + y( ) =,, (5) y () =, y () = d y(), d > (6) y ( ) = cos( ), =,,... - g = d., () (4), -, (5) y () =, d y() + y( ) d =, d >. (7) { y ( )} =,.. (5), (6), =. [6],, N, π / ( ) π <. (8) ( dπ ) { ( )} v, v ( ) cos( µ ) y y ( ) π { ( )} =, µ = + π ( ), =,,..., - L (,). [5], N, (8), y ( ) v ( ) <. L (,) 3( dπ ), y ( ) v ( ) <, (9) L (,) = N 9d.. z ( ), =,,... - [6]. { } [6]. { } z ( ) = (cos( ) cos ) /( + d cos ). y ( ), =,,... L (,). η ( ) = sin( ), ξ ( ) = sin( µ ), =,,.... (9) η ( ) ξ ( ) <. () L (,) = N 9d, g( ) L (,). (9), () : ( g( ) y ( ) d) M g( ), () L (,) = ( g( ) η ( ) d) M g( ), () L (,) =. «..» 7, 9,,. 3 5

ϕ( ) C[,], g ( ) L (,), (), M = N( + N) + + 9 d J ( g) dg() + g( ) d =. g = ( g( ), z ( )) = g ( )sin( ) d, (3) α α = + d cos >. g M g L (,) ( ) ( ). (4) =, ϕ( ) C [,], g ( ) L (,), J ( g) =, g () =. (3) (), (5), α g = ( g ()cos( ) g ( )cos( ) d ). (5) = 3 g m g + M g L (,) ( ) () ( ). (6), g( ) W (,), J ( g) =, g () =, g () + dg () =. (4), (), g = g ( )sin( ) α d. g M g L (,) ( ) = ( ). (7) : 3. B, [7] u(, ) u(, ) u ( ) y ( ) =, = D, u ( ) C[, ], 3 B, ( ( ) ) u C[, ] < +. = : u(, ) 3 = ( ( ) ) B u, C[, ]. =. 3 3 B, C[, ] E, B 3, z = u(, ) + ( ). 3 3 E B, C[, ] 3 E.. 6 Bullein of he Souh Url Se Universiy Ser. Mhemics. Mechnics. Physics, 7, vol. 9, no., pp. 3

..,.. (, ) : u { (, ), ( )} u () (3), (7) u(, ) = u ( ) y ( ) (8) = ( ) u ( ) + u ( ) = F ( ;, u) ( =,,...; ), (9) u () = ϕ, ( =,,...), (3) u ( ) = u(, ) z ( ) d, F ( ; u, ) = f ( ) ( ) u ( ), f ( ) = f (, ) z ( ) d, ϕ = ϕ( ) z ( ) d ( =,,...), y ( ) = cos( ), z ( ) = (cos( ) cos( )) /( + d cos )., (9), (3),, ( ) > δ : ϕe F ( ;, u) u ( ) = + e d ( ) + + (, ) ( ) s F ( ;, u) ( ) u { (, ), ( )} e d ( =,,...). (3) u () (3), (7) - u ( ) ( =,, ) (3) (8): ϕe F ( ;, u) ( ) s F u(, ) e ( ;, u) = + d e d y ( ). = ( ) (3) ( ) + + (8), (7), ( ) = h ( ) h ( ) f (, ) u ( ) =. (33), u ( ) (3) (33) - ( ) { (, ), ( )} u () (3), (7) : ϕe ( ) = h ( ) ( ) h ( ) f (, ) + = + ( ) s F ( ;, u) F ( ;, u) + e d e d. ( ) ( ) +. u(, ), ( ) () (3), (7), 3. { } (34). «..» 7, 9,,. 3 7

.. (, ) (3). u ( ) = u(, ) z ( ) d ( =,,...), u { }., { (, ), ( )} y ( ), =,,... [, ] u () (3), (7).-, d u (, ) z ( ) d = u(, ) d = u ( ) d ( =,,...), (35) o u ( ) C[, ]., (3),, : ( ) u (, ) z ( ) d = u (, ) cos( ) cos d = α = ( d u (, )cos + u (, )cos( ) d ) = α = ( du(, ) + u(, ) d)cos α + + u(, ) ( cos( ) cos ) d = u ( ), (36) α = + d cos >. () z ( ) ( =,,...), - (35), (36), (9). (), (3)., u ( ) ( =,,...) (9), (33). -, u ( ) ( =,,...) [, ] (3). -. 3. () (3), (7), (3), (34). 3 E Φ ( u, ) = { Φ ( u, ), Φ ( u, )}. Φ = = ( u, ) u (, ) u ( )sin, Φ ( u, ) = ( ), u ( ) ( =,,...) ( ) (3) (34)., : / / ( u C[, ] ) ( ) ( ) 3 ϕ + ( + δ ) 3 ( ) = = C[, ] ( f ( ) ) d + ( ) [, ] ( u ( ) [, ] ), C C (37) = = 8 Bullein of he Souh Url Se Universiy Ser. Mhemics. Mechnics. Physics, 7, vol. 9, no., pp. 3

..,.. ( ) ( ) [ ] ( ) ( ) (, ) [, ] h h f + ( ) C[, ] C, C ϕ + = = + ( + δ ) ( f ( ) ) d ( ) ( ( ) ) C[, ] u C[, ] ( ) +. C[, ] = = (38), () (3), (7) : (3). ϕ( ) W (,), d ϕ() + ϕ( ) d =, ϕ () =, ϕ () + dϕ () = ;. f (, ), f (, ), f (, ) C( D ), f (, ) L ( D ), df (, ) + f (, ) d =, f (, ) =, f (, ) + df (, ) = ( ); 3. h( ) C [, ], h( ) ( ). (5) (7), (37) (38) : u (, ) A ( ) + B ( ) ( ) u(, ), (39) 3 3 B, C[, ] B, ( ) B ( ) + B ( ) ( ) u (, ), (4) 3 C[, ] C[, ] B, A ( ) = 3 M ϕ ( ) + ( + δ ) f (, ) L (,) L( D ) ( ) C[, ], B ( ) = 3 ( + δ ), ( ) C [, ] ( ) ( ) ( ) ( ) ( ), ( A = h h f + ) ( ) [, ] C[, ] M ϕ + C L (,) = ( δ ) f (, ) + +, L( D ) B ( ) ( ) = h ( ). C[, ] C[, ] = A( ) = A ( ) + A ( ), B( ) = B ( ) + B ( ) (39), (4), u (, ) + ( ) A ( ) + B ( ) ( ) u (, ). (4) 3 3 B, C[, ] C[, ] B,,., 3 ( A( ) + ) B( ) <. (4) K = K ( z 3 R = A( ) + ) R E 3 E () (3), (7).. (3), (34) z = Φ z, (43) z = { u, }, Φ z = { Φz, Φ z}, Φ i ( u, )( i =,) (3), (34). 3 Φ( u, ) K = K ( z 3 R = A( ) + ) E. R E (4), z, z, z KR :. «..» 7, 9,,. 3 9

Φ z A( ) + B( ) ( ) u(, ), (44) 3 3 E C[, ] B, Φ z Φ z 3 B( ) R ( ) ( ) u (, ) u (, ) 3 E + C[, ] B,. (45) (44) (45), (4),, Φ K = K -., Φ K = K { u, }, (43)., (3), (34) R K = K. 3 B,, u(, ), u (, ) u (, ) - D. (4) (9), ( u ( ) ) 3 ( ( ) ) C[, ] u [, ] ( ) C + = C[, ] = M f (, ) ( ) u(, ) + +. C[, ] L [, ] (,) C, u (, ) D., () () (4) (7)., () (3), (7) { (, ), ( )} 3 B, R R u. 3 K = KR.. () (5). 3., ϕ() = h(), ψ () = h ( ). K = K ( z 3 R = A( ) + ) R E. 3 E () (5).,.. /..,.. //...,.. 94 3..,.. /..,.... 969.. 85, 4.. 739 74. 3.,.. /.. //. 97... 38 4. 4.,.. - /..,..... 97.. 68, 4.. 89 9. 5.,.. /..,.. //... 36, 8.. 69 74. 6.,.. /..,.. //.... 385,.. 4. 7.,.. - /..,... :,. 68. 5 6. Bullein of he Souh Url Se Universiy Ser. Mhemics. Mechnics. Physics, 7, vol. 9, no., pp. 3

..,.. Bullein of he Souh Url Se Universiy Series Mhemics. Mechnics. Physics 7, vol. 9, no., pp. 3 DOI:.459/mmph7 ON ONE NONLOCAL INVERSE BOUNDARY PROBLEM FOR HE SECOND- ORDER PARABOLIC EQUAION Y.. Mehrliev, A.N. Sfrov Bu Se Universiy, Bu, Azerbijn E-mil: yshr_ze@mil.ru he pper is focused on solvbiliy of n inverse boundry problem wih n unnown coefficien which depen on ime for second-order prbolic equion wih non-clssicl boundry condiions. he ide of he problem is h ogeher wih he soluion i is required o deermine he unnown coefficien. he problem is considered in he recngulr re. he pper inroduces clssicl soluion of he se problem. A firs, n uiliry inverse boundry problem is emined nd he equivlence (in some sense) of he originl problem is proved. Firs, we pply mehod of vrible seprion o nlyze he uiliry inverse boundry problem. hen, we emine specrl problem for n ordinry secondorder differenil equion wih inegrl condiions. Hving used forml scheme of he mehod of vrible seprion, he soluion of direc boundry problem (in cse of specified unnown funcion) resolves iself ino soluion of Cuchy problem. Afer h he soluion is limied o he soluion of counble sysem of inegro-differenil equions in Fourier coefficiens. In is urn, he ls sysem regrding unnown Fourier coefficiens is recorded in he form of n inegro-differenil equion in he desired soluion. Using relevn ddiionl condiions of he uiliry inverse boundry problem, we obin sysem of wo nonliner inegrl equions for defining unnown funcions. hus, he soluion of he uiliry inverse boundry problem comes down o he sysem of wo nonliner inegrodifferenil equions in unnown funcions. he specific Bnch spce is designed. hen, in he sphere mde of he Bnch spce we wih he help of conrced mpping prove he solvbiliy of he nonliner inegro-differenil equions se, which is unique soluion of he ddiionl inverse boundry problem. Using he equivlence of problems, i is concluded bou eisence nd uniqueness of clssicl soluion of he originl problem. Keywor: inverse boundry problem; prbolic equion; Fourier mehod; clssicl soluion. References. Gordezini D.G., Avlishvili G.A. Memichesoe modelirovnie,, Vol., no., pp. 94 3. (in Russ.).. Bisdze A.V., Smrsiy A.A. DAN SSSR, 969, Vol. 85, no. 4, pp. 739 74. (in Russ.). 3. Gordezini D.G. Seminr Insiu prildnoy memii pri bilissom universiee (Seminr of he Insiue of Applied Mhemics bilisi Universiy), 97, no., p. 38 4. (in Russ.). 4. Gordezini D.G., Dzhioev D.Z. O rzreshimosi odnoy revoy zdchi dly nelineynogo urvneniy ellipichesogo ip (On he solvbiliy of boundry vlue problem for nonliner equion of ellipic ype). Soobshch. AN GSSR (Communicion of AN GSSR), 97, Vol. 68, no. 4, pp. 89 9. (in Russ.). 5. Kpusin N.Yu., Moiseev E.I. Convergence of specrl epnsions for funcions of he hölder clss for wo problems wih specrl prmeer in he boundry condiion. Differenil Equions,, Vol. 36, Issue 8, pp. 8 88. DOI:.7/BF75486 6. Moiseev E.I., Kpusin N.Yu. Doldy demii nu,, Vol. 385, no., pp. 4. (in Russ.). 7. Khudverdiev K.I., Veliev A.A. Issledovnie odnomernoy smeshnnoy zdchi dly odnogo lss psevdogiperbolichesih urvneniy re'ego poryd s nelineynoy operornoy prvoy chs'yu (he sudy of one-dimensionl mied problem for one clss of qusi-hyperbolic hird-order equions wih nonliner operor righ side). Bu, Chshyogly Publ.,, 68 p. (in Russ). Received November 5, 6. «..» 7, 9,,. 3