The fundamental theorem of calculus for definite integration helped us to compute If has an anti-derivative,

Similar documents
Module 16 : Line Integrals, Conservative fields Green's Theorem and applications. Lecture 48 : Green's Theorem [Section 48.

for surface integrals, which helps to represent flux across a closed surface

43.1 Vector Fields and their properties

30.1 Continuity of scalar fields: Definition: Theorem: Module 10 : Scaler fields, Limit and Continuity

We have seen that for a function the partial derivatives whenever they exist, play an important role. This motivates the following definition.

31.1.1Partial derivatives

THE RESIDUE THEOREM. f(z) dz = 2πi res z=z0 f(z). C

Module 5 : Linear and Quadratic Approximations, Error Estimates, Taylor's Theorem, Newton and Picard Methods

Module 9 : Infinite Series, Tests of Convergence, Absolute and Conditional Convergence, Taylor and Maclaurin Series

Green s Theorem in the Plane

Module 14 : Double Integrals, Applilcations to Areas and Volumes Change of variables

Vector Calculus, Maths II

Section 5-7 : Green's Theorem

In this section you will learn the following : 40.1Double integrals

Lecture Wise Questions from 23 to 45 By Virtualians.pk. Q105. What is the impact of double integration in finding out the area and volume of Regions?

Green s Theorem in the Plane

Elements of Vector Calculus : Line and Surface Integrals

Through level curves and contour lines give some information about the function

4 Limit and Continuity of Functions

example consider flow of water in a pipe. At each point in the pipe, the water molecule has a velocity

Electromagnetic Theory Prof. D. K. Ghosh Department of Physics Indian Institute of Technology, Bombay

9.3 Path independence

Module 7 : Applications of Integration - I. Lecture 21 : Relative rate of growth of functions [Section 21.1] Objectives

MORE CONSEQUENCES OF CAUCHY S THEOREM

Arc Length. Philippe B. Laval. Today KSU. Philippe B. Laval (KSU) Arc Length Today 1 / 12

(x 1, y 1 ) = (x 2, y 2 ) if and only if x 1 = x 2 and y 1 = y 2.

We saw in the previous lectures that continuity and differentiability help to understand some aspects of a

Preface. Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.

The Divergence Theorem Stokes Theorem Applications of Vector Calculus. Calculus. Vector Calculus (III)

11.1 Absolute Maximum/Minimum: Definition:

Module 3 : Differentiation and Mean Value Theorems. Lecture 7 : Differentiation. Objectives. In this section you will learn the following :

Kevin James. MTHSC 206 Section 16.4 Green s Theorem

NATIONAL UNIVERSITY OF SINGAPORE. Department of Mathematics. MA4247 Complex Analysis II. Lecture Notes Part IV

Cauchy Integral Formula Consequences

McGill University April 16, Advanced Calculus for Engineers

APPENDIX 2.1 LINE AND SURFACE INTEGRALS

8.1.1 Theorem (Chain Rule): Click here to View the Interactive animation : Applet 8.1. Module 3 : Differentiation and Mean Value Theorems

Midterm 1 Review. Distance = (x 1 x 0 ) 2 + (y 1 y 0 ) 2.

The Fundamental Group and Covering Spaces

Vector Calculus. Lecture Notes

(x x 0 ) 2 + (y y 0 ) 2 = ε 2, (2.11)

(Refer Slide Time: 2:08 min)

LECTURE-15 : LOGARITHMS AND COMPLEX POWERS

FUNCTIONAL ANALYSIS LECTURE NOTES: COMPACT SETS AND FINITE-DIMENSIONAL SPACES. 1. Compact Sets

OHSx XM521 Multivariable Differential Calculus: Homework Solutions 13.1

6. Vector Integral Calculus in Space

Module 7 : Applications of Integration - I. Lecture 20 : Definition of the power function and logarithmic function with positive base [Section 20.

Taylor and Laurent Series

Notes on Green s Theorem Northwestern, Spring 2013

Final exam (practice 1) UCLA: Math 32B, Spring 2018

Vector Fields and Line Integrals The Fundamental Theorem for Line Integrals

MITOCW MIT18_02SCF10Rec_61_300k

MATH 547 ALGEBRAIC TOPOLOGY HOMEWORK ASSIGNMENT 4

18.02 Multivariable Calculus Fall 2007

To find an approximate value of the integral, the idea is to replace, on each subinterval

Metric Spaces Lecture 17

Rose-Hulman Undergraduate Mathematics Journal

GAUSS CIRCLE PROBLEM

LINE AND SURFACE INTEGRALS: A SUMMARY OF CALCULUS 3 UNIT 4

ADVANCED CALCULUS - MTH433 LECTURE 4 - FINITE AND INFINITE SETS

Created by T. Madas LINE INTEGRALS. Created by T. Madas

Math 6510 Homework 11

Chapter Five. Cauchy s Theorem

January 21, 2018 Math 9. Geometry. The method of coordinates (continued). Ellipse. Hyperbola. Parabola.

ENGI 4430 Line Integrals; Green s Theorem Page 8.01

LINE AND SURFACE INTEGRALS: A SUMMARY OF CALCULUS 3 UNIT 4

First some basics from multivariable calculus directly extended to complex functions.

The Sphere OPTIONAL - I Vectors and three dimensional Geometry THE SPHERE

4B. Line Integrals in the Plane

LECTURE 15: COMPLETENESS AND CONVEXITY

Module 2 : Electrostatics Lecture 7 : Electric Flux

Topological properties

Tangent spaces, normals and extrema

Green s Theorem. MATH 311, Calculus III. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Green s Theorem

Vector-Valued Functions

CHAPTER 2: CONVEX SETS AND CONCAVE FUNCTIONS. W. Erwin Diewert January 31, 2008.

5.4 Continuity: Preliminary Notions

SMSTC (2017/18) Geometry and Topology 2.

Complex Integration Line Integral in the Complex Plane CHAPTER 14

MTH101 Calculus And Analytical Geometry Lecture Wise Questions and Answers For Final Term Exam Preparation

Name: Student ID number:

ENGI 4430 Line Integrals; Green s Theorem Page 8.01

In addition to the problems below, here are appropriate study problems from the Miscellaneous Exercises for Chapter 6, page 410: Problems

II. Unit Speed Curves

Exercises for Multivariable Differential Calculus XM521

Mathematics (Course B) Lent Term 2005 Examples Sheet 2

Engineering Mechanics Prof. U. S. Dixit Department of Mechanical Engineering Indian Institute of Technology, Guwahati Kinematics

Part IB GEOMETRY (Lent 2016): Example Sheet 1

ENGI Multiple Integration Page 8-01

B Elements of Complex Analysis

PRACTICE PROBLEMS. Please let me know if you find any mistakes in the text so that i can fix them. 1. Mixed partial derivatives.

Haus, Hermann A., and James R. Melcher. Electromagnetic Fields and Energy. Englewood Cliffs, NJ: Prentice-Hall, ISBN:

Module 9 : Infinite Series, Tests of Convergence, Absolute and Conditional Convergence, Taylor and Maclaurin Series

0. Introduction 1 0. INTRODUCTION

Math 425 Fall All About Zero

Energy Efficiency, Acoustics & Daylighting in building Prof. B. Bhattacharjee Department of Civil Engineering Indian Institute of Technology, Delhi

39.1 Absolute maxima/minima

Integrals. D. DeTurck. January 1, University of Pennsylvania. D. DeTurck Math A: Integrals 1 / 61

Multivariable Calculus

Parametric Curves You Should Know

Transcription:

Module 16 : Line Integrals, Conservative fields Green's Theorem and applications Lecture 47 : Fundamental Theorems of Calculus for Line integrals [Section 47.1] Objectives In this section you will learn the following : Fundamental theorem of calculus for line integrals. Physical applications of this theorem. 47.1 Fundamental Theorems of Calculus for Line integrals The fundamental theorem of calculus for definite integration helped us to compute If has an anti-derivative, then ----------(38) In fact, if is continuous on then and are related by for every i.e., an antiderivative of is given by ----------(39) We shall extend both these parts of the fundamental theorem of calculus for line integrals. 47.1.1 Theorem (Fundamental theorem for line integrals): 1. Let be an open set in and be a continuously differentiable scalar field. Let Then and let, be any smooth curve in such that initial point of is and final point of is. 2. Let be a continuously differentiable vector-field such that is conservative, i.e., for some continuously differentiable scalar field on. Then, for and for any smooth curve We have 1. Consider the function 2. Then is a continuously differentiable function with

Hence, by fundamental theorem of calculus for a single variable, (ii) This follows from (i). We give next some applications of this theorem. 47.1.2 Applications : 1. Independence of work done: The above theorem says that if a vector-field is conservative, then the work done in moving from one point to another does not depend upon the path taken. 2. Principle of energy conservation: Let be a conservative force field in a domain with The scalar field is called a potential function for the vector field and the scalar field is called the potential energy of the field at the point. The above theorem tells us that the work done by on a particle that moves along any path from a point to a point is related to the potential energy of the body by the equation i.e., the work done by the conservative force field is equal to the negative of the change in potential energy. Thus, in particular if is a closed curve, then there is no change in the potential energy, and hence the work done is zero. Further, suppose the particle being moved has mass, velocity at the initial point and at the point. Then, the work energy relationship says that the work done is also equal to the change in kinetic-energy. Hence, for a conservative force field, where Thus, This equation stats that the total energy, i.e., the kinetic energy plus the potential energy, of the particle does not change if it is moved from one point to another in a conservative vector field. This is called the principle of energy

conservation. This is the reason that for, we say that is conservative. Mathematically, if a vector field is conservative and, then the integral joining the points and. It is natural to ask the question: "Is the converse true, i.e., if is such that for given points the integral is independent of the path joining to, is conservative?" Thus, given a vector-field with the above property, one would like to construct a potential function for it, i.e., try to extend equation to line integrals. Recall that, for a function of one variable, to construct an antiderivative in, we simply defined it to be In the present situation, given a point, we would like to define ---------(40) where is a curve in joining to any arbitrary point. Figure: Definition of. We observe that the given property of the vector field tells us that, as given by equation, is welldefined since the line-integral does not depend upon the choice of the curve joining to. However, there is one problem: That this may not be always possible for some domains is illustrated in the next example. 47.1.3 Example : Consider the domain the plane minus the shaded annulus region, i.e., Let and

Figure: The region Then, the points cannot be joined by any continuous path completely lying inside. To go from the point to the point, one has to cross the annulus region. Practice Exercises 1. For the following show that, for sum. Use this to compute for the given : 1., is the line segment joining with. 2., is the semi-circular path in the upper half -plane joining to Answer: (i) (ii) 2. Using fundamental theorem of calculus, Evaluate around the square determined by traced in the counter clockwise direction. (Hint: ) Answer: 3. Find a non-zero function such that the vector-field has a potential function. Recap Answer: In this section you have learnt the following Fundamental theorem of calculus for line integrals. Physical applications of this theorem. [Section 47.2]

Objectives In this section you will learn the following : Necessary and Sufficient conditions on the domain and the vector field to be conservative. The motion of simple connectedness of a domain. 47.2 Conservative Vector Fields The independence of the line integral over the path joining two points and can also be described in terms of closed paths as follows: 47.2.1 Theorem: Let be any scalar-field. Then the following are equivalent: 1. For any two points,the line integral does not depend upon the path joining and 2. for every closed path in. Let be any closed path in with parameterizations Choose and consider the curves

Figure 189. Caption text. Then, is the union of the two curves and. Further, is the curve with initial point and final point. Thus, by Hence, Let and be any two curves in such that both have same initial and final points. Then, is a closed curve, and by the given property Hence We saw in example 47.1.3 that the existence of potential for a vector field This motivates our next definition. depends upon the nature of the domain of 47.2.2 Definition : Let be a region in. We say is connected if any two points in can be joined by a piecewise smooth curve completely in. 47.2.3 Examples : 1. In, the only connected sets are intervals. 2. In, examples of connected sets are:

Figure: Connected subsets in 3. It is easy to see that in, every convex set is connected. In fact, by definition, any two points in a convex set can be joined by a line segment. For connected regions, we can answer our question: which vector fields have a potentials? 47.2.4 Theorem (Existence of potential): Let be a continuous vector-field, where is an open connected set. If for any curve in, the lineintegral, depends only upon the initial and final point of, then there exists a scalar field such that Let us fix any point. For any point, let be any smooth curve with initial point and final point at least one such curve exists as is connected. Define Figure 191. The path in Further, the value does not depend upon the curve joining to Thus, the function is welldefined. We show that is the required scalar-field. For, since is open, we can select such that where is the open ball in with center and radius. Let and be any given unit vector in such that

Let be the point and denote the line segment joining to Then, Using the properties of the line integral, we have Let for the line segment us choose the arc-length parameterization Then Selecting, we have If we write then is differentiable at, with. Hence, Thus, is differentiable with respect to and Similarly, by choosing and, we will get Theorems 47.2.1 and 47.2.4 give us the following: 47.2.5 Theorem : Let be an open connected subset of and be a continuous vector-field. Then the following statements are equivalent : 1. There exists a scalar-field such that

i.e., is conservative. 2. For any two points, the line integral is independent of the path joining and. 3., for every closed smooth curve in. If, then by theorem for any curve joining, Hence holds. Given that holds, by theorem, there exists a scalar field such that. Hence holds. We have already proved this in theorem In order to be able to use theorem effectively, i.e., given a vector-field to be able to check whether it is conservative or not, one has to verify the condition that for all points and all curves joining to, the line integral is independent of the curve This condition seems difficult to check. One aim is to find some verifiable necessary and sufficient conditions for to be conservative. simple necessary condition for to be conservative is given by our next theorem. 47.2.6 Theorem (Necessary Condition for to be conservative): Let be an open connected set and be a continuously differentiable vector-field. If is conservative, then Since is conservative,

Since is continuously differentiable, is twice-continuously differentiable, and we have Since is twice continuously differentiable, we get proving the required claim. The above theorem is useful in verifying that a scalar field is not conservative. 47.2.7 Example: Let Then, Since the vector field is not conservative. We give next an example to show that the condition of theorem, i.e., is only necessary, and not sufficient. 47.2.8 Example: Let Note that, is the set. Thus, is a continuously differentiable vector field on an open connected set with. Thus, and

Hence However, if we consider, the curve in, with parameterization we have In fact, if we take the closed curve i.e., the curve that circles the -axis twice, then Thus, though satisfies conditions of theorem, it is not conservative. To make the condition to be sufficient also for to be conservative, one has to impose more conditions on the domain of. 47.2.9 Definition : 1. A subset is said to be simply connected if no simple closed curve in encloses points that are not in the region. Intuitively, in a set without 'holes' is simply connected. 2. A region is said to be simply connected if for every simple closed curve in there exists a surface in whose boundary is. 47.2.10 Examples: 1. For example, the region enclosed by a circle, ellipse, a rectangular path are all simply connected sets in The region is not simply connected. In particular is not simply connected. There are closed curves that enclose points not in, for example origin. Figure: Simply connected and non- simply connected sets in 2. In the interior of a sphere is simply connected. Interior of two concentric spheres is also simply connected. Torus is

not simply connected. For example, in the figure below, the curve is not the boundary of any surface in. Figure: Simply connected and non- simply connected sets in 47.2.11 Note: A more mathematically rigorous definition of simple connectedness is the following. Let be connected. We say is simply connected if given any two points and in and any two curves and in, both having initial point and final point, the curve can be continuously deformed to, i.e., there exists a continuous function Figure: Continuous deformation of We state a necessary and sufficient condition for a vector field to be conservative. We shall prove this in module 18 (theorem 54.1.5) 47.2.12 Theorem (Sufficient condition for a field to be conservative) : Let be a simply connected open set and be a continuously differentiable vector-field. If curl, then there exists a scalar-field such that, i.e., is conservative. 47.2.13 Example (Calculation of potential function): Let us consider the vector field In case is to be conservative with potential, we should have --------(41)

----------(42) and ----------(43) A general function which satisfies can be obtained as follows. First we integrate with respect to. This gives us ----------(44) where is a continuously-differentiable function of -variables. But then, differentiating with respect to and using, we have. Hence,. Thus depends upon alone. Let us take. Then, from we have ---------(45) Once again differentiating and using we have Hence, implying that, a constant. Hence, gives Now we can check that Hence, is conservative with potential. 47.2.14 Note : Recall that, in example 47.2.8, we showed that the vector-field satisfies the conditions that however, is not conservative. The natural question arises: why can we not apply the process of the previous example? The reason is that is not independent of the path, and hence (as in example 47.2.13) we cannot always select path parallel to the axes to integrals. Let us analyze this in detail. Let, for some in

Then ----------(46) Hence, if we integrate, we get This will give us This is where the problem arises. The function is not single valued, since is not a one-one-function. In fact, if we consider then it is one-one, onto and the corresponding inverse function is called the principle branch of. Thus, in order to make the above calculations possible, we can decide to select the principle branch of. But then, this function is not everywhere continuous. In order to set a valid solution, we can modify our domain, as shown in the next example. 47.2.15 Example Consider i.e., consists of the space minus the plane consisting of negative part of the -axis (including 0) and the -axis. Define Then is the required potential for Practice Exercises 1. Show that

is a conservative vector field by finding a function such that. Answer: 2. Show that, for some, where and hence compute, where is Answer: 3. Show that the line integral is not independent of the path. 4. Show that the vector field is not conservative by evaluating the integrals where is the curve and is the curve Recap In this section you have learnt the following Necessary and Sufficient conditions on the domain and the vector field to be conservative. The motion of simple connectedness of a domain.