Almost all forms of energy on earth can be traced back to the Sun.:

Similar documents
Chapter 7 Kinetic Energy and Work

Ch 5 Work and Energy

WORK, POWER & ENERGY

KINETIC AND POTENTIAL ENERGY. Chapter 6 (cont.)

Review. Kinetic Energy Work Hooke s s Law Potential Energy Conservation of Energy Power 1/91

Ch 11 ENERGY and its CONSERVATION. work causes a change in the energy of a system KE (an increase or decrease in KE) ket.

HSC PHYSICS ONLINE B F BA. repulsion between two negatively charged objects. attraction between a negative charge and a positive charge

Chapter 6 Work, Energy, and Power. Copyright 2010 Pearson Education, Inc.

Work and Energy. Chapter 7

Elastic Potential Energy

PHYSICS - CLUTCH CH 07: WORK & ENERGY.

General Physics I Work & Energy

Work Done by a Constant Force

Energy present in a variety of forms. Energy can be transformed form one form to another Energy is conserved (isolated system) ENERGY

Physics Test 9: Work and Energy page 1

Chapter 6 Work and Energy

Work changes Energy. Do Work Son!

Conservation of Energy 1 of 8

PHY 101. Work and Kinetic Energy 7.1 Work Done by a Constant Force

WORK & ENERGY Work Work Energy Thm. Kinetic Energy Power Potential Energy Conservation of Energy

Work and kinetic energy. If a net force is applied on an object, the object may

W = F x W = Fx cosθ W = Fx. Work

Foundations of Physical Science. Unit 2: Work and Energy

Lesson 5. Luis Anchordoqui. Physics 168. Tuesday, September 26, 17

Conservation of Energy and Momentum

0J2 - Mechanics Lecture Notes 2

Power: Sources of Energy

Power: Sources of Energy

Physics 111. Lecture 15 (Walker: 7.1-2) Work & Energy March 2, Wednesday - Midterm 1

Lecture 6.1 Work and Energy During previous lectures we have considered many examples, which can be solved using Newtonian approach, in particular,

Chapter 13. Simple Harmonic Motion

Ground Rules. PC1221 Fundamentals of Physics I. Introduction to Energy. Energy Approach to Problems. Lectures 13 and 14. Energy and Energy Transfer

Pre-Comp Review Questions- 8 th Grade

Chapter 4. Energy. Work Power Kinetic Energy Potential Energy Conservation of Energy. W = Fs Work = (force)(distance)

Today. Finish Ch. 6 on Momentum Start Ch. 7 on Energy

CHAPTER 13.3 AND 13.4 ENERGY

In an avalanche, a mass of loose snow, soil, or rock suddenly gives way and slides down the side of a mountain.

F=ma. Exam 1. Today. Announcements: The average on the first exam was 31/40 Exam extra credit is due by 8:00 am Friday February 20th.

Chapter 07: Kinetic Energy and Work

Block 1: General Physics. Chapter 1: Making Measurements

Recall: Gravitational Potential Energy

Today. Exam 1. The Electric Force Work, Energy and Power. Comments on exam extra credit. What do these pictures have in common?

Work and the Work-Energy Theorem

What is a Force? Free-Body diagrams. Contact vs. At-a-Distance 11/28/2016. Forces and Newton s Laws of Motion

Momentum & Energy Review Checklist

Prof. Rupak Mahapatra. Physics 218, Chapter 7 & 8 1

Purpose of the experiment

Chapter 5 Work and Energy

Ground Rules. PC1221 Fundamentals of Physics I. Introduction to Energy. Energy Approach to Problems. Lectures 13 and 14. Energy and Energy Transfer

The work-energy theorem

Mechanical Energy. Unit 4

Modeling of a Mechanical System

MECHANICAL (TOTAL) ENERGY

Work and Energy. Work

Elastic potential energy

Pre Comp Review Questions 8 th Grade Answers

Work and kinetic energy. LA info session today at 5pm in UMC235 CAPA homework due tomorrow night.

Ground Rules. PC1221 Fundamentals of Physics I. Lectures 13 and 14. Energy and Energy Transfer. Dr Tay Seng Chuan

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question.

(b) The mechanical energy would be 20% of the results of part (a), so (0 20)(920 m) 180 m.

Chapter 6: Work and Kinetic Energy

( ) = ( ) W net = ΔKE = KE f KE i W F. F d x. KE = 1 2 mv2. Note: Work is the dot product of F and d. Work-Kinetic Energy Theorem

Pre Comp Review Questions 7 th Grade

Momentum. Impulse = F t. Impulse Changes Momentum

In the last lecture the concept of kinetic energy was introduced. Kinetic energy (KE) is the energy that an object has by virtue of its motion

Lecture 9: Kinetic Energy and Work 1

Energy graphs and work

In this lecture we will discuss three topics: conservation of energy, friction, and uniform circular motion.

Work. The quantity of work done is equal to the amount of force the distance moved in the direction in which the force acts.

Momentum & Energy Review Checklist

Announcements 2 Oct 2014

Chapter 7 Work and Energy

Chapter 6 Energy and Oscillations

5.3. Conservation of Energy

Lecture 12 (Kinetic Energy) Physics Spring 2017 Douglas Fields

Energy "is an abstract concept invented by scientists in the nineteenth century to describe quantitatively a wide variety of natural phenomena.

What is Energy? Which has more energy? Who has more energy? 1/24/2017

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

Potential Energy. Serway 7.6, 7.7;

First Midterm Exam. Physics General Physics Lecture 11 Work and Energy 9/28/2016. Fall 2016 Semester Prof. Matthew Jones

Today: Chapter 7 -- Energy

Momentum and Energy. Chapter 3

General Physics I. Lecture 4: Work and Kinetic Energy

Chapter 12 Vibrations and Waves Simple Harmonic Motion page

Clicker Question: Momentum. If the earth collided with a meteor that slowed it down in its orbit, what would happen: continued from last time

The content contained in all sections of chapter 6 of the textbook is included on the AP Physics B exam.

A. B. C. D. E. v x. ΣF x

Physics 101 Lecture 7 Kinetic Energy and Work

Lectures 11-13: From Work to Energy Energy Conservation

Chapter 7 Energy of a System

Physics Year 11 Term 1 Week 7

Name Lesson 7. Homework Work and Energy Problem Solving Outcomes

Other Examples of Energy Transfer

AP PHYSICS 1. Energy 2016 EDITION

15.1 Energy and Its Forms. Energy and Work. How are energy and work related? Energy is the ability to do work. Work is a transfer of energy.

Kinematics 1D Kinematics 2D Dynamics Work and Energy

Chapter 1 about science 1. Differentiate between hypothesis and theory.

AP Physics C - Mechanics

Spring Force and Power

Essentially, the amount of work accomplished can be determined two ways:

Transcription:

EW-1 Work and Energy Energy is difficult to define because it comes in many different forms. It is hard to find a single definition which covers all the forms. Some types of energy: kinetic energy (KE) = energy of motion thermal energy = energy of "atomic jiggling" potential energy(pe) = stored energy of position/configuration various kinds of PE: gravitational electrostatic elastic (actually a form of electrostatic PE) chemical (another form of electrostatic PE) nuclear radiant energy = energy of light mass energy (Einstein's Relativity Theory says mass is a form of energy.) Almost all forms of energy on earth can be traced back to the Sun.: Eample: Lift a book (gravitational PE) chemical PE in muscles chemical PE in food cows grass sun (through photosynthesis)! Some tetbooks say that energy is the ability to do work (not a bad definition, but rather abstract). A key idea that we will use over and over again is this: Whenever work is being done, energy is being changed from one form to another or being transferred from one body to another. The amount of work done on a system is the change in energy of the system. We ll use the symbol W for work and the symbol U for energy. (We will define work later.) The English sentence The work done equals the amount of energy transformed we can write as W = U This is called The irst Law of Thermodynamics. Aside: Actually the irst Law of Thermodynamics is this: heat added plus work done equals change in energy or Q + W = U. (Q is the symbol for heat). In this chapter we won t consider adding heat to a system (like holding a flame under it), so Q = 0 and we have just W = U As we'll see later, energy is an etremely useful concept because energy is conserved. When we say energy is conserved, we mean that energy cannot be created or destroyed; it can only be transformed from one form to another, or transferred from one body to another. The total amount of energy everywhere is fied; all we can do is shuffle it around. /13/011 University of Colorado at Boulder

EW- Notice that this is not what people normally mean when they say "Conserve energy." When the power company says "Conserve energy", they really mean "Don't convert the energy stored as chemical potential energy into other forms of energy too quickly." To a scientist, the phrase "conserve energy" is meaningless, because energy is always conserved. You can't NOT conserve energy. To understand energy and conservation of energy, we must first define some terms: work, kinetic energy (KE), and potential energy (PE). We ll get to PE in the net Chapter. Let s look at work and KE. Definition of work done by a force: consider an object moving while constant force is applied. While the force is applied, the object moves along some ais (-ais, say) through a displacement of magnitude = d. i = d f Notice that the direction of displacement is not the same as the direction of the force, in general. Work done by a force = W d cos d d = component of force along the direction of displacement, W = distance Unit of work: [W] = [][d] = 1 Nm = 1 joule = 1 J If the displacement vector is W r r, the work done can be written in terms of the dot product as Vector Math interlude: The dot product of two vectors A and B, "A dot B", is defined as B AB ABcos The dot product of two vectors is a number, not a vector. (Later on, we will see another way to define the product of two vectors, called the "cross-product". The cross-product of two vectors is a vector.) y The dot product is the magnitude of one vector (say A) times the component of the other vector (B) along the direction of the first (A). or instance, suppose that we align the -ais with vector A. Then AB ABcos AB. B B = B cos /13/011 University of Colorado at Boulder

EW-3 The dot product is positive, negative, or zero depending on the relative directions of the vectors A and B. When A and B are at right angles ( = 90 o ), the dot product is zero. When the angle is greater then 90 o, then the dot product is negative. B < 90 o, AB positive B = 90 o, AB = 0 A > 90 o, AB negative It is not difficult to prove that.. the dot product is commutative: AB BA A B C AC BC the dot product is associative: The dot product can be written in terms of the components of the vectors like so: AB A B A B A B Proof (in D) : y y z z AB A ˆi A ˆj B ˆi B ˆj A B ˆi ˆi A B ˆi ˆj... A B A B y y y y y In the last step, we used the fact that ˆ i ˆ i 1 and ˆ i ˆ j=0. So, the work done by a force is W r. Work is not a vector, but it does have a sign, (+) or ( ). Work is positive, negative, or zero, depending on the angle between the force and the displacement. The formula W = d cos gives the correct sign, because cos is negative when > 90. r < 90, W positive r = 90, W = 0 r > 90, W negative Why do we define work this way? Answer: Whenever work is done, energy is being transformed from one form to another. The amount of work done is the amount of energy transformed. (This is the irst Law of Thermodynamics.) /13/011 University of Colorado at Boulder

EW-4 Eample of work: Move book at constant velocity along a rough table with a constant horizontal force of magnitude et = 10 N (10 newtons). Total displacement is = 1 m. friction et = 10 N = +1 m work done by eternal force = W et = + et = 10 N 1 m = 10 Nm = +10 J Since velocity = constant, net = 0, so et = fric = 10 N Work done by force of friction = W fric = fric = 10 J (since cos 180 o = 1) Work done by normal force N is zero: W N = 0 (since normal force is perpendicular to displacement, cos 90 o = 0.) N Work done by the net force is zero. Since v = constant net = 0 W net = 0. Moral of this eample: Whenever you talk about the work done, you must be very careful to specify which force does the work. Definition of kinetic energy (KE) of an object of mass m, moving with speed v: KE KE > 0 always. An object has a big KE if it is massive and/or is moving fast. KE is energy of motion. m m Units of KE = [KE] kg kg m N m J (joules) s s Units of KE = units of work = joules /13/011 University of Colorado at Boulder 1 m v units of force =[m][a] Eample of KE: Bowling ball (weight mg = 17 lbs, mass m = 7.7 kg ) with speed v = 7 m/s (typical bowling speed). KE = 0.5 (7.7 kg) (7 m/s) 190 J Why do we define work and KE like we have? Because work and KE are related by the Work-Kinetic Energy Theorem: The work done by the net force on a single point-like object is equal to the change in kinetic energy of that object. Wnet Wnet KE KEf KEi Notice that this is the work done by the total force, the net force. The Work-KE Theorem applies in the special cast that the object is point-like, meaning the object can be treated like a

EW-5 single particle with no deformation and no rotation. (If the object has any moving internal parts, then there is no single speed for the object and the KE of the object is not simply 1/mv.) "Proof" of W net = KE. Here we show that the Work-KE Thm is true for a special case. I push a book of mass m along a table with a constant eternal force of magnitude et. The force of friction on the book has magnitude fric. The book starts with an initial velocity v i and ends with a final velocity v f. While the force is applied, the book moves a displacement. We show that W net = KE in this case. fric v i m et v f net = et fric (the normal force and force of gravity cancel). W net = + net What is KE? KE involve v, so we look for a formula involving v. Since net = constant, the acceleration is constant, and so we can use the 1D constant acceleration formula v v a( ). So we have 0 0 v f v i = a( f i ) = ( net /m)() [ using a = net /m ] KE = KE f KE i = (1/)mv f (1/)mv i Done! = (1/)m ( net /m)() = + net = W net. Energy was transferred from the surroundings into the KE of the book. We have shown that the Work-KE Theorem is true in this one case, but it turns out to be always true whenever the object can be treated as a single particle. A more complete derivation is given in the Appendi. Notice the Work-KE theorem holds even when friction is involved. Let s check that the Work-KE Theorem works in a few other special cases: Eample: A book of mass m is dropped from rest and it falls a distance h. The net force is grav = mg. The work done by the net force is W net = +mg y = mgh. To compute the change in KE, we need the final velocity:ke = KE f KE i = KE f 0 = (1/)mv f. The final velocity we get from our constant acceleration formula: v f = v i + a(y f y i ) = 0 g(y) = +gh (notice y is negative). So (1/)mv f = (1/) m g y = mgh. Therefore, W net = KE In the net chapter, we will define potential energy (PE). As the book falls, energy was transferred from the PE of the earth-book system into the KE of the book. The amount of energy transferred is W grav = mgh. Eample: A book is lifted a height h by an eternal force (my hand) at constant velocity. Here, net = 0 (since constant velocity), so W net = 0. The book does not speed up or slow down, so KE = 0. Hence, W net = KE The Work-KE Theorem provides a short-cut in some problems: /13/011 University of Colorado at Boulder

EW-6 Eample: A car of mass m is moving with speed v. The driver applies the brakes and the car skids to a stop. What was the magnitude of the work done by the friction force on the tires? car v (car skids to stop) v f = 0 At first glance, it seems that we don't have enough info to answer the question. We don't know the coefficient of kinetic friction K and we don't know how far () the car skidded. So how are we to compute the work done by friction W fric = fric = K? Easy with the Work-KE Theorem: Here net = fric so W fric = W net = KE = (1/) m v. Another question: If the initial speed v of the car is doubled, how much further does the car skid? Answer: Begin with W fric = W net = KE = (1/) m v The work done is W fric = fric = K = K mg. So we have (1/) m v = K mg, v. Since v, if the v is doubled, the car skids 4 K g times as far. General definition of work. Our earlier definition of work done by a force, W r, only applies if the force is constant and the path is a straight line. What if the path is curvy and/or the force is not constant? Suppose the path is the curved line below and the force varies as the object moves start i r i r 1 r To compute the work done, we break the path up into a large number of very small, straight-line segments, and label the segments with an inde i. If the segment r i is very small, it is essentially straight and the force i is constant over that segment, so the work done over the i th segment is Wi i r. The total work done over the whole path is W i r i i. Taking the limit as the segment lengths become infinitesimal, the sum becomes an integral and the work done is W finish dr i /13/011 University of Colorado at Boulder

EW-7 Don t let the integral sign scare you. An integral is just a sum (the integral sign looks like an S for sum ). The sum of little bits of work is the total work. Springs We want to derive an epression for the work done to stretch or compress a spring, so we take a little detour and talk about springs. Most springs obey "Hooke's Law" which says that the force eerted by a spring is proportional to the displacement from the equilibrium (relaed) position. stretched: = (+) relaed: = 0 compressed: = ( ) is the amount that the spring is stretched (+) or compressed ( ) spring double double spring 0 Hooke's Law : spring = k k = spring constant = measure of stiffness, big k stiff spring, small k floppy spring units of k = [k] = []/[] = N/m (newtons per meter) Why the ( ) sign in Hooke's Law? It's because the direction of the force eerted by the spring is opposite direction of displacement. When displacement is to the right ( +), the spring pulls back to the left ( ); when is ( ), is (+). Why Hooke's "Law" in quotes? Because it is not really a law. It is only approimately true for most springs as long as the etension is not too great. If a spring is stretched past its "elastic limit", the spring will permanently deform, and it will not obey Hooke's Law. We now show that the work done by an eternal force et (such as the force from my hand) to stretch or compress a spring by an amount is given by W et 1 k To hold the spring stretched a displacement, I have to eert an eternal force et = +k. To slowly stretch the spring from i = 0 to f, I have to apply a force that spring et 0 /13/011 University of Colorado at Boulder

EW-8 increases from zero to k f. Our general definition of work in 1D is W d. f 1 1 et et 0 i 0 Done. W d k d k k If you don t yet know how to do integrals, here s another way of solving for the work. As the spring is stretched, the force varies linearly from zero (unstretched) to +k (fully stretched). The average force applied is 1 k. We can pretend the force is constant, equal to the average force, and the work done is W force distance = k k 1 1 et. Notice that the work done by the eternal force is always positive, regardless of whether the spring is stretched ( positive) or compressed ( negative). Appendi. Derivation of Work-Kinetic Energy Theorem in 1D: This derivation requires some knowledge of integrals. Working in 1D, I can drop the arrows over the vectors, since direction can be represented by a sign in 1D. Starting with the general definition of work done by a force and using net = ma and a = dv/dt, we have dv Wnet net d m a d m d dt The velocity v can be regarded as a function of, and is a function of t: v = v[(t)]. By the chain rule, dv dv d dv d. Multiplying both sides by d gives d dv, so we have dt d dt dt dt dv d Wnet m d m dv dt dt v 1 v1 1 1 1 m v dv m v m v m v KE /13/011 University of Colorado at Boulder